CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
  • 隧道内甲烷蒸气云爆炸特性及杀伤效应研究
    含能材料 | 2025年第3期
  • 基于音频信号的含能材料撞击感度机器学习识别
    含能材料 | 2025年第2期
  • 机器学习辅助的烃类分子性质预测与燃料的高通量筛选
    含能材料 | 2025年第1期
  • 叠层复合装药爆炸过程中铝粉分布及后燃释能特性
    含能材料 | 2024年第12期
  • C8H24N4(ClO4)4和C8H24N4(NO3)4∙2H2O的合成与性能
    含能材料 | 2024年第11期
  • 三维网络结构CL⁃20/Al@Co/NBC 复合物的制备与性能
    含能材料 | 2024年第10期
  • 爆炸荷载下背爆面柔性聚脲防护混凝土靶板的反直观行为
    含能材料 | 2024年第9期
  • 含叠氮增塑剂AZDEGDN 发射药的制备和燃烧性能
    含能材料 | 2024年第8期
编辑推荐
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 云爆/温压含能材料与传统混合炸药相比,具有高能量、高安全特征,可形成长时高温、高压、窒息等传统炸药不具备的毁伤效应,特别适用于打击丘陵、丛林、堑壕、碉堡等半封闭或封闭空间内的有生力量,并形成强大的心理震慑。21世纪以来,云爆/温压含能材料的多次应用,取得了良好的效果,近年更被世界各国争相研制。 尽管云爆/温压含能材料已经实现了初步应用,呈现良好的发展前景,但仍然存在诸如云爆燃料激波抛撒雾化机理不清晰、装药结构对温压炸药释能机制影响不明确、新型氧化剂应用安全性研究不完善、应用场景对毁伤效应影响规律研究不全面等问题。为此,本刊特组织出版“云爆/温压含能材料”专题。专题共收录6篇论文,其中观点1篇,综述1篇,研究论文4篇。从云爆/温压含能材料设计与应用过程中涉及到的燃料流变机制、炸药能量释放机理、新型氧化剂应用安全性、装药结构设计等方面探讨了该领域的研究进展。希望本专题的出版,可以加强相关研究人员的学术交流,共同推动我国云爆/温压含能材料相关科学技术的发展。 对所有来稿作者、审稿专家的大力支持表示衷心感谢。
  • 改善材料性能、发展新型品种一直是含能材料研究的核心任务。任何材料的宏观性能都是由其化学组成和组织结构两个要素决定的,含能材料的发展以往偏重于组成变化,即研发新化合物和新配方,近年来,含能材料的多尺度结构对其性能的影响越来越受到关注,对含能材料结构的设计和调控已成为改善含能材料性能的有效手段,复合含能材料的组装也成为新材料创制的一个深具潜力的方向,为含能材料的发展注入了新的活力。 为了更好地展示含能材料在微结构设计、制备及应用等技术方面的研究进展和新成果,促进含能材料能量与安全水平的双向提升,特组织出版“含能材料微结构设计、制备及性能”专题。本专题共13篇论文,其中观点1篇、综述1篇、研究论文11篇,介绍了含能材料不同的微结构设计、制备工艺、性能研究的基础理论或新技术。希望通过本专题的出版,促进含能材料相关领域学者的交流与合作,为含能材料技术的研究创新提供帮助,推动我国含能材料相关学科的健康持续发展。
  • 爆炸产生的冲击波和破片会造成严重的杀伤和破坏作用。爆炸事故会给国民经济和人民生命财产造成巨大损失。含能材料的爆炸效应和安全防护已成为公共安全等领域中重点关注的问题。 近年来,我国的研究学者在含能材料等爆炸物的爆炸效应和防护结构分析设计方面取得了很多重要的创新性研究成果。本专题共收录论文10篇,其中研究论文9篇、综述1篇,对含能材料等爆炸物的爆炸效应、防护结构在爆炸冲击波及破片侵彻下的动态力学行为和防护机理进行了分析研讨,为推动爆炸防护技术的发展和含能材料的安全使用提供了科技支撑。
  • 发射药是身管武器的动力能源,其设计的先进性是决定装备射程、精度、威力等性能的核心与关键。随着装备系统向数字化、信息化、智能化的方向发展,对发射药的能量、能量释放控制、环境适应性、武器匹配性等提出了更高的要求。 近年来,我国发射药科研工作者在新型功能添加剂设计、先进发射药制造工艺、能量释放控制方法、发射药综合性能评价、应用效应等方面取得了众多的研究成果,为提升我国发射药与装药的综合性能奠定了坚实的理论基础。为此,特组织出版“发射药与装药设计”专题。本专题共收到12篇论文,综述2篇,研究论文10篇,从科学原理、技术创新、工程应用等角度展示了发射药领域取得的新进展、新成果,并分析、展望了未来的发展方向。希望通过本专题的出版,促进发射药相关领域学者间的交流,为发射药技术的科学研究、行业管理、企业制造等提供参考,推动我国发射药技术的快速健康发展。
  • 含能化合物能量与安全性的矛盾极大限制了高能材料在高价值平台中的应用,同时也制约了装备的性能提升。因此,研制兼顾高能量与高安全性的新型含能化合物受到世界各国的高度重视。 富氮杂环骨架多数具有平面共轭结构、高热稳定性、以及丰富的可修饰化学位点等特点。通过向富氮杂环骨架中合理引入致爆基团和稳定化基团,有助于实现分子能量密度和稳定性的协同提升。近年来,富氮杂环含能化合物受到各国科研人员的广泛关注,新型骨架设计策略、分子构建方法、性能评价等研究成果不断涌现,为含能材料综合性能跃升奠定了坚实的理论基础。
  • 随着现代科技的高速发展,世界各国对高性能含能材料的需求越来越大。由于含能材料在生产过程涉及硝化等反应单元,而传统釜式反应器由于热质传递速率的限制,存在合成过程可控性差、效率低、危险性高等问题,极大地限制了高性能含能材料的应用和发展,也制约了国防技术快速高质量的发展。因此,化工过程技术和装备的自主创新是突破高性能含能材料等高端化学品制造短板的迫切需要。 为了提高硝化等强放热复杂反应过程的安全性,需要对反应过程进行精确操作和调控。国家安全监管总局发布的《精细化工反应安全风险评估导则》,明确要求对于危险反应工艺过程,要努力优先开展工艺优化或改变工艺方法以降低风险。微通道反应技术具有高效的传热传质、本征安全和易于直接放大等特性,为解决含能材料制造难题和实现其绿色高效连续安全生产奠定重要基础。 为此特组织出版“含能材料通道式连续合成与安全评价”专题。本期专题共收到11篇论文,观点1篇,研究论文8篇,综述2篇,展示含能材料连续安全可控合成过程中备受关注的热点问题。希望通过本专题的出版,促进含能材料合成领域学者的广泛交流,推进相关技术发展,为实现含能材料连续安全生产提供技术支撑。
  • 优先出版
  • |
  • 预出版
  • |
  • 当期目录
  • |
  • 专辑论文
  • |
  • 学术观察
  • |
  • 年度排行
  • |
  • 过刊浏览
    全选
    显示模式: |
    • 张成, 杨文进, 宋江伟, 张军旗

      优先出版日期:2025-03-25  DOI: 10.11943/CJEM2025011

      摘要:为提升Al粉作为金属燃料的释能效率,采用机械合金化的方法制备了含不同质量分数聚偏氟乙烯(PVDF)的铝基复合金属燃料。采用扫描电子显微镜、X射线衍射仪对其进行了表征,气体容量法测量了其活性铝含量,并用氧弹量热仪测量了其燃烧热,热重分析-差示扫描量热法(TG-DSC)和快速升温氧化装置对其热氧化性能进行了评估。扫描和XRD结果显示,经4%PVDF弥散嵌合改性的复合铝粉在升温过程中难以形成连续完整的Al2O3壳层;TG-DSC结果显示,复合铝粉1300 ℃氧化增重率为76.7%,比铝粉的40.9%提高35.8%;快速升温氧化实验结果显示,复合铝粉1100 ℃氧化120 s增重率达到64.6%,较铝粉的23.4%提高41.2%。由此表明,PVDF弥散嵌合改性对提高铝粉氧化活性和氧化效率具有重要作用。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
      • 37
    • 陈文聪, 邓皓源, 石情文, 张子怡, 孙一, 罗国强, 沈强

      优先出版日期:2025-03-25  DOI: 10.11943/CJEM2025008

      摘要:为研究聚偏二氟乙烯(PVDF)含量对铝基固体推进剂燃烧性能的影响。通过溶剂-非溶剂法制备了包覆量为2%~14%的Al@PVDF复合粉体。结合热重-差热分析、定容燃烧及同步点火等测试方法,对比分析了复合铝粉的热反应性和相应固体推进剂的能量及燃烧性能。结果表明,PVDF包覆结构能显著提高铝粉的热反应性,PVDF包覆量为6%时,铝粉的热增重和放热焓达最大值78.96%和16.14 kJ·g-1。随PVDF含量的增加,固体推进剂的释能量呈先增后减,再增再减的变化趋势,包覆量为10%时,固体推进剂最大放热量为6026 J·g-1、增压值为4.45 MPa;铝氧反应的点火延迟由53 ms降低至12 ms;燃速压力指数由0.43降至0.36再降至0.26的三阶段演变。冷凝燃烧产物(CCPs)阐明了PVDF含量对燃烧性能的阶段性作用机制:低包覆量(2%~4%)时,热解产物抑制铝熔融团聚;中包覆量(6%~8%)时,能加速颗粒破碎点火,还会诱发二次团聚;高包覆量(10%~14%)时,过量热解产物会促进团聚体在气相区的二次破碎。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
    • 洪天骄, 康燕, 田鹏飞, 轩福贞

      优先出版日期:2025-03-25  DOI: 10.11943/CJEM2025009

      摘要:为了探究原位光谱技术在甲苯二异氰酸酯(TDI)体系含能材料固化反应过程监测中的应用,采用原位拉曼光谱和红外光谱方法研究了3,3-双(叠氮甲基)氧杂环丁烷与四氢呋喃共聚醚(PBT)-TDI体系固化反应前后谱图,分析了可用于定量监测固化反应进程的拉曼特征峰,并对监测结果进行了评估;采用密度泛函理论(DFT)方法对反应物和产物的拉曼光谱图特征峰振动模式进行了指认,讨论了利用红外光谱和拉曼光谱方法监测的固化反应结果间的关联性。结果表明:PBT-TDI体系拉曼光谱中的1534 cm-1峰信噪比过低,不适用于定量分析;基于拉曼光谱中1743 cm-1峰计算的体系反应程度高于1505 cm-1峰及红外光谱2269 cm-1峰所得结果;拉曼光谱中的1505 cm-1峰与异氰酸酯基团(NCO)伸缩振动相关,由1505 cm-1峰和红外光谱2269 cm-1峰计算得到的反应程度结果间的差异来自于单个NCO基团参与反应的TDI分子数量,两者具有互补作用。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
      • 37
      • 38
      • 39
      • 40
      • 41
      • 42
    • 李欢, 周琪, 侯天骄, 王桂香, 罗军

      优先出版日期:2025-03-13  DOI: 10.11943/CJEM2025012

      摘要:以 9-氧杂双环[3.3.1]壬-2,6-二烯为原料经氧化环合、氧化、肟化、偕硝化四步反应合成了一种新型笼状含能化合物4,4,8,8-四硝基-2,6-二氧杂金刚烷。利用核磁共振、红外、元素分析对目标化合物进行了结构表征,通过X-射线单晶衍射确定了其晶体结构,采用热重分析(TG)和差示扫描量热法(DSC)联用研究了其热稳定性,通过EXPLO5预测了其爆轰性能。结果表明,4,4,8,8-四硝基-2,6-二氧杂金刚烷的晶体密度为1.75 g·cm-3,属单斜晶系,P21/c空间群,起始分解温度为190.6 ℃,爆速为7705 m·s-1,爆压为25.75 GPa。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
    • 伍俊英, 王健宇, 刘新航, 胡良, 尚伊平, 刘丹阳, 陈朗

      优先出版日期:2025-03-13  DOI: 10.11943/CJEM2024290

      摘要:硼粉凭借较高的质量热值、体积热值以及洁净的燃烧产物,常被用作含能材料中的可燃剂,然而硼粉表面的氧化层使得硼粉存在点火困难且燃烧效率低的问题。为了改善硼粉的点火及燃烧性能,研究利用氧化硼在乙腈溶剂中易溶解的特性,以热乙腈为控制剂湿法球磨硼粉,去除其表面氧化膜得到活性较高的预处理硼粉;再以乙腈-正己烷为双控制剂,将预处理后的硼粉与高活性金属铝进行二次球磨,最终制备出硼表面活化的硼铝复合粉,并对硼及复合粉的形貌特征、热重、点火与燃烧特性进行了研究。结果表明:经过热乙腈的预处理后,硼粉表面氧化硼的含量降低,在空气中加热时更容易与氧气反应,质量增加百分数比未处理的硼粉多25.6%;使用热乙腈预处理后的硼铝复合粉,表面氧化硼的含量降低,活性硼含量升高,点火燃烧性能显著改善,其中经过乙腈预处理的硼铝质量比例为60/40的复合粉在空气中加热质量增加93%,低加热速率下点火温度为738.1 ℃,颗粒燃烧时间为11.2 ms。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
      • 37
      • 38
      • 39
      • 40
      • 41
      • 42
      • 43
      • 44
      • 45
      • 46
      • 47
      • 48
      • 49
      • 50
      • 51
      • 52
      • 53
      • 54
      • 55
      • 56
      • 57
      • 58
      • 59
      • 60
      • 61
      • 62
      • 63
      • 64
      • 65
      • 66
      • 67
      • 68
      • 69
      • 70
      • 71
      • 72
      • 73
      • 74
      • 75
    • 王嘉炜, 史宏斌, 刘宣杰, 宋仕雄, 史佳伟, 王琪虎

      优先出版日期:2025-01-03  DOI: 10.11943/CJEM2024210

      摘要:为了更加合理地调配固体推进剂的3D打印工艺参数、提升打印质量,基于单层堆叠过程,采用数值模拟方法对挤出速度、打印高度以及打印温度3个影响因素进行了正交设计研究。通过方差和极差分析计算了各因素影响程度,并与灰色关联度方法进行了比较,综合考虑特殊点打印精度后筛选出最优工艺参数搭配,提出了一种通过单线截面数据计算打印线间距的方法,并进行单层打印的仿真模拟与实验验证。结果表明,挤出速度是影响打印质量的主要因素,当挤出速度为12 mm·s-1、喷嘴高度为1.2 mm、打印温度为55 ℃时,打印成型件质量最优,参数修正后试件拉伸强度由0.21 MPa上升到0.43 MPa,密度由1.43×103 kg·m-3上升至1.65×103 kg·m-3,单层打印仿真及实验表明,参数修正后成型质量明显提升。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
      • 37
      • 38
      • 39
      • 40
      • 41
      • 42
      • 43
      • 44
      • 45
      • 46
      • 47
      • 48
      • 49
      • 50
      • 51
      • 52
      • 53
      • 54
      • 55
      • 56
      • 57
      • 58
      • 59
      • 60
      • 61
      • 62
      • 63
      • 64
      • 65
      • 66
      • 67
      • 68
      • 69
      • 70
    • 吴成成, 孙森, 李世伟, 郭学永

      优先出版日期:2024-12-27  DOI: 10.11943/CJEM2024230

      摘要:为了探究不同粒径氧燃复合组装材料在六硝基六氮杂异伍兹烷(CL-20)中的定容燃烧、激光点火以及爆轰环境中的反应特性,采用颗粒悬浮方法构筑了3种粒径规格全氟聚醚(PFPE)功能化微/纳铝粉(nAl_150@xPEPE,μAl_1@xPEPE和μAl_5@xPEPE,其中x=2.5%,5.0%,7.5%),捏合造粒方法制备了CL-20基含铝炸药,通过密闭爆发、激光点火以及爆速、爆热试验装置研究了其在CL-20中的压力-时间曲线、激光诱导点火过程、能量释放速率以及效率的影响。结果表明,随着PFPE质量分数的增加,nAl_150@xPEPE样品和μAl_1@xPEPE样品峰值压力和增压速率逐渐增大,μAl_1@7.5%PEPE样品峰值压力达到4138.4 kPa,增压速率达到0.216 MPa·ms-1,但当PFPE质量分数超过5.0%时增压速率趋缓。同时,随着PFPE质量分数的增加,不管在纳米尺度还是微米尺度,PFPE功能化微/纳铝粉在CL-20中的燃烧速率逐渐增大;当x=7.5%时3种粒径规格PFPE功能化微/纳铝粉在CL-20中的燃烧速率分别提高2.1,1.8 cm·s-1和2.3 cm·s-1。此外,设计了4种富含燃料的CL-20基含铝炸药,其中JWL-3(62%CL-20/32%μAl_1@5.0%PEPE/6%钝感黏结组分)实测爆速8125 m·s-1,爆热8049.8 kJ·kg-1,能量释放效率达到86.10%。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
      • 37
      • 38
      • 39
      • 40
      • 41
      • 42
      • 43
      • 44
      • 45
      • 46
      • 47
      • 48
      • 49
      • 50
      • 51
      • 52
      • 53
      • 54
      • 55
      • 56
      • 57
      • 58
      • 59
      • 60
      • 61
      • 62
      • 63
      • 64
      • 65
      • 66
      • 67
      • 68
      • 69
      • 70
      • 71
      • 72
      • 73
      • 74
      • 75
      • 76
      • 77
      • 78
    • 张桐伟, 许元刚, 陆明

      优先出版日期:2024-12-12  DOI: 10.11943/CJEM2024239

      摘要:以4-氨基-6-甲基-1,3,5-三嗪-2-醇为原料,通过直接硝化并合成了一种新的含能化合物6-氨基-4-(三硝基甲基)-2-羰基-1H-1,3,5-三嗪。采用X射线单晶体衍射仪确定了目标化合物的晶体结构,通过核磁共振、傅里叶红外光谱、差示扫描量热仪对其进行了结构测试与性能表征,通过EXPLO5预测了爆轰性能,采用BAM标准方法进行了感度测定。结果表明,所得目标化合物的晶体1属于单斜晶空间群C 2/c,晶胞参数a=10.183(4) ?,b=9.388(3) ?,c=21.324(8) ?,V=2005.9(13) ?3α=90°,β=100.246(10)°,γ=90°,Z=8;其理论爆速爆压分别为8167 m·s-1和27.6 GPa,撞击感度=6 J,摩擦感度=210 N。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
    • 刘树亮, 蔡涛, 张立南, 齐原, 马慧朝, 林秋汉

      优先出版日期:2024-11-27  DOI: 10.11943/CJEM2024229

      摘要:为研究2,2-偶氮二[4,5-双(四唑-5-基)]-1,2,3-三唑(NL24)的热分解行为,采用扫描电镜、热重分析仪、差式扫描量热仪、热重-红外-质谱三联用技术等,对NL24的结构形貌及热分解特性进行了研究,并采用Kissinger、Ozawa和?atava-?esták等方法计算了表观活化能和指数前因子等动力学参数,推测了NL24热分解机理。结果表明,在10 ℃·min-1升温速率下,NL24有2个主要的失重阶段,第一失重阶段发生在180 ℃左右,属于二甲基亚砜挥发吸热过程;第二失重阶段,在270~300 ℃之间,化合物NL24剧烈分解不仅产气快且属于自催化反应,主要气体有N2、HCN、HN3等,分解过程的表观活化能和指前因子分别为174.69 kJ·mol-1和1016.60 s-1,NL24热分解阶段的反应模型为随机成核和随后生长。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
    • 张荣政, 陆明, 许元刚

      优先出版日期:2024-11-21  DOI: 10.11943/CJEM2024211

      摘要:以2,6-二氯-4-氨基吡啶为原料,两步合成了一种高能吡啶类含能化合物N2N6-二甲基-N2N4N6,3,5-五硝基-2,4,6-三氨基吡啶(NNDP)。采用X射线单晶体衍射仪确定了目标化合物的晶体结构,通过核磁共振、傅里叶红外光谱、差示扫描量热仪对其进行了结构测试与性能表征。结果表明,所得目标化合物的晶体属于单斜晶系,P 21/c空间群,晶胞参数为a=16.3215(17) ?,b=7.9819(8) ?,c=13.1954(13) ?,V=1712.3(3) ?3α=90 (6)oβ=95.093(3)oγ=90 (7)oZ=4。因为多个硝基和硝氨基的存在,使得分子的整体空间比较拥挤、硝基之间的斥力相对较大,从而使其分解温度较低。然后,通过EXPLO5软件预测了其爆轰性能并采用BAM标准方法进行了感度测定。发现其(NNDP:D=8762 m·s-1p=34.5 GPa,IS=7.7 J)有着与RDX相当的爆轰性能和撞击感度。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
    • 蒋帅杰, 张广源, 许元刚, 王鹏程, 陆明

      优先出版日期:2024-11-13  DOI: 10.11943/CJEM2024205

      摘要:为了解新型全氮化合物六嗪阴离子[N64-的特性,采用计算化学方法比较了N6、[N62-和[N64-的电子结构,成键特性和芳香性。使用M06-2X方法结合def2-TZVP基组优化出无虚频的几何结构,进一步计算上述结构的键长、键角、二面角、分子尺寸。随后,计算三种六嗪环的键级,运用分子中的原子理论(AIM)计算键性质,并绘制变形密度图直观表现成键行为。最后计算芳香性指数展现这三种六嗪环的芳香性特征。计算结果表明,通过与CCSD优化的电子结构比较,常用的DFT方法中的M06-2X方法适用于研究六嗪环体系,Mayer键级显示N—N键具有一定程度的σ键特征。芳香性研究表明,[N64-具有芳香性,其中芳香性谐振子模型(HOMA)值为0.96,核独立化学位移值(NICSZZ(1))为-18.97 ppm。模拟了[N64-的红外、拉曼和紫外–可见光谱图,为实验检测提供参考。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
      • 37
      • 38
      • 39
      • 40
      • 41
      • 42
      • 43
      • 44
    • 王显锋, 杨峰, 许元刚, 陆明

      优先出版日期:2024-09-18  DOI: 10.11943/CJEM2024224

      摘要:为了进一步平衡5-硝基-3-(三硝基甲基)-1H-1,2,4-三唑的能量和安全性,以2-(5-氨基-1H-1,2,4-三唑-3-基)乙酸为原料,采用银盐置换的方式合成了4种富氮含能离子盐。通过核磁共振、傅里叶红外光谱、差示扫描量热仪、热失重分析仪和单晶衍射仪对所有新化合物的结构进行了表征。结果表明5-硝基-3-(三硝基甲基)-1H-1,2,4-三唑铵盐、肼盐和胍盐有着比前体更高的起始分解温度;且肼盐与胍盐和三氨基胍盐属于不同的晶系,三者有着不同的晶体堆积方式和密度,但在分子间弱相互作用力方面三者具有一致性,即分子间H…O相互作用的贡献最大,且随着N…O和O…O作用的比例减小,富氮含能离子盐对机械刺激的敏感度降低;最后,通过对分子静电势的分布情况的分析,补充说明了5-硝基-3-(三硝基甲基)-1H-1,2,4-三唑成盐之后撞击感度的变化。在四种离子化合物中,肼盐爆轰性能突出(D=8634 m·s-1p=30.2 GPa,Isp=263.5 s),但感度较高。而三氨基胍盐有优异的综合性能,不仅在爆速方面与肼盐相当(D=8627 m·s-1),生成焓较前体提升近1.4倍(ΔHf =0.644 kJ·g-1),且机械感度良好(IS=10.3 J,FS=150 N)。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
    全选
    显示模式: |
    全选
    显示模式: |

    2025年第33卷第3期      

      >爆炸与毁伤
    • 顾琳琳, 徐永行, 朱黄浩, 王振

      2025,33(3):213-224, DOI: 10.11943/CJEM2024155

      摘要:为探究隧道内甲烷蒸气云爆炸波的传播规律与特性,采用Ls-dyna软件中的时空守恒元和求解元(CE/SE)法建立隧道内甲烷空气预混爆炸模型,并通过试验数据验证了模型的准确性。通过数值仿真展示了9.5%浓度燃爆波传播至不同位置的典型波形,分析了超压和温度的传播演化规律,探讨了不同浓度甲烷蒸气云爆炸条件下超压和热辐射对隧道内的杀伤效应。研究表明:燃爆压力波在隧道轴向可分为自由扩展、反射耗散、壁面加速和马赫传播4个阶段,压力变化呈现碰壁跃升、反射衰减和稳定传播3种特征;在隧道径向表现为沿壁面做周期性反射传播,强度随甲烷的消耗逐渐递减。温度场的演化规律在隧道轴向表现为由爆炸中心向隧道出入口对称传播,温度峰值沿程衰减迅速;径向则表现为向隧道底部辐射,随着时间推移,截面温度逐渐趋于一致并缓慢降低。综合燃爆超压和热辐射的杀伤效应,5.0%浓度的甲烷燃爆致死范围为距爆源13.51 m,严重损害范围为13.51~23.51 m,中度损害范围为23.51~160 m;6.5%浓度的甲烷燃爆致死范围为距爆源16.46 m,严重损害范围为16.46~45.36 m,中度损害为范围45.36~160 m;9.5%浓度的甲烷燃爆致死范围为距爆源20.58 m,严重损害范围为20.58~160 m。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
      • 37
      • 38
      • 39
      • 40
      • 41
      • 42
      • 43
      • 44
      • 45
      • 46
      • 47
      • 48
      • 49
      • 50
      • 51
      • 52
      • 53
      • 54
      • 55
      • 56
      • 57
      • 58
      • 59
      • 60
      • 61
      • 62
      • 63
      • 64
      • 65
      • 66
      • 67
      • 68
      • 69
      • 70
      • 71
      • 72
      • 73
      • 74
      • 75
      • 76
      • 77
      • 78
      • 79
      • 80
      • 81
      • 82
      • 83
      • 84
      • 85
      • 86
      • 87
      • 88
      • 89
      • 90
      • 91
      • 92
      • 93
      • 94
      • 95
    • 梅亮, 郭进, 黄时凯, 王金贵

      2025,33(3):225-235, DOI: 10.11943/CJEM2024186

      摘要:为了氢气-甲烷混合燃料的安全使用,利用内径和长度皆为300 mm的圆柱形密闭容器进行爆炸实验,研究了掺氢比(XH2=0~100%)和当量比(Φ=0.6~1.4)对火焰演化和爆炸压力特性的影响,并采用CHEMKIN软件分析了氢气-甲烷-空气预混气体的层流燃烧速度及其敏感性。结果表明,在当量比(Φ)不变的情况下,随着掺氢比(XH2)的增加,最大爆炸压力(pmax)、最大压力上升速率((dp/dtmax)、爆炸指数(KG)以及层流燃烧速度增大,到达最大压力和最大压力上升速率的时间(tAtB)逐渐缩短。点火后,火焰表面由最初的较为光滑,逐步形成蜂窝状的火焰胞格结构。在相同当量比(Φ)下,随着掺氢比(XH2)的增加,从点火到爆炸结束的时间大幅缩短,且在同一时刻,火焰半径增大,火焰表面皱褶增多。反应敏感性计算结果表明,基元反应H+O2⇌O+OH(R38)和H+CH3(+M)⇌CH4(+M)(R52)对层流燃烧速度的影响最大;关键自由基(H·、O·、OH·)的最大摩尔分数与层流燃烧速度正相关,且掺氢比(XH2)的增加,使得关键自由基的最大摩尔分数显著增大;基元反应R38和R84是影响关键自由基生成速率(ROP)的最主要反应。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
      • 37
      • 38
      • 39
      • 40
      • 41
      • 42
      • 43
      • 44
      • 45
      • 46
      • 47
      • 48
      • 49
      • 50
      • 51
      • 52
      • 53
      • 54
      • 55
      • 56
      • 57
      • 58
      • 59
      • 60
      • 61
      • 62
      • 63
      • 64
      • 65
      • 66
      • 67
      • 68
      • 69
      • 70
      • 71
      • 72
      • 73
      • 74
      • 75
      • 76
      • 77
      • 78
      • 79
      • 80
      • 81
      • 82
      • 83
      • 84
      • 85
      • 86
      • 87
      • 88
      • 89
      • 90
      • 91
      • 92
      • 93
      • 94
      • 95
      • 96
      • 97
      • 98
      • 99
      • 100
      • 101
      • 102
      • 103
      • 104
      • 105
      • 106
      • 107
      • 108
      • 109
      • 110
      • 111
      • 112
      • 113
      • 114
    • 周猛, 梁民族, 陈荣, 林玉亮, 张玉武

      2025,33(3):236-245, DOI: 10.11943/CJEM2024175

      摘要:为高效防护弹药近场爆炸产生的冲击波和破片联合载荷,设计了包括抗侵彻层、协调支撑层和缓冲吸能层的多层级复合防护结构,建立了有限元分析模型并开展了近场爆炸试验进行验证。基于有限元仿真结果,构建了复合防护结构的响应面代理模型,并以复合防护结构的面密度和总厚度为优化目标,采用非支配排序遗传算法(NSGA-II)分别对破片单独作用、冲击波单独作用以及两者联合作用下,复合防护结构的厚度配置进行了多目标优化,得到了Pareto最优解集。结果表明,相比于初始结构,破片单独作用下优化后复合防护结构的面密度最高可降低19.2%,厚度最高可降低10.0%;冲击波单独作用下复合防护结构的面密度最高可降低34.9%,厚度最高可降低27.5%;冲击波和破片联合作用下复合防护结构的面密度最高可降低19.2%,厚度最高可降低10.0%。对于限制厚度不超过40 mm的典型应用场景,优化后复合防护结构的面密度比初始构型降低约17.5%,总厚度降低约9.1%。同时观察到,破片单独作用和联合作用下得到的Pareto最优解集几乎相同,这表明加装复合防护结构后冲击波对破片后续作用的影响明显减弱,即复合防护结构有效抑制了冲击波和破片的联合作用效果。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
      • 37
      • 38
      • 39
      • 40
      • 41
      • 42
      • 43
      • 44
      • 45
      • 46
      • 47
      • 48
      • 49
      • 50
      • 51
      • 52
      • 53
      • 54
      • 55
      • 56
      • 57
      • 58
      • 59
      • 60
      • 61
      • 62
      • 63
      • 64
      • 65
      • 66
      • 67
      • 68
      • 69
      • 70
      • 71
      • 72
      • 73
      • 74
      • 75
      • 76
      • 77
      • 78
      • 79
      • 80
      • 81
      • 82
      • 83
      • 84
      • 85
      • 86
      • 87
      • 88
      • 89
      • 90
      • 91
      • 92
      • 93
      • 94
      • 95
      • 96
      • 97
      • 98
      • 99
      • 100
      • 101
      • 102
      • 103
      • 104
      • 105
      • 106
      • 107
      • 108
    • >制备与性能
    • 程志鹏, 夏语, 罗一民, 马腾, 徐飞扬, 张宇, 吴星亮, 徐森

      2025,33(3):246-255, DOI: 10.11943/CJEM2024100

      摘要:为探究三元活性金属燃料Al/B/Mg(ABM)和Al/B/MgH2(ABM-H)的燃烧特性,分别利用氧弹量热仪和哈特曼管研究样品的燃烧热与最小点火能,借助高速摄像系统与高速红外摄像系统研究火焰传播亚瞬态过程和温度场域时空分布特性。研究结果表明:ABM、ABM-H的燃烧热值分别为34.1 MJ·kg-1和32.2 MJ·kg-1,较纯Al的燃烧热值(29.8 MJ·kg-1)分别提高了14.4%和8.1%;ABM、ABM-H和Al的最小点火能量分别在160~170,100~110,20~30 mJ之间;质量浓度为625 g·m-3时,ABM和ABM-H较纯Al燃烧持续时间分别增加了65.5%和34.5%,火焰传播速度峰值分别提升了12.6%和23.0%。质量浓度在500 g·m-3条件下,ABM-H和ABM的火焰传播速度峰值均最大,分别为45.05 m·s-1和38.7 m·s-1,火焰表面最高温度峰值分别为1856 ℃和1717 ℃,ABM-H较ABM提高了7.6%,同时升温速率更快。可见,ABM和ABM-H配方在显著降低粉尘/空气混合物爆炸危险性的同时,燃烧性能明显提高,且ABM在燃烧热值和燃烧持续时间上表现出更好的热效应,ABM-H在最小点火能量、火焰传播速度和温度上升速率方面表现出更高的反应活性。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
      • 37
      • 38
      • 39
      • 40
      • 41
      • 42
      • 43
      • 44
      • 45
      • 46
      • 47
      • 48
      • 49
      • 50
      • 51
      • 52
      • 53
      • 54
      • 55
      • 56
      • 57
      • 58
      • 59
      • 60
      • 61
      • 62
      • 63
      • 64
      • 65
      • 66
      • 67
      • 68
      • 69
      • 70
      • 71
      • 72
      • 73
      • 74
      • 75
      • 76
      • 77
      • 78
      • 79
      • 80
      • 81
      • 82
      • 83
      • 84
      • 85
      • 86
      • 87
      • 88
      • 89
      • 90
      • 91
      • 92
      • 93
      • 94
      • 95
      • 96
      • 97
      • 98
      • 99
      • 100
      • 101
      • 102
      • 103
      • 104
      • 105
      • 106
      • 107
      • 108
      • 109
      • 110
      • 111
      • 112
      • 113
      • 114
    • 刘海庆, 向书杰, 方普懿行, 李春天, 沈瑞琪, 张伟

      2025,33(3):256-265, DOI: 10.11943/CJEM2024101

      摘要:作为供氮体的含氮化合物会直接影响激光作用下形成的高氮化合物的种类。为了深入认识不同含氮化合物供氮体对形成高氮化合物的影响,本研究利用脉冲Nd:YAG激光对氮气氛围中的NaN3、Si3N4和P3N5三种典型含氮化合物进行溅射,使用光谱仪记录并分析了瞬态中间产物的等离子体特性及其演化过程。研究结果表明,激光烧蚀NaN3产生的氮原子(NⅠ)、一价氮离子(NⅡ)和三价氮离子(NⅣ)数量最多,氮等离子体存在时间也最长,NⅠ、NⅡ和NⅢ的最大存在时间分别达到39400,39400 ns和19450 ns。在三种目标供氮体中,激光溅射氮气中NaN3最有可能形成高含氮或全氮原子簇。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
      • 37
      • 38
      • 39
      • 40
      • 41
      • 42
      • 43
      • 44
      • 45
      • 46
      • 47
      • 48
      • 49
      • 50
      • 51
      • 52
      • 53
      • 54
      • 55
      • 56
      • 57
      • 58
      • 59
      • 60
      • 61
      • 62
      • 63
      • 64
      • 65
      • 66
      • 67
      • 68
      • 69
      • 70
      • 71
      • 72
      • 73
      • 74
      • 75
      • 76
      • 77
      • 78
      • 79
      • 80
      • 81
      • 82
      • 83
      • 84
      • 85
      • 86
      • 87
      • 88
      • 89
      • 90
      • 91
      • 92
      • 93
      • 94
      • 95
      • 96
      • 97
      • 98
      • 99
      • 100
      • 101
      • 102
      • 103
      • 104
      • 105
      • 106
      • 107
      • 108
      • 109
      • 110
      • 111
      • 112
      • 113
      • 114
      • 115
      • 116
      • 117
      • 118
      • 119
      • 120
      • 121
      • 122
      • 123
      • 124
      • 125
      • 126
      • 127
      • 128
      • 129
      • 130
      • 131
      • 132
      • 133
      • 134
      • 135
      • 136
      • 137
      • 138
      • 139
      • 140
      • 141
      • 142
      • 143
      • 144
      • 145
      • 146
      • 147
      • 148
      • 149
      • 150
      • 151
      • 152
      • 153
      • 154
      • 155
      • 156
      • 157
      • 158
      • 159
      • 160
      • 161
      • 162
      • 163
      • 164
      • 165
      • 166
      • 167
      • 168
      • 169
      • 170
      • 171
      • 172
      • 173
      • 174
      • 175
      • 176
      • 177
      • 178
      • 179
      • 180
      • 181
      • 182
      • 183
      • 184
      • 185
    • >分析与检测
    • 尤家军, 熊鹰, 王兵, 汪建

      2025,33(3):266-276, DOI: 10.11943/CJEM2024092

      摘要:中试含能材料废水含各类高浓度含氮化合物(氨氮(NH3─N)、亚硝酸盐(NO2-)、硝酸盐(NO3-)等)和有机污染物,是一类极难降解的废水。为实现对含能材料废水中含氮化合物的高效、定向去除,采用热丝化学气相沉积(热丝化学气相沉积法(HFCVD))法制备的掺硼金刚石(BDD)电极对其进行电化学降解,重点研究了氯化钠和硫酸钠等电解质成分及浓度、修饰电极类型(如Cu/BDD、Ni/BD电极)及电解装置结构(单池、双池)对含氮化合物降解效果的影响。结果表明:在含能材料废水中添加0.1 M氯化钠电解质有助于提高NH3─N直接转化为氮气(N2)的选择性;采用Cu/BDD、Ni/BDD阴极可加速高价氮向NH3─N的转化过程;双电解池结构体系下,以Cu/BDD、Ni/BDD电极为阳极可以提高NH3─N转化为N2的降解速率。因此,采用金属修饰BDD电极为阳极的双电解池结构在添加0.1 M NaCl电解质情况下有望对宏量含能材料废水进行快速、高效、高选择性降解。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
      • 37
      • 38
      • 39
      • 40
      • 41
      • 42
      • 43
      • 44
      • 45
      • 46
      • 47
      • 48
      • 49
      • 50
      • 51
      • 52
      • 53
      • 54
      • 55
      • 56
      • 57
      • 58
      • 59
      • 60
      • 61
      • 62
      • 63
      • 64
      • 65
      • 66
    • 龚雪玲, 关健, 刘红妮, 莫洪昌, 张庆元, 彭汝芳, 金波

      2025,33(3):277-283, DOI: 10.11943/CJEM2024157

      摘要:为了研究聚3-硝酸酯甲基-3-甲基氧杂环丁烷(PNIMMO)的初始等温热老化行为,采用等温量气装置,对PNIMMO在100~120 ℃等温条件下的老化动力学参数和热老化机理进行了探究,采用Berthelot方程外推了PNIMMO在不同温度下的贮存寿命。结果表明,由Arrhenius方程得到PNIMMO老化深度达到0.1%时Ea=156.42 kJ·mol-1,lgA=16.86 s-1,老化深度达到0.5%时Ea=156.05 kJ·mol-1,lgA=16.03 s-1;由模式配合法得出,在100~120 ℃时,PNIMMO热老化均符合28号机理函数,即反应级数n=1/4,Ea=154.33 kJ·mol-1;以老化深度0.1%作为评判标准,PNIMMO在室温下可贮存51.6年;PNIMMO在热分解初期主要为侧链─O─NO2键断裂加氢,随后主链缓慢分解,生成稳定的多聚芳香类化合物。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
      • 37
      • 38
      • 39
      • 40
      • 41
      • 42
      • 43
      • 44
      • 45
    • >计算与模拟
    • 梁琳, 王亚军, 甘强, 张文博, 任姝, 李根, 冯长根

      2025,33(3):284-294, DOI: 10.11943/CJEM2024121

      摘要:为了揭示笼状含能材料六硝基六氮杂异伍兹烷(hexanitrohexaazaisowurtzitane, ε-CL-20)冲击感度各向异性规律,采用低梯度色散校正的反应性力场(reactive force field with low-gradient dispersion corrections,ReaxFF-lg)和分子动力学方法,分别垂直ε-CL-20的6个重要晶面(0 1 0)、(1 1 0)、(2 0 )、(0 1 1)、(1 1 )和(0 0 1)进行多尺度冲击加载模拟,考察体系内应力、温度以及化学反应与冲击方向的关联规律。结果表明ε-CL-20具有明显的冲击感度各向异性,6个重要晶面冲击感度强弱顺序为:(0 1 0)>(1 1 0)>(2 0 )≈(0 1 1)>(1 1 )>(0 0 1)。垂直于(0 1 0)晶面冲击时体系的力-热-化学响应最强、感度最高,垂直于(0 0 1)晶面冲击时体系的力-热-化学响应最弱、感度最低。以ε-CL-20不同晶面冲击响应特性为基础,总结了平面层状堆积含能材料的冲击感度各向异性规律,即当冲击方向平行于分子层时冲击感度最高,垂直于分子层时冲击感度最低。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
      • 37
      • 38
      • 39
      • 40
      • 41
      • 42
      • 43
      • 44
      • 45
      • 46
      • 47
      • 48
      • 49
      • 50
      • 51
      • 52
      • 53
      • 54
      • 55
      • 56
      • 57
      • 58
      • 59
      • 60
      • 61
      • 62
      • 63
      • 64
      • 65
      • 66
      • 67
      • 68
      • 69
      • 70
      • 71
      • 72
      • 73
      • 74
      • 75
      • 76
      • 77
      • 78
      • 79
      • 80
      • 81
      • 82
      • 83
      • 84
      • 85
      • 86
      • 87
      • 88
      • 89
      • 90
      • 91
      • 92
      • 93
      • 94
      • 95
      • 96
      • 97
      • 98
      • 99
      • 100
      • 101
      • 102
      • 103
      • 104
      • 105
      • 106
      • 107
      • 108
      • 109
      • 110
      • 111
      • 112
    • 郭昊琪, 杨玉林

      2025,33(3):295-303, DOI: 10.11943/CJEM2024184

      摘要:在278.15K~318.15K的温度范围内,利用动态激光监测法测定了3-硝基-1,2,4-三唑-5-酮(NTO)在硝酸羟胺(HAN)-水和硼酸(HB)-水两种不同二元体系中的溶解度。实验数据表明,NTO在二元溶剂混合物中的溶解度与温度呈正相关。此外,用修正的Apelblat方程、Van’t-Hoff方程、λh方程和CNIBS/R-K方程对溶解度数据进行了拟合,所有模型在二元溶剂中都取得了令人满意的结果。本文计算的均方根偏差的平均值(105RMSD)均小于13.93。最后,用Van"t-Hoff和Gibbs方程计算了表观热力学性质,即吉布斯能、焓和熵。本文计算的%ζH大于%ζTS,且%ζH均≥58.63%,表明焓对吉布斯能的贡献大于熵。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
    • >综述
    • 宋仕雄, 任全彬, 王嘉炜, 庞爱民, 唐敏

      2025,33(3):304-315, DOI: 10.11943/CJEM2024129

      摘要:3D打印技术具有无模具、多材料、柔性化等特点,可以为单室多推力、多脉冲式等固体火箭发动机所需的特殊结构固体推进剂装药成型提供新的技术途径。当前,围绕固体推进剂的3D打印,国内外均开展了相关研究。本文重点介绍了粘合剂喷射、光聚合固化和材料挤出成形等典型3D打印工艺在复杂结构、梯度化结构、多材料一体化固体推进剂装药制造中的应用,总结了上述3种典型结构在3D打印装药制造中存在的关键问题。对未来的研究方向进行了展望,强调了针对未来异形异质固体推进剂装药制造需求,需重点关注低感度专用固体推进剂材料、大型药柱3D打印装备及绝热包覆打印技术等。

      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      • 36
      • 37
      • 38
      • 39
      • 40
      • 41
      • 42
      • 43
      • 44
      • 45
      • 46
      • 47
      • 48
      • 49
      • 50
      • 51
      • 52
      • 53
      • 54
      • 55
      • 56
      • 57
      • 58
      • 59
      • 60
      • 61
      • 62
      • 63
      • 64
      • 65
      • 66
最新刊期
《含能材料》编辑部
2025年第33卷第3期
EI 收录
中文核心期刊
学服中心更多
奋进新征程更多
期刊动态更多
特色专题更多
观点更多
行业资讯更多
会议信息更多
新书介绍更多
封面文章更多
主编特推更多
含能讲坛更多

封面文章 | 嵌入包覆型AlH3含能复合颗粒的制备及其反应特性【2023No.9】

微信公众号二维码
欢迎关注 含能材料
学者微信群
  • 小编08
  • 小编07
  • 小编06
  • 小编05
扫描二维码添加编辑为好友
加入《含能材料》学者微信交流群
友情链接