Page 29 - 《含能材料》2018年优秀论文
P. 29
Experimental Study and Numerical Simulation of CL‑20‑Based Aluminized Explosive in Underwater Explosion 695
pellants,Explosives,Pyrotechnics,1997,22(6):337-346. tion properties of aluminized explosives[C]//Proc. 12th Int.
[30] Hsu C Y,Liang C C,Nguyen A T,et al. A numerical study on Detonation Symp,San Diego,2002:369-377
the underwater explosion bubble pulsation and the collapse [37] SUN Ye‑bin,HUI Jun‑ming,CAO Xin‑mao. Military explosive
process[J]. Ocean Engineering,2014,81(2014):29-38. [M]. Beijing:Weapon Industry Press,1995:384-388.
[31] Klaseboer E,Hung K C,Wang C,et al. Experimental and nu‑ [38] Cook M A,Keyes R T,Horsley G S,et al. A study of the equa‑
merical investigation of the dynamics of an underwater explo‑ tion of state for ethylenedinitramine[J]. The Journal of Physical
sion bubble near a resilient/rigid structure[J]. Journal of Fluid Chemistry,1954,58(12):1114-1124.
Mechanics,2005,537(2005):387-413. [39] Nan Yu‑xiang,JIANG Jian‑wei,WANG Shu‑you,et al. JWL
[32] Ghoshal R, Mitra N. Underwater explosion induced shock equation of state of detonation product for CL‑20 based pressed
loading of structures:Influence of water depth,salinity and composite explosive[J]. Chinese Journal of Energetic Material
temperature[J]. Ocean Engineering, 2016, 126(2016) : (Hanneng Cailiao),2015,23(6):516-521.
22-28. [40] Cao W,He Z,Chen W. Measurement of afterburning effect of
[33] ZHAO Sheng ‑ wei,ZHOU Gang,WANG Zhan ‑ jiang,et al. under oxidized explosives by underwater explosion method
Bubble pulses of small ‑ scale underwater explosion[J]. Explo⁃ [J]. Journal of Energetic Materials,2015,33(2):116-124.
sion and Shock Waves,2009,29(2):213-216. [41] ANSYS Inc. AUTODYN user's manual version 11.0[CP].
[34] WANG Bin,ZHANG Yuan ‑ ping,WANG Yan ‑ ping. Experi‑ 2007.
mental research of bubble pulsation by underwater explosion [42] Miller P J,Guirguis R H.Experimental study and model calcu‑
method[J]. Chinese Journal of High Pressure Physics,2009, lations of metalcombustion in Al / AP underwater explosives
23(5):332-337. [C]//MRS Online Proceedings Library Archive, Boston,
[35] HUANG Chao,WANG Bin,YAO Xiong‑liang,et al. Labora‑ 1992:296.
tory‑scale underwater explosion bubble experiment method[J] [43] YANG Kun,CHEN Lang,HU Hong‑wei. Effect of content and
Transducer and Microsystem Technologies,2011,30(12): size of aluminum powder on explosive properties of CL ‑ 20
75-77. based aluminized explosive [C]//National Symposium on
[36] Victorov S B. The effect of Al 2 O 3 phase transitions on detona‑ Damage Assessment Technology,Beijing,2015:360-368.
CL⁃20 基含铝炸药水下爆炸实验研究与数值模拟
冯 凇,饶国宁,彭金华
(南京理工大学化工学院,江苏 南京 210094)
摘 要: 为了研究含铝粉与不含铝粉的六硝基六氮杂异伍兹烷(CL‑20)基高聚物粘结炸药(PBXs)的水下爆炸过程,制备了含铝量
分别为 0 和 15% 的两种炸药,设计了一个水下爆炸实验装置,得到了炸药的冲击波压力历程、气泡周期和气泡脉动图。计算了两种
炸药的冲击波能量、气泡能量和水下爆炸总能量。采用 AUTODYN 软件模拟了水下爆炸过程。结果表明,当铝含量从 0 增大到
15% 时,水下爆炸总能量由 1.4 倍 TNT 当量增加到 1.7 倍 TNT 当量。气泡脉动过程中,时间从 49.5 ms 到 49.8 ms 时,含铝炸药气泡
内产生火光。含铝炸药与非含铝炸药超压分别为 15.16 MPa 与 15.51 MPa,气 泡 二 次 压 力 分 别 为 2.25 MPa 与 2.35 MPa,气 泡
周 期 分 别 为 50.20 ms 与 46.76 ms,气 泡 最 大 半 径 分 别 为 67.87 cm 与 60.27 cm ;仿 真 得 到 含 铝 炸 药 与 非 含 铝 炸 药 参 数 超
压 分别为 14.90 MPa 与 15.14 MPa,气泡二次压力分别为 2.16 MPa 与 2.27 MPa,气泡周期分别为 49.32 ms 与 45.90 ms,气泡最大
半径分别为 66.32 cm 与 58.89 cm。实验与仿真结果吻合良好。
关键词:水下爆炸;六硝基六氮杂异伍兹烷(CL‑20);含铝炸药;冲击波;气泡;数值模拟
中图分类号:TJ55;O384 文献标志码:A DOI:10.11943/CJEM2017376
CHINESE JOURNAL OF ENERGETIC MATERIALS 含能材料 2018 年 第 26 卷 第 8 期 (686-695)