Page 28 - 《含能材料》2018年优秀论文
P. 28

694                                                                    FENG Song,RAO Guo‑ning,PENG Jin‑hua

            ulated by the AUTODYN software. Computed bub‑            of selected cast HMX‑based explosives[J]. Propellants,Explo⁃
            ble pulse properties agreed well with measured bub‑      sives,Pyrotechnics,2012,37(2):198-206.
                                                                [13] Mader C L.Numerical modeling of explosives and propellants
            ble pulse properties for all cases studied,with an av‑
                                                                     [M]. New York:CRC press,1998:33-52.
            erage error of peak pressure of shock wave bubble   [14] Levine H B,Sharples R E. Operator's manual for RUBY[R].
            period approximately 1.79%,peak pressure 3.70%,          UCRL‑6815:1962.
            and maximum radius 2.30%. But the numerical re‑     [15] Cowperthwaite M,Zwisler W H. TIGER computer program
            sults of bubble images didn't show the light in the      documentation[R]. ADA002791:1973.
                                                                [16] Nichols A L,Ree F H. CHEQ 2.0 user’s manual[R].UCRL‑MA
            bubble. It was different from the experimental imag‑     ‑106754:1990.
            es. This simulation work is worth further research.  [17] Baker E L,Capellos C,Stiel L I. Jaguar procedures for detona‑

                                                                     tion properties of aluminized explosives[C]//12th Internation‑
            References:
                                                                     al Detonation Symposium,San Diego,California,2003:333.
           [1]   Cole R H. Underwater explosions[M]. Princeton:Princeton
                                                                [18] Fried L,Howard W M,Souers P C. Cheetah 2.0 user's manu‑
                 University Press,1948:228-233.
                                                                     al,lawrence livermore national lab[R]. UCRL‑MA ‑117541 :
           [2]   Arons A B,Yennie D R. Energy partition in underwater explo‑
                                                                     1998.
                 sion phenomena[J]. Reviews of Modern Physics,1948,20
                                                                [19] Schoch S,Nikiforakis N. Numerical modelling of underwater
                (3):519-536.                                         detonation of non‑ideal condensed‑phase explosives[J]. Phys⁃
           [3]   Nielsen A T. Caged polynitramine compound:U. S. 5693794  ics of Fluids,2015,27(1):281-288.
                [P]. 1997.                                      [20] Donahue L,Zhang F,Ripley R C. Numerical models for after‑
           [4]   Geetha M,Nair U R,Sarwade D B,et al.Studies on CL‑20:
                                                                     burning of TNT detonation products in air[J]. Shock Waves,
                 the most powerful high energy material[J]. Journal of Thermal  2013,23(6):559-573.
                 Analysis and Calorimetry,2003,73(3):913-922.   [21] Wang X,Hossain K,Jackson T L. The three ‑dimensional nu‑
           [5]   Caulder S M,Buess M L,Nock L A. An analytical study of the  merical simulation of aluminized composite solid propellant
                 crystal quality of ε ‑ Hexanitro ‑ hexaazaisowurtzitane(CL ‑ 20)  combustion[J]. Combustion Theory and Modelling,2008,12
                 synthesized using several different crystallization techniques  (1):45-71.
                 and intermediate precursors[J]. Science and Technology of En⁃  [22] Wang G,Liu G,Peng Q,et al. A SPH implementation with ig‑
                 ergetic Materials,2005,66(6):406-410.               nition and growth and afterburning models for aluminized ex‑
           [6]   Thangadurai S,Kartha K P S,Sharma D R,et al. Review of  plosives[J]. International Journal of Computational Methods,
                 some newly synthesized high energetic materials[J]. Science  2017,14(04):1750046.
                 and Technology of Energetic Materials,2004, 65 (6) :  [23] Miller P J,Guirguis R H. Effects of late chemical reactions of
                 215-226.                                            the energy partition in non ‑ ideal underwater explosions[C]//
           [7]   Nielsen A T,Chafin A P,Christian S L,et al. Synthesis of poly‑  AIP Conference Proceedings,Colorado,1994:309.
                 azapolycyclic caged polynitramines[J]. Tetrahedron,1998,  [24]Miller P J. A reactive flow model with coupled reaction kinetics
                 54(39):11793-11812.                                 for detonation and combustion in non ‑ ideal explosives[J].
           [8]   Robidoux P Y,Sunahara G I,Savard K,et al. Acute and  MRS Online Proceedings Library Archive,1995,418:413-420
                 chronic toxicity of the new explosive CL‑20 to the earthworm  [25] Abe A,Katayama M,Murata K,et al. Numerical study of un‑
                (Eisenia andrei)exposed to amended natural soils[J]. Environ⁃  derwater explosions and following bubble pulses[C]//AIP Con‑
                 mental Toxicology & Chemistry,2004,23(4):1026-1034.  ference Proceedings,Cambridge,2007:955.
           [9]   Bolton O,Simke L R,Pagoria P F,et al. High power explo‑  [26] Bjarnholt G. Suggestions on standards for measurement and da‑
                 sive with good sensitivity:A 2:1 cocrystal of CL‑20:HMX[J].  ta evaluation in the underwater explosion test[J].Propellants,
                 Crystal Growth & Design,2012,12(9):4311-4314.       Explosives,Pyrotechnics,1980,5(2-3):67-74.
           [10] Simpson R L,Urtiew P A,Ornellas D L,et al. CL‑20 perfor‑  [27] Kowsarinia E,Alizadeh Y,Pour H S S. Experimental evalua‑
                 mance exceeds that of HMX and its sensitivity is moderate[J].  tion of blast wave parameters in underwater explosion of hexo‑
                 Propellants,Explosives,Pyrotechnics,1997,22(5):249-255.  gen charges[J]. International Journal of Engineering,2012,25
           [11] Lewis W K,Rumchik C G,Broughton P B,et al. Time ‑ re‑  (1):65-72.
                 solved spectroscopic studies of aluminized explosives:chemi‑  [28] Katsabanis P D. Modelling of the underwater shock sensitivity
                 cal dynamics and apparent temperatures[J]. Journal of Applied  of polyurethane FOAM/PETN explosives[J]. Journal of Energet⁃
                 Physics,2012,111(1):014903.                         ic Materials,1992,10(4-5):189-220.
           [12] Manner V W,Pemberton S J,Gunderson J A,et al. The role  [29] Lee J,Kuk J H,Cho Y S,et al. Numerical modeling of under‑
                 of aluminum in the detonation and post‑detonation expansion  water explosion properties for an aluminized explosive[J]. Pro⁃


            Chinese Journal of Energetic Materials,Vol.26, No.8 , 2018(686-695)  含能材料      www.energetic-materials.org.cn
   23   24   25   26   27   28   29   30   31   32   33