Page 90 - 《含能材料》火工品技术合集 2015~2019
P. 90

Performance of Integrated Exploding Foil Energy Conversion Unit Based on FPC                      795

            as electrical explosion performance, driving flyer ca‑  [5] McCormick R N,Boyd M D. Bidirectional Slapper Detonator:
            pability and initiating HNS‑Ⅳ capability, were char‑     United States Patent,4471697[P]. Sep.18,1984.
                                                                 [6] Williams M R,Werling S V. Slapper Detonator:United States
            acterized. Research indicates that electrical explo‑     Patent,5370053[P]. Dec. 6,1994.
            sion performance of energy conversion unit fabricat‑  [7] O′Brien D W,Druce R L,Johnson G W,et al. Method and
                                                                     System for Making Integrated Solid‑state Fire‑sets and Detona‑
            ed by FPC process has a similar law as that fabricat‑    tor. United States Patent,5731538[P]. Mar.24,1998.
            ed by traditional manufacturing process, while inte‑  [8] Bower S,Coaker B M. Recent developments in exploding foil
            grated structural design and automated production        initiator(EFI)based electronic safety,arming and initiation sys‑
                                                                     tems. http://www.e2v.com,accessed 30 January2016.
            process make significant progress in driving flyer ca‑  [9] e2v aerospace & defense inc. e2v complex weapon safety,
            pability. Detonation sensitivity tests of HNS‑Ⅳ explo‑   arming and initiation. http://www. e2v‑us. com,accessed 25
            sive were carried out according to D‑optimal meth‑       July2017.
                                                                [10] Zhu P,Chen K,Xu C,et al. Development of a monolithic mi‑
            od. Results indicate that at a confidence level of       cro chip exploding foil initiator based on low temperature
            0.95 firing current of the integrated energy conver‑     co‑fired ceramic [J]. Sensors and Actuators A: Physical,
                                                                     2018,276:278‑283.
            sion unit with 99.9% probability of detonating      [11] Garvick D R,Fan L C,Kuester B R,et al. MEMS Energetic Ac‑
            HNS‑Ⅳ explosive never exceeds 2.1 kA, which is           tuator With Integrated Safety and Arming System for A Slapper
            lower than that of energy conversion unit fabricated     Detonator. United States Patent,61733650[P]. Jan.16,2001.
                                                                [12] Schmidt M. Chip slapper detonator processing for rapid proto‑
            by traditional manufacturing process (2.340 kA).         typing and hydrodynamic properties[R],Lawrence Livermore
                                                                     National Laboratoy,CA,USA,2007.
            Reference:                                          [13] Cope R D. NAVAIR Fuze Overview[C]//NDIA 48th Annual
            [1] Stroud J R,Ornellas D L. Flying plate detonator using a high‑den‑  Fuze Conference,Charlotte,NC,2004.
                sity high explosive:United States Patent,47988913[P]. 1978.  [14] Xu C,Zhu P,Chen K,et al. A highly integrated conjoined sin‑
            [2] Stroud J R. A new kind of detonator‑the slapper[R]. UCRL  gle shot switch and exploding foil initiator chip based on
                77639:1976.                                          MEMS technology[J]. IEEE Electron Device Letters,2017,38
            [3] Jeffrey  A  L.  Exploding  Foil  Initiator  Qualifications [R].  (11):1610‑1613.
                RD‑ST‑91‑16:1993.                               [15] Chen Q C,Fu Q B,Chen L,et al. Parametric influences of
            [4] Martinez E C. Bidirectional Slapper Detonators in Spherical Ex‑  the sensitivity of explding foil initiators[J]. Propellants,Explo⁃
                plosion System[R]. LA‑11816:1984.                    sive,Pyrotechnics,2014,39(4):558‑562.



            基于 FPC 工艺的集成冲击片换能元性能分析


                                    1
                  1,2
                                                    3
                            1
                                            1
            郭 菲 ,吕军军 ,王 窈 ,付秋菠 ,黄 辉 ,沈瑞琪                    2
           (1. 南京理工大学化工学院,江苏 南京 210094;2. 中国工程物理研究院化工材料研究所,四川 绵阳 621999;3. 中国工程物
            理研究院,四川 绵阳 621999)
            摘  要:为了提高爆炸箔起爆器的制造效率和产品一致性,设计和制造了一种基于柔性电路板(简称 FPC 或软板)制造工艺的集成
            冲击片换能元,并对该集成换能元的电爆炸性能、驱动飞片能力和起爆六硝基茋的能力等基础性能进行了研究。采用高压探头测量
            了爆炸箔两端的电压曲线,采用罗果夫斯基线圈测量了放电回路的电流曲线,通过光学多普勒测试手段(PDV)测量了电爆炸过程
            驱动飞片速度历程曲线。结果表明,放电回路峰值电流和桥箔的爆发电流随着电容两端电压的增加而线性增加,其中桥箔的爆发电
            流从 2080 A 增加到 2680 A。桥箔的爆发时间随着电容两端电压的增加而线性地从 232 ns 减小至 156 ns。随着充电电压的增加,
                                            -1
                             -1
            飞片速度从 4056 m·s 增加到 4589 m·s ,速度标准偏差为 38~48。该冲击片换能元可在放电回路电流峰值约 2.04 kA 时可靠起
            爆 HNS‑Ⅳ,而基于传统制造方式冲击片换能元的起爆电流峰值为 2.340 kA。
            关键词:柔性印刷线路(FPC);集成单元;爆炸箔起爆器;换能元
            中图分类号:TJ450.1                     文献标志码:A                                    DOI:10.11943/CJEM2017390









                                                                含能材料                2018 年  第 26 卷  第 9 期 (791-795)
            CHINESE JOURNAL OF ENERGETIC MATERIALS
   85   86   87   88   89   90   91   92   93   94   95