Page 68 - 《含能材料》优秀论文(2019年)
P. 68

696                                                                   张云峰,刘国庆,李晨,施冬梅,张玉令,甄建伟

                                                                     6728.
            4   结 论                                             [11] XIONG Wei,ZHANG Xian‑feng,Wu Yang,et al. Influence
                                                                     of additives on microstructures, mechanical properties and
                                                                     shock‑induced reaction characteristics of Al/Ni composites[J].
                (1)亚稳态合金受冲击后激发剧烈的化学反应,
                                                                     Journal of Alloys and Compounds,2015,648:540-549.
                            -1
            在 500~1500 m·s ,其超压峰值、超压峰值增长率均                      [12] Specht P E,Thadhani N N,Weihs T P. Configurational effects
                                                     -1
            与冲击速度正相关,当冲击速度为 1485 m·s 时,其                             on shock wave propagation in Ni‑Al multilayer composites[J].
                                                                     Journal of applied physics,2012,111:073527.
            反应效率达到 42.13%。                                      [13] Qiao L,Zhang X F,He Y,et al. Multiscale modelling on the
                (2)与几种 Al/Ni 系、Zr/W 系 MESM 相比,高速冲                    shock‑induced chemical reactions of multifunctional energetic
                                                                     structural materials[J]. Journal of Applied Physics, 2013,
            击状态下亚稳态合金的能量密度较高,当冲击速度为
                                                                     113:173513.
                                                          -1
                     -1
            1485 m·s 时,其单位质量能量密度达到 3.83 kJ·g ,                  [14] Eakins D,Thadhani N N. Discrete particle simulation of shock
                                             -3
            单位体积能量密度达到 0.026 kJ·mm 。                                 wave propagation in a binary Ni+Al powder mixture[J]. Jour⁃
                                                                     nal of Applied Physics,2007,101:043508.
                                            -1
                (3)当冲击速度小于 1100 m·s 时,亚稳态合金
                                                                [15] Xu X,Thadhani N N. Investigation of shock‑induced reaction
            较 为 钝 感 ,其 能 量 密 度 缓 慢 上 升 ,当 冲 击 速 度 大 于                behavior of as‑blended and ball‑milled Ni+Ti powder mixtures
                     -1
            1100 m·s 时,其能量密度迅速上升,具有良好的冲击                             using time‑resolved stress measurements[J]. Journal of Applied
                                                                     Physics,2004,96(4):2000-2009.
            释能特性,是一类较为理想的多功能含能结构材料。                             [16] Eakins D E,Thadhani N N. Mesoscale simulation of the config‑
                                                                     uration‑dependent shock‑compression response of Ni+Al pow‑
            参考文献:                                                    der mixtures[J]. Acta Materialia,2008,56:1496-1510.
             [1] 张先锋,赵晓宁 . 多功能含能结构材料研究进展[J]. 含能材料,              [17] Eakins D E,Thadhani N N. Shock‑induced reaction in a flake
                 2009,17(6):731-739.                                 nickel spherical aluminum powder mixture[J]. Journal of Ap⁃
                 ZHANG Xian‑feng,ZHAO Xiao‑ning. Review on multifunc‑  plied Physics,2006,100:113521.
                 tional energetic structural materials[J]. Chinese Journal of Ener⁃  [18] Eakins D E,Thadhani N N. Shock compression of reactive
                 getic Materials(Hanneng Cailiao),2009,17(6):731-739.  powder mixtures[J]. International Materials Reviews,2009,
             [2] Boslough M B. A thermochemical model for shock‑induced re‑  54(4):4181-213.
                 actions(heat detonations)in solids[J]. The Journal of Chemi⁃  [19] JI Cheng,HE Yuan,WANG Chuan‑ting,et al. Investigation
                 cal Physics,1990,92(3):1839-1848.                   on shock‑induced reaction characteristics of an Al/Ni compos‑
             [3] William P W,Laszlo J K,Justin E P. Investigation of a bulk me‑  ite processed via accumulative roll‑bonding[J]. Materials and
                 tallic glass as a shaped charge liner material[C]//23 rd  Interna‑  Design,2017,116:591-598.
                 tional Symposium on Ballistics,Tarragona,2007:31-37.  [20] CAI Xuan‑ming,ZHANG Wei,XIE Wen‑bo,et al. Initiation
             [4] Xu F Y,Zheng Y F,Yu Q B,et al. Experimental study on pen‑  and energy release characteristics studies on polymer bonded
                 etration behavior of reactive material projectile impacting alu‑  explosive materials under high speed impact[J]. Materials and
                 minum plate[J]. International Journal of Impact Engineering,  Design,2015,68:18-23.
                 2016,95:125-132.                               [21] WANG Hai‑fu,ZHENG Yuan‑feng,YU Qing‑bo. Impact‑in‑
             [5] Conner R D,Dandliker R B,Scruggs V,et al. Dynamic defor‑  duced initiation and energy release behavior of reactive materi‑
                 mation behavior of tungsten‑fiber/metallic glass matrix com ‑  als[J]. Journal of applied physics,2011,110:074904.
                 posites[J]. International Journal of Impact Engineering,2000,  [22] WANG Chuan‑ting,HE Yong,JI Cheng,et al. Investigation
                 24:435-444.                                         on shock‑induced reaction characteristics of a Zr‑based metal‑
             [6] Zhang X F,Shi A S,Qiao L,et al. Experimental study on im‑  lic glassv[J]. Intermatellics,2018,93:383-388.
                 pact‑initiated characters of multifunctional energetic structural  [23] Xu F Y,Yu Q B,Zheng Y F,et al. Damage effects of dou‑
                 materials[J]. Journal of Applied Physics,2013,113:083508.  ble‑spaced aluminum plates by reactive material projectile im ‑
             [7] Zhang X F,Shi A S,Zhang J,et al. Thermochemical modeling  pact[J]. International Journal of Impact Engineering,2017,
                 of temperature controlled shock‑induced chemical reactions in  104:13-20.
                 multifunctional energetic structural materials under shock com ‑  [24] 经福谦 . 实验物态方程导引(第二版)[M]. 北京,科学出版社,
                 pression[J]. Journal of Applied Physics,2012,111:123501.  1999:209-370.
             [8] Wei C T,Vitali E,Jiang F,et al. Quasi‑static and dynamic re‑  JING Fu‑qian. Experimental state equation guidance (second
                 sponse of explosively consolidated metal‑aluminum powder  edition)[M]. Beijing,Science Press,1999:209-370.
                 mixtures[J]. Acta Materialia,2012,60:1418-1432.  [25] 谭 华 . 实 验 冲 击 波 物 理 导 引[M]. 北 京 :国 防 工 业 出 版 社 ,
             [9] Bacciochini A,Radulescu M T,Charron Y T,et al. Enhanced  2007:15-61.
                 reactivity of mechanically‑activated nano‑scale gasless reac‑  TAN Hua. Introduction to experimental shock‑wave physics
                 tive materials consolidated by coldspray[J]. Surface & Coat⁃  [M]. Beijing:National Defence Industry Press,2007:15-61.
                 ings Technology,2012,206:4343-4348.            [26] LUO Pu‑guang,WANG Zai‑cheng,JIANG Chun‑lan,et al.
            [10] Herbold E B,Jordan J L,Thadhani N N. Effects of processing  Experimental study on impact‑initiated characters of W/Zr en‑
                 and powder size on microstructure and reactivity in arrested re‑  ergetic fragments[J]. Materials and Design,2015,84:72-78.
                 active milled Al+Ni[J]. Acta Materialia,2011,59:6717-


            Chinese Journal of Energetic Materials,Vol.27, No.8, 2019(692-697)  含能材料       www.energetic-materials.org.cn
   63   64   65   66   67   68   69   70   71   72   73