Page 68 - 《含能材料》优秀论文(2019年)
P. 68
696 张云峰,刘国庆,李晨,施冬梅,张玉令,甄建伟
6728.
4 结 论 [11] XIONG Wei,ZHANG Xian‑feng,Wu Yang,et al. Influence
of additives on microstructures, mechanical properties and
shock‑induced reaction characteristics of Al/Ni composites[J].
(1)亚稳态合金受冲击后激发剧烈的化学反应,
Journal of Alloys and Compounds,2015,648:540-549.
-1
在 500~1500 m·s ,其超压峰值、超压峰值增长率均 [12] Specht P E,Thadhani N N,Weihs T P. Configurational effects
-1
与冲击速度正相关,当冲击速度为 1485 m·s 时,其 on shock wave propagation in Ni‑Al multilayer composites[J].
Journal of applied physics,2012,111:073527.
反应效率达到 42.13%。 [13] Qiao L,Zhang X F,He Y,et al. Multiscale modelling on the
(2)与几种 Al/Ni 系、Zr/W 系 MESM 相比,高速冲 shock‑induced chemical reactions of multifunctional energetic
structural materials[J]. Journal of Applied Physics, 2013,
击状态下亚稳态合金的能量密度较高,当冲击速度为
113:173513.
-1
-1
1485 m·s 时,其单位质量能量密度达到 3.83 kJ·g , [14] Eakins D,Thadhani N N. Discrete particle simulation of shock
-3
单位体积能量密度达到 0.026 kJ·mm 。 wave propagation in a binary Ni+Al powder mixture[J]. Jour⁃
nal of Applied Physics,2007,101:043508.
-1
(3)当冲击速度小于 1100 m·s 时,亚稳态合金
[15] Xu X,Thadhani N N. Investigation of shock‑induced reaction
较 为 钝 感 ,其 能 量 密 度 缓 慢 上 升 ,当 冲 击 速 度 大 于 behavior of as‑blended and ball‑milled Ni+Ti powder mixtures
-1
1100 m·s 时,其能量密度迅速上升,具有良好的冲击 using time‑resolved stress measurements[J]. Journal of Applied
Physics,2004,96(4):2000-2009.
释能特性,是一类较为理想的多功能含能结构材料。 [16] Eakins D E,Thadhani N N. Mesoscale simulation of the config‑
uration‑dependent shock‑compression response of Ni+Al pow‑
参考文献: der mixtures[J]. Acta Materialia,2008,56:1496-1510.
[1] 张先锋,赵晓宁 . 多功能含能结构材料研究进展[J]. 含能材料, [17] Eakins D E,Thadhani N N. Shock‑induced reaction in a flake
2009,17(6):731-739. nickel spherical aluminum powder mixture[J]. Journal of Ap⁃
ZHANG Xian‑feng,ZHAO Xiao‑ning. Review on multifunc‑ plied Physics,2006,100:113521.
tional energetic structural materials[J]. Chinese Journal of Ener⁃ [18] Eakins D E,Thadhani N N. Shock compression of reactive
getic Materials(Hanneng Cailiao),2009,17(6):731-739. powder mixtures[J]. International Materials Reviews,2009,
[2] Boslough M B. A thermochemical model for shock‑induced re‑ 54(4):4181-213.
actions(heat detonations)in solids[J]. The Journal of Chemi⁃ [19] JI Cheng,HE Yuan,WANG Chuan‑ting,et al. Investigation
cal Physics,1990,92(3):1839-1848. on shock‑induced reaction characteristics of an Al/Ni compos‑
[3] William P W,Laszlo J K,Justin E P. Investigation of a bulk me‑ ite processed via accumulative roll‑bonding[J]. Materials and
tallic glass as a shaped charge liner material[C]//23 rd Interna‑ Design,2017,116:591-598.
tional Symposium on Ballistics,Tarragona,2007:31-37. [20] CAI Xuan‑ming,ZHANG Wei,XIE Wen‑bo,et al. Initiation
[4] Xu F Y,Zheng Y F,Yu Q B,et al. Experimental study on pen‑ and energy release characteristics studies on polymer bonded
etration behavior of reactive material projectile impacting alu‑ explosive materials under high speed impact[J]. Materials and
minum plate[J]. International Journal of Impact Engineering, Design,2015,68:18-23.
2016,95:125-132. [21] WANG Hai‑fu,ZHENG Yuan‑feng,YU Qing‑bo. Impact‑in‑
[5] Conner R D,Dandliker R B,Scruggs V,et al. Dynamic defor‑ duced initiation and energy release behavior of reactive materi‑
mation behavior of tungsten‑fiber/metallic glass matrix com ‑ als[J]. Journal of applied physics,2011,110:074904.
posites[J]. International Journal of Impact Engineering,2000, [22] WANG Chuan‑ting,HE Yong,JI Cheng,et al. Investigation
24:435-444. on shock‑induced reaction characteristics of a Zr‑based metal‑
[6] Zhang X F,Shi A S,Qiao L,et al. Experimental study on im‑ lic glassv[J]. Intermatellics,2018,93:383-388.
pact‑initiated characters of multifunctional energetic structural [23] Xu F Y,Yu Q B,Zheng Y F,et al. Damage effects of dou‑
materials[J]. Journal of Applied Physics,2013,113:083508. ble‑spaced aluminum plates by reactive material projectile im ‑
[7] Zhang X F,Shi A S,Zhang J,et al. Thermochemical modeling pact[J]. International Journal of Impact Engineering,2017,
of temperature controlled shock‑induced chemical reactions in 104:13-20.
multifunctional energetic structural materials under shock com ‑ [24] 经福谦 . 实验物态方程导引(第二版)[M]. 北京,科学出版社,
pression[J]. Journal of Applied Physics,2012,111:123501. 1999:209-370.
[8] Wei C T,Vitali E,Jiang F,et al. Quasi‑static and dynamic re‑ JING Fu‑qian. Experimental state equation guidance (second
sponse of explosively consolidated metal‑aluminum powder edition)[M]. Beijing,Science Press,1999:209-370.
mixtures[J]. Acta Materialia,2012,60:1418-1432. [25] 谭 华 . 实 验 冲 击 波 物 理 导 引[M]. 北 京 :国 防 工 业 出 版 社 ,
[9] Bacciochini A,Radulescu M T,Charron Y T,et al. Enhanced 2007:15-61.
reactivity of mechanically‑activated nano‑scale gasless reac‑ TAN Hua. Introduction to experimental shock‑wave physics
tive materials consolidated by coldspray[J]. Surface & Coat⁃ [M]. Beijing:National Defence Industry Press,2007:15-61.
ings Technology,2012,206:4343-4348. [26] LUO Pu‑guang,WANG Zai‑cheng,JIANG Chun‑lan,et al.
[10] Herbold E B,Jordan J L,Thadhani N N. Effects of processing Experimental study on impact‑initiated characters of W/Zr en‑
and powder size on microstructure and reactivity in arrested re‑ ergetic fragments[J]. Materials and Design,2015,84:72-78.
active milled Al+Ni[J]. Acta Materialia,2011,59:6717-
Chinese Journal of Energetic Materials,Vol.27, No.8, 2019(692-697) 含能材料 www.energetic-materials.org.cn