Page 79 - 《含能之美》2019封面论文
P. 79
728 朱朝阳,张思,夏德斌,唐泉,邱贤平,杨玉林,范瑞清
[6] Beckstead M W. Correlating Aluminum Burning Times[J]. Com⁃ of Physical Chemistry A,2009,113(48):13541-13547.
bustion Explosion & Shock Waves,2005,41(5):533-546. [16] Sippel T R,Son S F,Groven L J. Aluminum agglomeration re‐
[7] Jayaraman K,Anand K V,Bhatt D S,et al. Production,char‐ duction in a composite propellant using tailored Al/PTFE parti‐
acterization,and combustion of nanoaluminum in composite cles[J]. Combustion and Flame,2014,161(1):311-321.
[17] Mikhaylo A Trunow,Mirko Schoenitz,Zhu Xiao‐ying,et al.
solid propellants[J]. Journal of Propulsion and Power,2009,
25(2):471-481. Effect of polymorphic phase transformations in Al 2 O 3 film on
[8] Cerri S,Bohn M A,Menke K,et al. Aging of HTPB/Al/AP oxidation kinetics of aluminum particles[J]. Combustion and
rocket propellant formulations investigated by DMA measure‐ Flame,2005,140(4):310-318.
ments[J]. Propellants, Explosives, Pyrotechnics, 2013, 38 [18] 唐泉,庞爱民,汪越 . 固体推进剂铝粉燃烧特性及机理研究进展
(2):190-198. 分析[J]. 固体火箭技术,2015,2(38):232-238.
[9] Bui D T,Atwood A I,Antienza T Met al. Effect of aluminum TANG Quan,PANG Ai‐min,WANG Yue. Research progress
particle size on combustion behavior of aluminized propel‐ analysis of aluminum combustion property and mechanism of
lants in PCP binder[C]//35 th International Annual Conference solid propellant[J]. Journal of Solid Rocket Technology,
of ICT,Karlsruhe,2004. 2015,2(38):232-238.
[10] Orlandi O,Guery J F,Lacroix G,et al. HTPB/AP/Al Solid pro‐ [19] 国家质量监督检验检疫总局 . GB/T 19469-2004:烟火药剂着火
pellants with nanometric aluminum[C]//European Conference 温度的测定差热‐热重分析法[S]. 北京:中国标准出版社,2004.
for Aerospace Sciences(EUCASS),Moscow,2005. General Administration of Quality Supervision,Inspection and
[11] Yavor Y,Gany A. Effect of nickel coating on aluminum com‐ Quarantine of the People′s Republic of China. GB/T 19469-
bustion and agglomeration in solid propellants[C]//44th AIAA/ 2004:Determination of ignition temperature of pyrotechnic
ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,Hart‐ composition‐DTA‐TG analysis[S]. Beijing: China Standard
ford,CT,2008. Press,2004 .
[12] Aly Y,Schoenitz M,Dreizin E L. Aluminum‐metal reactive [20] 陈镜泓,李传儒 . 热分析及其应用[M]. 北京:北京科学出版社,
1985:185.
composites[J]. Combustion Science and Technology,2011,
183(10):1107-1132. CHENG Jing‐hong,Li Chuan‐ru. Thermal analysis and applica‐
[13] Tavoosi M,Enayati M H,Karimzadeh F. Softening behaviour of tion[M]. Beijing:Beijing science press,1985:185.
nanostructured Al‐14 wt% Zn alloy during mechanical alloying [21] 席剑飞 . 硼颗粒着火燃烧促进方法研究[D]. 杭州:浙江大学,
[J]. Journal of Alloys & Compounds,2008,464(1-2):0-110. 2015.
[14] Nayak S S,Wollgarten M,Banhart J,et al. Nanocomposites XI Jian‐fei. Research on promotion methods of boron particles
and an extremely hard nanocrystalline intermetallic of Al‐Fe al‐ ignition and combustion[D]. Hangzhou:Zhejiang University,
loys prepared by mechanical alloying[J]. Materials Science & 2015.
Engineering:A(Structural Materials:Properties,Microstruc⁃ [22] Plantier K B, Pantoya M L, Gash A E. Combustion wave
ture and Processing),2010,527(9):2370-2378. speeds of nanocomposite Al‐Fe 2 O 3 :The effects of Fe 2 O 3 parti‐
[15] White J D E,Reeves R V,Son S F,et al. Thermal explosion in cle synthesis technique. Combust Flame, 2005, 140(4):
Al‐Ni system:influence of mechanical activation[J]. Journal 299-309.
Preparation and Application Performance of Al⁃FeF Composite Fuel
3
ZHU Zhao⁃yang 1,2,3 ,ZHANG Si ,XIA De⁃bin ,TANG Quan ,QIU Xian⁃ping 2,3 ,YANG Yu⁃lin ,FAN Rui⁃qing 1
1
3
3
1
(1. MIIT Key Laboratory Critical Materials Technology for New Energy Conversion and Storage,School of Chemistry and Chemical Engineering,Harbin
Institute of Technology,Harbin 150001,China;2. Science and Technology on Aerospace Chemical Power Laboratory,Xiangyang 441003,China;3. Hubei
Institute of Aerospace Chemotechnology,Xiangyang 441003,China)
Abstract:In order to improve the combustion performance of aluminum powder in the solid propellants,the aluminum matrix
composite was prepared by high energy ball milling with aluminum powder as matrix and FeF 3 as additive. The effects of powder
ratio and milling parameters on the micromorphology,structure and thermal properties of aluminum matrix composites were
studied. The micron grade aluminum matrix composites were prepared by optimized process. TG‐DSC analysis showed that
Al‐FeF 3 composite can realize fast oxidation at lower temperature(600-1400 ℃)in the oxidation process. The end‐fired 75 en‐
gine test demonstrated that no large molten aluminum powder residue was observed in the engine shell after replacing spherical
Al with Al‐FeF 3 composite. The residue rate was decreased from 6.151% to 4.215%,indicating enhanced combustion efficiency
for the Al‐FeF 3 composite. Therefore,Al‐FeF 3 composite has potential application value in reducing combustion residue rate of
solid propellant and two‐phase flow loss of engine.
Key words:metal fuel;aluminum modification;high‐energy ball milling;agglomeration;solid propellant
CLC number:TJ76;O61 Document code:A DOI:10.11943/CJEM2018362
(责编:张 琪)
www.energetic-materials.org.cn
Chinese Journal of Energetic Materials,Vol.27, No.9, 2019(720-728) 含能材料