Page 36 - 《含能之美》2019封面论文
P. 36

281
            低 温 动 态 加 载 下 三 组 元 HTPB 复 合 固 体 推 进 剂 的 失 效 判 据
           [23] Method for determining the tensile properties of solid rocket  [26] 张 兴 高 . HTPB 推 进 剂 贮 存 老 化 特 性 及 寿 命 预 估 研 究[D]. 长
                propellants[M]. CPIA Publish SPIA,1957:8.            沙:国防科学技术大学,2009.
           [24] 赖建伟 . 固体推进剂药柱低温力学性能与结构完整性研究[D].                      ZHANG Xing‑gao. Study on the aging properties and storage
                西安:火箭军工程大学,2013.                                     life prediction of HTPB propellant[D]. Changsha:National
                LAI Jian‑wei. Research on mechanical properties and structural  University of Defense Technology,2009.
                integrity of solid propellant grain at low temperature[D].  [27] Nevie`re R. An extension of the time‑temperature superposi‑
                Xi′an:Xi′an Hi‑Tech Institute,2013.                  tion principle to non‑linear viscoelastic solids[J]. International
                                                                     Journal of Solids and Structures,2006,43(17):5295-5306.
           [25] 张晓军,常新龙,赖建伟,等 . HTPB 推进剂低温拉伸/压缩力学
                性能对比[J]. 固体火箭技术,2013,36(6):771-774.             [28] 侯林法 . 复合固体推进剂[M]. 北京:中国宇航出版社,2009:
                ZHANG Xiao‑jun, CHANG Xin‑long, LAI Jian‑wei, et al.  382-383.
                Comparative research of tensile and compressive mechanical  HOU Lin‑fa. Composite solid propellant[M]. Beijing:China
                properties of HTPB propellant at low temperature[J]. Journal  Astronautic Publishing House,2009:382-383.
                of Solid Rocket Technology,2013,36(6):771-774.



            Failure Criteria of Three⁃component HTPB Composite Solid Propellant at Low Temperature Under Dynamic
            Loading


            QIANG Hong⁃fu,WANG Zhe⁃jun,WANG Guang,GENG Biao
           (Xi′an Hi‑Tech Institute,Xi′an 710025,China)
            Abstract:Based on uniaxial and quasi‑biaxial tensile tests and microscopic damage observation experiments of three‑component

            Hydroxyl‑Terminated Polybutadience(HTPB)composite solid propellant at different thermal accelerated aging time(0,32,74,
            98 d),temperatures(-50,-40,-30,-20,25 ℃)and strain rates(0.40,4.00,14.29,42.86,63 s ),the effects of loading
                                                                                             -1
            conditions on the initial elastic modulus,strength and the corresponding strain have been analyzed. Moreover,failure criteria of
            the propellant under the tests have been determined. It has been indicated that HTPB propellant fails more easily due to tensile
            stress under dynamic uniaxial loading,and the thermal aging can further reduce this capability. Thus the strain at maximum ten‑
            sile stress can be considered as the uniaxial failure criterion. In addition,tensile‑compressive strength ratio can better reflect the
            different properties of the propellants under dynamic uniaxial loading. This value is 0.4 and 0.2-0.3 at room temperature and
            low temperatures,respectively. The strain at maximum tensile stress of HTPB propellant under quasi‑biaxial tension is significant‑
            ly lower than that in uniaxial tension. Furthermore,the extent of reduction increases with extended aging time and decreased
            temperature. The proportion for unaged and aged propellants is 60%-85% and 40%-60%,respectively. Finally,this strain is in‑
            dependent of stress state and strain rate at the lower temperature and higher strain rates. Thus the strain at maximum tensile stress
            under dynamic biaxial tension can be considered as the failure criterion of HTPB propellant. It can also be used to analyze the
            structure integrity of propellant grains for tactical missiles during ignition of solid rocket motor(SRM). Moreover,its value can
            be determined with the master curves and aging models.
            Key words:Hydroxyl‑Terminated Polybutadience(HTPB)propellant;failure criteria;low temperature;dynamic loading;thermal
            accelerated aging
            CLC number:TJ55;V512                       Document code:A                  DOI:10.11943/CJEM2018340

                                                                                                     (责编:张 琪)
            
                                   
                    读者·作者·编者
                       

                                            《含能材料》“含能共晶”征稿


                    含能共晲是不同含能分子通过氢键等相亏企用力廝成的具暕稳定结曍和弼能的分子晲仺⃪含能共晲充分组合了单
                质含能分子的仜点,呈现出感庞件,综合弼能仜良的特点,具暕潜在的库用前景,共晲研究屝经廂起国内外含能暵料学界
                的高庞关注⃪为推动含能共晲的研究和亚流,暤刊特推出“含能共晲”专朌,主要廬稿范围包括含能共晲晲仺设计与弼能
                预测⃩含能共晲的制备⃩结曍解曑⃩弼能等⃪暾稿请注明“含能共晲”专朌⃪


                                                                                             ⃯含能暵料⃰编辑部

            CHINESE JOURNAL OF ENERGETIC MATERIALS              含能材料                2019 年  第 27 卷  第 4 期 (274-281)
   31   32   33   34   35   36   37   38   39   40   41