Page 35 - 《含能之美》2019封面论文
P. 35
280 强洪夫,王哲君,王广,耿标
solid rocket propellants based on a cumulative damage ap‑
关系较复杂,但随温度的持续降低和应变率的不断升
proach[J]. Propellants,Explosives,Pyrotechnics,1998,23
(2):94-104.
高,老化不再对该参数的变化产生明显影响,最终稳定
在 10% 左右。 [11] 李辉,许进升,周长省,等 . HTPB 推进剂温度相关性失效准则
[J]. 含能材料,2018,26(9):732-738.
(3)动态准双轴拉伸加载下,推进剂的强度较单
LI Hui,XU Jin‑sheng,ZHOU Chang‑sheng,et al. The failure
轴拉伸时提高,而最大伸长率明显降低。其次,最大伸 criterion related to temperature for HTPB propellant[J]. Chi⁃
nese Journal of Energetic Materials(Hanneng Cailiao),2018,
长率降低的幅度随热老化时间增长而增大,且加载温
26(9):732-738.
度越低,降低越明显。未老化 HTPB 推进剂在准双轴
[12] 强洪夫 . 固体火箭发动机药柱结构完整性数值仿真与实验研究
[D]. 西安:西安交通大学,1998.
拉伸加载下的最大伸长率约为单轴拉伸条件下相应数
QIANG Hong‑fu. Numerical analysis and experimental re‑
值的 60%~85%,而老化后约为 40%~60%。最终,随
searches on solid rocket motor grain structure integrity[D].
温度持续降低和应变率不断升高,推进剂的最大伸长 Xi′an:Xi′an Jiaotong University,1998.
[13] Ren P,Hou X,He G,et al. Comparative research of tensile
率不再受应力状态的影响,而近似为恒定值。动态双
and compressive modulus of composite solid propellant for sol‑
轴拉伸条件下的最大伸长率可选为相应加载下推进剂
id rocket motor[J]. Journal of Astronautics,2010,31(10):
2354-2359.
的失效判据以及点火建压条件下战术导弹 SRM 药柱
[14] Sun C,Xu J,Chen X,Zheng J,et al. Strain rate and tempera‑
结构完整性分析的判据,其数值可结合主曲线和老化
ture dependence of the compressive behavior of a composite
模型确定。
modified double‑base propellant[J]. Mechanics of Materials,
2015,89:35-46.
[15] Balzer J E,Siviour C R,Walley S M,et al. Behaviour of am‑
参考文献:
[1] Amos R J. On a viscoplastic characterisation of solid propellant monium perchlorate‑based propellants and a polymer‑bonded
and the prediction of grain failure on pressurization cold[R]. explosive under impact loading[J]. Proceeding of the Royal So⁃
AIAA 2001‑3719,2001. ciety of London,2004,460(2043):781-806.
[2] Douglass H W,Collins J H,Noel J S,et al. Solid propellant [16] 贾永刚,张为华,张炜 . 固体推进剂双向拉伸试件优化设计及试
grain structural integrity analysis[R]. NASA SP‑8073,1972. 验[J]. 推进技术,2011,32(5):737-740.
JIA Yong‑gang,ZHAN Wei‑hua,ZHANG Wei. Optimal de‑
[3] 刘中兵,周艳青,张兵 . 固体发动机低温点火条件下药柱结构完
整性分析[J]. 固体火箭技术,2015,38(3):351-355. sign and examination study of biaxial tensile specimens for sol‑
LIU Zhong‑bing,ZHOU Yan‑qing,ZHANG Bing. Structural id propellant[J]. Journal of Propulsion Technology,2011,32
integrity analysis on grains of solid rocket motor at low temper‑ (5):737-740.
[17] 强洪夫,王广,张炜,等 . 固体发动机推进剂/粘结界面失效机
ature ignition[J]. Journal of Solid Rocket Technology,2015,
38(3):351-355. 理、模拟表征和优化设计[R]. 973‑61338,2005-2010.
[4] Jeremic R. Some aspects of time‑temperature superposition [18] Wang Z,Qiang H,WANG G. Experimental investigation on
principle applied for predicting mechanical properties of solid high strain rate tensile behaviors of HTPB propellant at low
temperatures [J].
rocket propellants[J]. Propellants,Explosive,Pyrotechnics, Propellants, Explosives, Pyrotechnics,
1999,24(4):221-223. 2015,40(6):814-820.
[5] Lepie A H. Two devices for high speed tensile testing[C]// [19] Wang Z,Qiang H,Wang T,et al. A thermovisco‑hyperelastic
14th Meeting of the Joint Army‑Navy‑NASA‑Air Force (JAN‑ constitutive model of HTPB propellant with damage at interme‑
diate strain rates[J]. Mechanics of Time‑Dependent Materials,
NAF) Structures and Mechanical Behavior Working Group,
Maryland 1977. 2018,22(3):291-314.
[20] Wang Z,Qiang H,WANG G,et al. A new test method to ob‑
[6] 王哲君,强洪夫,王广,等 . 固体推进剂力学性能和本构模型的
研究进展[J]. 含能材料,2016,24(4):403-416. tain biaxial tensile behaviors of solid propellant at high strain
WANG Zhe‑jun,QIANG Hong‑fu,WANG Guang,et al. Re‑ rates[J]. Iranian Polymer Journal,2016,25(6):515-524.
view on the mechanical properties and constitutive models of [21] 强洪夫,王哲君,王广,等 . HTPB 推进剂低温动态准双轴拉伸
solid propellants[J]. Chinese Journal of Energetic Materials 力学性能研究[C]//中国航天第三专业信息网第三十八届技术交
(Hanneng Cailiao),2016,24(4):403-416. 流会暨第二届空天动力联合会议,西安,2016.
[7] Zalewski R,Wolszakiewicz T. Analysis of uniaxial tensile tests QIANG Hong‑fu, WANG Zhe‑jun, WANG Guang, et al.
for homogeneous solid propellants under various loading con‑ Quasi‑biaxial tensile mechanical properties of HTPB propel‑
lant at low temperature under dynamic loading[C]//The 2nd
ditions[J]. Central European Journal of Energetic Materials,
2011,8(4):223-231. Joint Conference on Aerospace Power and 38th Aerospace
[8] Zhang L,Zhi S,Shen Z. Research on tensile mechanical prop‑ Powerplant Techical Information Society Technical Confer‑
erties and damage mechanism of composite solid propellants ence,Xi′an,2016.
[J]. Propellants, Explosives, Pyrotechnics. 2018, 43(3), [22] 刘畅,强洪夫,王哲君,等 . 低温动态加载下老化 HTPB 推进剂
234-240. 强度准则研究[J]. 推进技术,2018,39(11):2581-2587.
[9] Zhou D,Liu X,Sui X,et al. Effect of pre‑strain during ageing LIU Chang,QIANG Hong‑fu,WANG Zhe‑jun,et al. Strength
on the maximum elongation of composite solid propellants criterion of aged HTPB propellant at low temperature under dy‑
and its modelling[J]. Polymer Testing,2016,50:200-207. namic loading[J]. Journal of Propulsion Technology,2018,39
[10] Duncan E J S,Margetson J. A nonlinear viscoelastic theory for (11):2581-2587.
www.energetic-materials.org.cn
Chinese Journal of Energetic Materials,Vol.27, No.4, 2019(274-281) 含能材料