Page 76 - 《含能材料》优秀论文(2019年)
P. 76
714 周静,张俊林,丁黎,毕福强,王伯周
属络合物型笼状骨架含能化合物的研究起步较晚,但 [6] Zhang Q,Shreeve J M. Metal‑organic frameworks as high ex‑
plosives: a new concept for energetic materials.[J]. Ange⁃
其较高的能量水平和简易的制备途径使其成为高性能
wandte Chemie International Edition,2014,53(10):2540-
含能化合物发展的重要方向。可以预见,笼状骨架含 2542.
能化合物进一步的发展趋势应集中在以下几个方面: [7] Tian M,Chi W J,Li Q S,et al. Theoretical design of highly
energetic poly‑nitro cage compounds [J]. Rsc Advances,
(1)迄 今 为 止 ,ONC 已 经 表 现 出 优 异 的 爆 轰 性
2016,6(53):47607-47615.
能,应尽快实现其高效制备并开展应用研究,需要尽快 [8] Roknabadi A G,Keshavarz M H,Esmailpour K,et al. High
解决制备路线过长、成本过高的问题,发展光催化或金 performance nitroazacubane energetic compounds:structur‑
al,thermochemical and detonation characteristics[J]. Chemis⁃
属催化条件下的炔烃聚合反应是可能的实现途径;此 tryselect,2016,1(21):6735-6740.
外应尝试解决加氢脱苄操作成本较高的问题,研究更 [9] Moxnes J F. The crystal density of nitrogen cubane and other
为有效的苄基脱除方法同时采用共晶制备或包覆等方 polynitrogen species [J]. Journal of Molecular Modeling,
2017,23(10):284.
式解决 CL‑20 感度较高的问题。 [10] Chalmers B A,Xing H,Houston S,et al. Validating Eaton's
(2)目前,可应用于单质型含能化合物的笼状骨 hypothesis:cubane as a benzene bioisostere.[J]. Angewandte
架种类依然较少,发展新的笼状骨架应用于单质型笼 Chemie,2016,55(11):3580-3585.
[11] Doedens R J,Eaton P E,Fleischer E B. The bent bonds of cu‑
状骨架含能化合物,寻找制备更为简单、性能更为优异 bane[J]. European Journal of Organic Chemistry,2017,2017
的含能化合物仍是含能材料研究领域的长期目标。其 (18):2627-2630.
[12] Boudon V,Lamy M,Dugueboyé F,et al. Synthesis,high‑res‑
中多硝基多氮杂正伍兹烷、多硝基金刚烷等结构应作
olution infrared spectroscopy and vibrational structure of cu‑
为重点研究方向。 bane,C8H8[J]. Journal of Physical Chemistry A,2016,120
(3)三维空间结构的金属络合物型材料的研究已 (25):4418-4428.
[13] Biegasiewicz K F,Griffiths J R,Savage G P,et al. Cubane:50
经揭示出金属络合物结构在发展高性能笼状骨架含能
years later.[J]. Chemical Reviews,2015,115(14):6719-
化合物中的优势。目前钙钛矿类含能材料性能水平较 6745.
高,制备方法简易,具有良好的应用前景,对该类型化 [14] Eaton P E,Cole T W. The cubane system[J]. Journal of the
American Chemical Society,1964,86(5):962-964.
合物的特性进行全面研究,尤其是应用特性的研究,是
[15] Zhang M X,Eaton P E,Gilardi R. Hepta‑ and octanitrocubanes
金属络合物型笼状骨架含能材料目前的重点方向。同 [J]. Angewandte Chemie International Edition,2000,39(2):
时,进一步深入发掘不同种类的金属络合物型笼状骨 401-404.
[16] Lukin K A,Li J C,Eaton P E,et al. Synthesis and chemistry of
架含能化合物,将该领域研究继续扩展,应是含能材料 1,3,5,7‑tetranitrocubane including measurement of its acidi‑
研究的优先发展方向。 ty,formation of o‑nitro anions,and the first preparations of
pentanitrocubane and hexanitrocubane [J]. Journal of the
参考文献: American Chemical Society,1997,119(41):9591-9602.
[17] Tian M,Chi W J,Li Q S,et al. Theoretical design of highly
[1] 田均均,张庆华,李金山 . 含能分子合成最新进展[J]. 含能材
料,2016,24(1):1-9. energetic poly‑nitro cage compounds [J]. Rsc Advances,
TIAN Jun‑jun,ZHANG Qing‑hua,LI Jin‑shan. Recent advanc‑ 2016,6(53):47607-47615.
es in energetic molecule synthesis[J]. Chinese Journal of Ener⁃ [18] Chaban V V,Prezhdo O V. Energy storage in cubane deriva‑
getic Materials(Hanneng Cailiao),2016,24(1):1-9. tives and their real‑time decomposition:computational molec‑
[2] Zeng X,Li N,Jiao Q. Carbon‑free energetic materials:compu‑ ular dynamics and thermodynamics[J]. Acs Energy Letters,
tational study on nitro‑substituted BN‑cage molecules with 2016,1(1):189-194.
high heat of detonation and stability[J]. Rsc Advances,2018, [19] Eaton P E,Gilardi R L,Zhang M X. Polynitrocubanes:ad‑
8(26):14654-14662. vanced high‑density,high‑energy materials[J]. Advanced Ma⁃
[3] Lal S,Rajkumar S,Tare A,et al. Nitro‑substituted bishomocu‑ terials,2010,12(15):1143-1148.
banes:synthesis,characterization,and application as energet‑ [20] 吴琼,谈玲华,杭祖圣,等 . 笼型含能晶体八硝基立方烷在高压
ic materials[J]. Chemistry‑An Asian Journal,2015,9(12): 下 的 分 解 和 聚 合 机 理 的 DFT‑D 研 究[J]. 结 构 化 学 ,2017,36
3533-3541. (8):1232-1242.
[4] Ling Y,Ren X,Lai W,et al. 4,4,8,8‑Tetranitroadaman‑ WU Qiong,TAN Ling‑hua,HANG Zu‑sheng,et al. Insights
tane‑2,6‑diyl dinitrate:a high‑density energetic material[J]. into the decomposition and polymerization of cage energetic
European Journal of Organic Chemistry, 2015, 2015(7): crystal octanitrocubane under high pressure:A DFT‑D study
1541-1547. [J]. Chinese Journal of Structural Chemistry,2017,36(8):
[5] Wu Q,Zhu W,Xiao H. Computer‑aided design of two novel 1232-1242.
and super‑high energy cage explosives:dodecanitrohexapris‑ [21] Schmitt A R J,Bottaro J C,Eaton P E. Synthesis of cubane
mane and hexanitrohexaazaprismane [J]. Rsc Advances, based high energy materials[J]. Proceedings of Spie,1988,
2013,4(8):3789-3797. 872(5):30-37.
Chinese Journal of Energetic Materials,Vol.27, No.8, 2019(708-716) 含能材料 www.energetic-materials.org.cn