Page 76 - 《含能材料》优秀论文(2019年)
P. 76

714                                                                          周静,张俊林,丁黎,毕福强,王伯周

            属络合物型笼状骨架含能化合物的研究起步较晚,但                              [6] Zhang Q,Shreeve J M. Metal‑organic frameworks as high ex‑
                                                                     plosives: a new concept for energetic materials.[J]. Ange⁃
            其较高的能量水平和简易的制备途径使其成为高性能
                                                                     wandte Chemie International Edition,2014,53(10):2540-
            含能化合物发展的重要方向。可以预见,笼状骨架含                                  2542.
            能化合物进一步的发展趋势应集中在以下几个方面:                              [7] Tian M,Chi W J,Li Q S,et al. Theoretical design of highly
                                                                     energetic poly‑nitro cage compounds [J]. Rsc Advances,
                (1)迄 今 为 止 ,ONC 已 经 表 现 出 优 异 的 爆 轰 性
                                                                     2016,6(53):47607-47615.
            能,应尽快实现其高效制备并开展应用研究,需要尽快                             [8] Roknabadi A G,Keshavarz M H,Esmailpour K,et al. High
            解决制备路线过长、成本过高的问题,发展光催化或金                                 performance nitroazacubane energetic compounds:structur‑
                                                                     al,thermochemical and detonation characteristics[J]. Chemis⁃
            属催化条件下的炔烃聚合反应是可能的实现途径;此                                  tryselect,2016,1(21):6735-6740.
            外应尝试解决加氢脱苄操作成本较高的问题,研究更                              [9] Moxnes J F. The crystal density of nitrogen cubane and other
            为有效的苄基脱除方法同时采用共晶制备或包覆等方                                  polynitrogen species [J]. Journal of Molecular Modeling,
                                                                     2017,23(10):284.
            式解决 CL‑20 感度较高的问题。                                  [10] Chalmers B A,Xing H,Houston S,et al. Validating Eaton's
                (2)目前,可应用于单质型含能化合物的笼状骨                               hypothesis:cubane as a benzene bioisostere.[J]. Angewandte
            架种类依然较少,发展新的笼状骨架应用于单质型笼                                  Chemie,2016,55(11):3580-3585.
                                                                [11] Doedens R J,Eaton P E,Fleischer E B. The bent bonds of cu‑
            状骨架含能化合物,寻找制备更为简单、性能更为优异                                 bane[J]. European Journal of Organic Chemistry,2017,2017
            的含能化合物仍是含能材料研究领域的长期目标。其                                  (18):2627-2630.
                                                                [12] Boudon V,Lamy M,Dugueboyé F,et al. Synthesis,high‑res‑
            中多硝基多氮杂正伍兹烷、多硝基金刚烷等结构应作
                                                                     olution infrared spectroscopy and vibrational structure of cu‑
            为重点研究方向。                                                 bane,C8H8[J]. Journal of Physical Chemistry A,2016,120
                (3)三维空间结构的金属络合物型材料的研究已                               (25):4418-4428.
                                                                [13] Biegasiewicz K F,Griffiths J R,Savage G P,et al. Cubane:50
            经揭示出金属络合物结构在发展高性能笼状骨架含能
                                                                     years later.[J]. Chemical Reviews,2015,115(14):6719-
            化合物中的优势。目前钙钛矿类含能材料性能水平较                                  6745.
            高,制备方法简易,具有良好的应用前景,对该类型化                            [14] Eaton P E,Cole T W. The cubane system[J]. Journal of the
                                                                     American Chemical Society,1964,86(5):962-964.
            合物的特性进行全面研究,尤其是应用特性的研究,是
                                                                [15] Zhang M X,Eaton P E,Gilardi R. Hepta‑ and octanitrocubanes
            金属络合物型笼状骨架含能材料目前的重点方向。同                                  [J]. Angewandte Chemie International Edition,2000,39(2):
            时,进一步深入发掘不同种类的金属络合物型笼状骨                                  401-404.
                                                                [16] Lukin K A,Li J C,Eaton P E,et al. Synthesis and chemistry of
            架含能化合物,将该领域研究继续扩展,应是含能材料                                 1,3,5,7‑tetranitrocubane including measurement of its acidi‑
            研究的优先发展方向。                                               ty,formation of o‑nitro anions,and the first preparations of
                                                                     pentanitrocubane and hexanitrocubane [J]. Journal of the
            参考文献:                                                    American Chemical Society,1997,119(41):9591-9602.
                                                                [17] Tian M,Chi W J,Li Q S,et al. Theoretical design of highly
             [1] 田均均,张庆华,李金山 . 含能分子合成最新进展[J]. 含能材
                 料,2016,24(1):1-9.                                   energetic poly‑nitro cage compounds [J]. Rsc Advances,
                 TIAN Jun‑jun,ZHANG Qing‑hua,LI Jin‑shan. Recent advanc‑  2016,6(53):47607-47615.
                 es in energetic molecule synthesis[J]. Chinese Journal of Ener⁃  [18] Chaban V V,Prezhdo O V. Energy storage in cubane deriva‑
                 getic Materials(Hanneng Cailiao),2016,24(1):1-9.    tives and their real‑time decomposition:computational molec‑
             [2] Zeng X,Li N,Jiao Q. Carbon‑free energetic materials:compu‑  ular dynamics and thermodynamics[J]. Acs Energy Letters,
                 tational study on nitro‑substituted BN‑cage molecules with  2016,1(1):189-194.
                 high heat of detonation and stability[J]. Rsc Advances,2018,  [19] Eaton P E,Gilardi R L,Zhang M X. Polynitrocubanes:ad‑
                 8(26):14654-14662.                                  vanced high‑density,high‑energy materials[J]. Advanced Ma⁃
             [3] Lal S,Rajkumar S,Tare A,et al. Nitro‑substituted bishomocu‑  terials,2010,12(15):1143-1148.
                 banes:synthesis,characterization,and application as energet‑  [20] 吴琼,谈玲华,杭祖圣,等 . 笼型含能晶体八硝基立方烷在高压
                 ic materials[J]. Chemistry‑An Asian Journal,2015,9(12):  下 的 分 解 和 聚 合 机 理 的 DFT‑D 研 究[J]. 结 构 化 学 ,2017,36
                 3533-3541.                                          (8):1232-1242.
             [4] Ling Y,Ren X,Lai W,et al. 4,4,8,8‑Tetranitroadaman‑  WU Qiong,TAN Ling‑hua,HANG Zu‑sheng,et al. Insights
                 tane‑2,6‑diyl dinitrate:a high‑density energetic material[J].  into the decomposition and polymerization of cage energetic
                 European Journal of Organic Chemistry, 2015, 2015(7):  crystal octanitrocubane under high pressure:A DFT‑D study
                 1541-1547.                                          [J]. Chinese Journal of Structural Chemistry,2017,36(8):
             [5] Wu Q,Zhu W,Xiao H. Computer‑aided design of two novel  1232-1242.
                 and super‑high energy cage explosives:dodecanitrohexapris‑  [21] Schmitt A R J,Bottaro J C,Eaton P E. Synthesis of cubane
                 mane and hexanitrohexaazaprismane [J]. Rsc Advances,  based high energy materials[J]. Proceedings of Spie,1988,
                 2013,4(8):3789-3797.                                872(5):30-37.


            Chinese Journal of Energetic Materials,Vol.27, No.8, 2019(708-716)  含能材料       www.energetic-materials.org.cn
   71   72   73   74   75   76   77   78   79   80