Page 77 - 《含能材料》2018年优秀论文
P. 77
738 李辉,许进升,周长省,陈雄,郑健
age model for cyclic loading[J]. Mechanics of Time‑Depen‑ Vibration,2003,268(3):465-483.
dent Materials,2008,12(4):329-342. [15] 杨挺青 . 粘弹性力学[M]. 武汉:华中理工大学出版社,1990.
[7] Kachanov L M. Introduction to continuum damage mechanics YANG Ting‐qing. Viscoelastic mechanics[M]. Wuhan:Hua‐
[M].Dordrecht:Martinus Nijhoff,1986. zhong University of Science and Technology Press,1990.
[8] Kunz R. Characterization of solid propellant for linear cumula‐ [16] 杨挺青 . 黏弹性理论与应用[M]. 北京:科学出版社,2004.
tive damage modeling[C]//Aiaa / asme / sae / asee Joint Propul‐ YANG Ting‐qing. Viscoelastic theory and applications[M].
sion Conference & Exhibit. 2013. Beijing:Science Press,2004.
[9] Kunz R. Continuum damage mechanics modeling of solid pro‐ [17] 许 进 升 . 复 合 推 进 剂 热 粘 弹 性 本 构 模 型 实 验 及 数 值 仿 真 研 究
pellant[C]// Aiaa/asme/sae/asee Joint Propulsion Conference [D]. 南京:南京理工大学,2013.
& Exhibit. 2013. XU Jin‐sheng. Experimental study and numerical simulation of
[10] 孟红磊,赵秀超,鞠玉涛,等 . 基于累积损伤的双基推进剂强度 the thermal viscoelastic constitutive model of composite pro‐
准则及实验[J]. 推进技术,2011,32(1):109-112 pellant[D].Nanjing:Nanjing University of Science and Tech‐
MENG Hong‐lei,ZHAO Xiu‐chao,JU Yu‐tao,et al. Strength nology,2013.
criteria and experiments of double‐base propellant based on [18] 孟 红 磊 . 改 性 双 基 推 进 剂 装 药 结 构 完 整 性 数 值 仿 真 方 法 研 究
cumulative damage[J].Propulsion Technology,2011,32(1): [D]. 南京:南京理工大学,2011.
109-112. MENG Hong‐lei. Research on numerical simulation method
[11] 史佩,曲凯,张旭东 . 基于连续损伤模型的复合固体推进剂力学 for structural integrity of modified double‐base propellant
性能研究[J]. 海军航空工程学院学报,2010,25(6):662-666. charge[D].Nanjing:Nanjing University of Science and Tech‐
SHI Pei,QU Kai,ZHANG Xu‐dong.Mechanical properties of nology,2011.
composite solid propellants based on continuous damage mod‐ [19] Saenz L P. Discussion of“equation for the stress‐strain curve of
el[J]. Journal of Naval Aeronautical Engineering Institute, concrete”by Desayi and Krishnan[J]. Aci Journal,1964,61:
2010,25(6):662-666. 1229-1235.
[12] 梁蔚,吕庆山,陈雄,等 . 温度对 HTPB 推进剂疲劳特性的影响 [20] 常武军,鞠玉涛,王蓬勃 .HTPB 推进剂脱湿与力学性能的相关
[J]. 含能材料,2017,25(3):184-190. 性研究[J]. 兵工学报,2012,33(3):261-266.
LIANG Wei,LÜ Qing‐shan,CHEN Xiong,et al. Influence of CHANG Wu‐jun,JU Yu‐tao,WANG Peng‐bo. Correlation of
temperature on fatigue characteristics of HTPB propellants[J]. dehydration and mechanical properties of HTPB propellants
Journal of Energetic Materials(Hanneng Cailiao),2017,25 [J]. Acta Armamentari,2012,33(3):261-266.
(3):184-190. [21] 职世君,曹付齐,申志彬,等 . 复合固体推进剂颗粒脱湿损伤参
[13] Yıldırım H C,Ozupek Š. Structural assessment of a solid pro‐ 数反演[J]. 推进技术,2016,37(10):1977-1983.
pellant rocket motor:Effects of aging and damage[J]. Aero‑ ZHI Shi‐jun,CAO Fu‐qi,SHEN Zhi‐bin,et al. Inversion of
space Science & Technology,2011,15(8):635-641. dewettingdamage parameters of composite solid propellant par‐
[14] Chyuan S W.Dynamic analysis of solid propellant grains sub‐ ticles[J].Propulsion Technology,2016,37(10):1977-1983.
jected to ignition pressurization loading[J]. Journal of Sound &
Failure Criterion Related to Temperature for HTPB Propellant
LI Hui,XU Jin⁃sheng,ZHOU Chang⁃sheng,CHEN Xiong,ZHENG Jian
(School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
Abstract:To establish a failure criterion for hydroxyl‐terminated polybutadiene(HTPB)propellant which considers the effect of
temperature and strain rate. The time‐temperature shift factor of HTPB propellant was obtained by stress relaxation tests at differ‐
ent temperatures(233.15,253.15,273.15,293.15,323.15,343.15 K)of HTPB propellant. Based on cumulative damage theory
and linear viscoelastic theory,a failure criterion of propellant with time‐temperature shift factor α T was established. The damage
parameters of failure criterion were obtained by combining the uniaxial tensile test data at different temperatures and different
strain rates. The failure criterion was used to predict the damage evolution characteristics and critical failure time of propellant
material at different temperatures and strain rates. Compared with the experimental results,it is found that the relative error pre‐
dicted by the failure criterion is less than 20%,indicating that the failure criterion can predict the failure condition of HTPB pro‐
pellant in the range of low temperature 233.15-273.15 K at tensile speed of 2-500 mm·min -1 and in the range of high tempera‐
-1
ture 293.15-343.15 K at tensile speed of 0.5-100 mm·min .
Key words:hydroxyl‐terminated polybutadiene(HTPB)propellant;temperature correlation;failure criterion;damage revolution
CLC number:TJ55;V435 Document code:A DOI:10.11943/CJEM2018068
Chinese Journal of Energetic Materials,Vol.26, No.9 , 2018(732-738) 含能材料 www.energetic-materials.org.cn