Page 6 - 《含能材料》优秀论文(2019年)
P. 6

TATB/CL‑20 复 合 装 药 结 构 的 3D 打 印 成 型 技 术                                                           935

                calculations,synthesis and characterization of a promising en‑  for armament applications[C]// Life Sciences,Medicine,Diag‑
                ergetic compound[J]. Physical Chemistry Chemical Physics,  nostics,Bio Materials and Composites—Technical Proceedings
                2008,10:4340-4346.                                   of the 2010 NSTI Nanotechnology Conference and Expo. Ana‑
            [3] 宋小兰,王毅,赵珊珊,等 . 机械球磨法制备纳米 CL‑20/TATB 共                heim,CA,US:Nano Science and Technology Institute,2010,
                晶炸药[J]. 兵器装备工程学报,2018,39( 8):146-151.                2:542-545 .
                SONG Xiao‑lan,WANG Yi,ZHAO Shan‑shan,et al. Nano‑  [10] Ihnen A.Inkjet printing of nanocomposite high‑explosive ma‑
                meter CL‑20/TATB co‑crystal fabricated by mechanical milling  terials for direct write fuzing[C]// Proceedings of the 54th An‑
                methodology[J]. Journal of Ordnance Equipment Engineering,  nual Fuze Conference. Kansas City,MO,US:National De‑
                2018,39( 8):146-151.                                 fense Industrial Association,2010.
            [4] Zhijian Yang ,Jinshan Li ,Bing Huang ,et al. Preparation and  [11] Sullivan K T,Zhu C,Duoss E B,et al. Controlling material re‑
                properties study of core‑shell CL‑20/TATB composites[J]. Pro⁃  activity using architecture[J]. Advance Materials,2016,28
                pellants,Explosives,Pyrotechnics,2014,39(1):51-58.  (10):1934-1939.
            [5] 王泽山 . 火药装药设计原理与技术[M]. 北京:北京理工大学,                [12] 肖磊,王庆华,李万辉,等 . 基于三维打印技术的纳米奥克托今
                2006:12-18.                                          与 梯 恩 梯 熔 铸 炸 药 制 备 及 性 能 研 究[J]. 兵 工 学 报 ,2018,39
            [6] 朱珠,雷林,罗向东,等 . 含能材料 3D 打印技术及应用现状研究                   (7):1000-1093.
                [J]. 兵工自动化 . 2015,34(6):52-55.                       XIAO Lei,WANG Qing ‑hua,LI Wan ‑hui,et al. Preparation
                ZHU Zhu,LEI Lin,LUO Xiang‑dong,et al. Research on appli‑  and performances of nano‑HMX and TNT melt‑cast explosives
                cation of 3D printing technology of energetic materials[J].  based on 3D printing technology[J]. Acta Armamentarii.
                Ordnance Industry Automation,2015,34(6):52-55.       2018,39(7):1000-1093.
            [7] Alberto P,Chriset D B. Direct‑write technologies for rapid pro‑  [13] Wang D,Zheng B,Guo C,et al. Formulation and perfor‑
                totyping applications [M]. San Diego,CA,US:Academic  mance of functional sub‑micro CL‑20‑based energetic polymer
                Press,2002,12 .                                      composite ink for direct ‑ write assembly [J]. RSC Advances,
            [8] Fletcher R A,Brazin J A,Staymates M E,et al. Fabrication of  2016,6:112325-112331.
                polymer microsphere particle standards containing trace explo‑  [14] Li Q,An C,Han X,et al. CL‑20 based explosive ink of emul‑
                sives using an oil/water emulsion solvent extraction piezoelec‑  sion binder system for direct ink writing[J]. Propellants,Explo⁃
                tric printing process[J]. Talanta,2008,76( 4):949-955 .  sives,Pyrotechnics,2018,43(6):1-6.
            [9] Zunino J L,Schmidt D P,Petrock A M. Inkjet printed devices


            Preparation of CL⁃20/TATB Composite Charge Structure by 3D Printing Technology


            HUANG Jin,WANG Jun,MAO Yao⁃feng,XU Rui⁃juan,ZENG Gui⁃yu,YANG Zhi⁃jian,NIE Fu⁃de
           (Institute of Chemical Materials,CAEP,Mianyang 621999,China)
            Abstract:In order to enhance the safety and energy of the explosive charge,three new composite charge structures were de‑
            signed and prepared by 3D printing technology. 2,4,6,8,10,12‑hexanitro‑2,4,6,8,10,12‑hexaazaisowurtzitane(CL‑20)and
            2,4,6‑triamino‑1,3,5‑trinitrobenzene(TATB)were chosen as the main explosive due to high energy density of CL‑20 and high
            safety of TATB. Glycidyl azide polymer binder(GAP)and polyisocyanate(N‑100)were used as binders to prepare two energet‑
            ic formulations TATB/GAP/N‑100 and CL‑20/GAP/N‑100 for 3D printing. Three new structures were constructed by 3D printing
            based on the two formulations. The effects of the binder contents and printed parameters on microstructure of the energetic charg‑
            es were studied. Stable charge structure was obtained when the content of the binder,printed speed and the nozzle diameter
            was 20%,3 mm·s -1  and 0.25 μm,respectively. The impact sensitivity of three new structures was studied by GJB772A-1997
            method 601.2. The H 50 for the axial/radial composite charge structure was about 72.00 cm,which was three times higher than
            that of raw CL‑20.
            Key words:2,4,6,8,10,12‑hexanitro‑2,4,6,8,10,12‑hexaazaisowurtzitane(CL‑20)/ 2,4,6‑triamino‑1,3,5‑trinitrobenzene
           (TATB);safety;charge structure;3D printing
            CLC number:TJ55                            Document code:A                  DOI:10.11943/CJEM2019042
                                                                                                    (责编:王艳秀)














            CHINESE JOURNAL OF ENERGETIC MATERIALS              含能材料               2019 年  第 27 卷  第 11 期 (931-935)
   1   2   3   4   5   6   7   8   9   10   11