Page 61 - 《含能之美》2019封面论文
P. 61

548                                                                                   孙慧敏,白红娟,张晴

                                                                     6‑trinitrotoluene catalyzed by pentaerythritol tetranitrate reduc‑
            4   结 论                                                  tase :molecular dynamics si‑mulations[J]. Phys Chem Chem
                                                                     Phys,2018,20(7):12157-12165.
                                                                 [6] Suresh R. Subashchandrabose Rhodococcus wratislaviensis
                                                                     strain 9 :an efficient p‑nitrophenol degader with a great po‑
                (1)在不同供氧光照条件下球形红细菌 H 菌株均可
            降解 PNP,在光照厌氧条件下降解效果最好。由单因素                               tential for bioremediation[J]. Journal of Hazardous Materials,
            实验得出最适降解条件,PNP初始浓度为 80 mg·L 、pH                          2018,34(7):176-183.
                                                       -1
                                                                 [7] Sahoo NK,Pakshirajan K,Ghosh PK,et al. Batch biodegrada‑
            值 7.0、温度 30 ℃、接种量 15%,降解效果最好的氮源                          tion of para‑nitrophenol using Arthrobacterchlorophenolicus
                                                                     A6[J]. Applied Biochemistry and Biotechnology,2011,165
                         2
                            4
                       4
            组合是(NH )SO 和酵母膏,并得出三个对 H 菌株降
                                                                     (7):1587-1596.
            解 PNP 影响显著因素:PNP 初始浓度、pH 值和温度。
                                                                 [8] 黄强,张明强 . 固定化铜绿假单胞菌生物降解对硝基苯酚[J]. 环
                (2)采用响应面优化法优化影响显著因素。响应                               境工程技术学报,2012,3(2):247-252.
                                                                     HUANG Qiang,ZHANG Ming‑qiang. Biodegradation of p‑Ni‑
            面优化后得出三个显著因素对 PNP 降解的影响依次
                                                                     trophenol by immobilized cells of Pseudomonas aeruginosa[J].
                                                                     Journal of Environmental Engineering Technology,2012,3
            是:温度>pH 值>PNP 初始浓度;3D 响应面能直观反
            映三个因素交互作用对 PNP 降解的影响,温度和 pH                              (2):247-252.
                                                                 [9] Bhaswati Chakraborty. Kinetic study of degradation of p‑nitro‑
            值对 PNP 的降解影响最大;预测出优化条件为:pH 值
                                                                     phenol by a mixed bacterial culture and it constituent pure
                                                        -1
            8.09、温 度 30.49 ℃、PNP 初 始 浓 度 81.01 mg·L ;在
                                                                     strains[J].Materials Today:Proceedings,2016,10(3):3505-3524.
            优化后条件下实验测得菌株降解率为 91.1%,比优化                          [10] 李可峰,陈海涛,吴龙飞,等 . 细菌的光响应及其机制研究进展
            前 提 高 2.1%,与 预 测 的 降 解 率 92.3% 相 差 1.2%                  [J]. 微生物学通报,2018,45(7):1574-1587.
                                                                     LI Ke‑feng,CHENG Hai‑tao,WU Long‑fei,et al. Behavior
                                                                     and mechanism of bacterial response to light illumination[J].
           (<2%),因此,响应面预测的数据可靠。
                                                                     Microbiol. China,2018,45(7):1574-1587.
                (3)在响应面优化条件下 H 菌株生长初期 PNP 浓
                                                                [11] LIANG Fang‑nan,BAI Hong‑juan,CHAI Chun‑jing,et al. An‑
            度迅速下降,可能由于吸附或吸收作用引起,H 菌株持
                                                                     aerobic biodegradation of 2,4‑dinitrotoluene by Rhodobacter‑
            续降解 PNP,降解率达到最大值 91.1%,同时,利用一                            sphaeroides[J].Microbiology China,2016,43(2):279-284.
            级动力学方程模拟优化条件下 PNP 浓度随时间的变                           [12] 王玉芬,张肇铭,胡筱敏,等 . 球形红细菌好氧降解氯代苯研究
                                                -1                   [J]. 环境工程学报,2011,5(5):1187-1193.
            化,模拟出最大速率反应常数 0.0144 h 和最短半衰
                                                                     WANG Yu‑fen, ZHANG Zhao‑ming, HU Xiao‑min, et al.
                                                                     Study on aerobic degradation of chlorobenzene by Rhodo‑
            期 43.3 h。
                                                                     ba‑cter sphaeroides[J].Chinese Jouinal of Environmental Engi‑
                                                                     neering,2011,5(5):1187-1193.
            参考文献:
             [1] 崔庆忠,焦清介,任慧,等 . KNO 3 /C 6 H 5 NO 3 /NC 点火药研究[J].  [13] 康鹏洲,白红娟,罗征,等 . 球形红细菌对六价铬的生物还原与三
                 含能材料,2007,15(3):209-213.                            价铬积累[J]. 国际药学研究杂志,2018,45(4):380-386.
                 CUI Qing‑zhong,JIAO Qing‑jie,REN Hui,et al. Study on  KANG Peng‑zhou,BAI Hong‑juan,LUO Zheng,et al. Biologi‑
                 KNO 3 /C 6 H 5 NO 3 /NC type composition[J]. Chinese Journ‑al of  cal reduction of hexavalent chromium and trivalent c‑hromi‑
                 Energetic Materials(Hanneng Cailiao),2007,15(3):209-213.  um accumulation by Rhodobacter sphaeroides[J].Journal of In‑
                                                                     ternational Pharmaceutical Research,2018,45(4):380-386.
             [2] 任磊,史延华,贾阳,等 . 菌株 Arthrobacter sp. CN2 降解对硝基
                 苯酚的特性与动力学[J]. 环境科学,2015,36(5):1757-1762.       [14] 白红娟,王珊,柴春境,等 . 球形红细菌降解 RDX 的动力学及其机
                 REN Lei,SHI Yan‑hua,JIA Yang,et al. Biodegradation charac‑  理研究[J]. 火炸药学报,2015,38(6):51-60.
                 teristics and kinetics of p‑nitrophenol by strain Arthrobacter  BAI Hong‑juan,WANG Shan,CHAI Chun‑jing,et al. Study on
                 sp.CN2[J].Environmental Science,2015,36(5):1757-1762.  degradation kinetics and mechanism of explosive hexahydro‑1,
             [3] 郑凤英,钱沙华,李顺兴,等 . 3,5‑二硝基水杨酸表面修饰纳米 Ti                 3,5‑trinitro‑1,3,5‑triazine(RDX)by Rhodobacter sphaeroides[J].
                 O 2 吸附对硝基苯酚[J]. 环境科学,2006,27(6):1140-1143.          Chinese Jouinal of Explosives & Propellants,2015,38(6):51-60.
                 ZHENG Feng‑ying,QIAN Sha‑hua,LI Shun‑xin,et al. Adsorp‑  [15] 齐永强,王红旗,刘敬奇,等 . 土壤石油微生物降解影响因子的正
                 tion of p‑nitrophenol by nanosized titani‑um dioxide surface  交实验分析[J]. 地球学报,2003,24(3):279-284.
                 modified with 3,5‑dinitrosalicylic acid[J]. Environmental Sci‑  QI Yong‑qiang,WANG Hong‑qi,LIU Jing‑qi,et al. Impact of
                 ence,2006,27(6):1140-1143.                          several factors on the bioremediation of oil in soil[J]. Acta
             [4] 万年升,顾继东,黄锦辉,等 .Achromobacter xylosoxidans NS12      Geoscientia Sinica,2003,24(3):279-284.

                 的 分 离 和 对 硝 基 苯 酚 的 降 解[J]. 环 境 科 学 ,2007,28(2):  [16] 张东升,余丽胜,焦纬洲,等 . 基于响应面法的超声强化铁碳微电
                 422‑426.                                            解处理硝基苯废水工艺优化研究[J]. 含能材料,2018,26(2):
                 WAN Nian‑sheng,GU Ji‑dong,HUANG Jin‑hui,et al. Isola‑  178-184.
                 tion of Achromobacter xylosoxidans NS12 and degradation of  ZHANG Dong‑sheng,YU Li‑sheng,JIAO Wei‑zhou,et al.
                 nitrophenols[J].Environmental Science,2007,28(2):422-426.  Treatment of nitrobenzene wastewater via ultrasonic enhanced
             [5] Zhilin Yang,Junxian Chen,Yang Zhou. Understanding the hy‑  iron‑carbon micro‑electrolysis with response surface methodol‑
                                                                     ogy[J]. Chinese Journal of Energetic Materials(Hanneng Cail‑
                 drogen transfer mechanism forthe biodegra‑dation of 2,4,

                                                                                           www.energetic-materials.org.cn
            Chinese Journal of Energetic Materials,Vol.27, No.7, 2019(542-549)  含能材料
   56   57   58   59   60   61   62   63   64   65   66