Page 61 - 《含能之美》2019封面论文
P. 61
548 孙慧敏,白红娟,张晴
6‑trinitrotoluene catalyzed by pentaerythritol tetranitrate reduc‑
4 结 论 tase :molecular dynamics si‑mulations[J]. Phys Chem Chem
Phys,2018,20(7):12157-12165.
[6] Suresh R. Subashchandrabose Rhodococcus wratislaviensis
strain 9 :an efficient p‑nitrophenol degader with a great po‑
(1)在不同供氧光照条件下球形红细菌 H 菌株均可
降解 PNP,在光照厌氧条件下降解效果最好。由单因素 tential for bioremediation[J]. Journal of Hazardous Materials,
实验得出最适降解条件,PNP初始浓度为 80 mg·L 、pH 2018,34(7):176-183.
-1
[7] Sahoo NK,Pakshirajan K,Ghosh PK,et al. Batch biodegrada‑
值 7.0、温度 30 ℃、接种量 15%,降解效果最好的氮源 tion of para‑nitrophenol using Arthrobacterchlorophenolicus
A6[J]. Applied Biochemistry and Biotechnology,2011,165
2
4
4
组合是(NH )SO 和酵母膏,并得出三个对 H 菌株降
(7):1587-1596.
解 PNP 影响显著因素:PNP 初始浓度、pH 值和温度。
[8] 黄强,张明强 . 固定化铜绿假单胞菌生物降解对硝基苯酚[J]. 环
(2)采用响应面优化法优化影响显著因素。响应 境工程技术学报,2012,3(2):247-252.
HUANG Qiang,ZHANG Ming‑qiang. Biodegradation of p‑Ni‑
面优化后得出三个显著因素对 PNP 降解的影响依次
trophenol by immobilized cells of Pseudomonas aeruginosa[J].
Journal of Environmental Engineering Technology,2012,3
是:温度>pH 值>PNP 初始浓度;3D 响应面能直观反
映三个因素交互作用对 PNP 降解的影响,温度和 pH (2):247-252.
[9] Bhaswati Chakraborty. Kinetic study of degradation of p‑nitro‑
值对 PNP 的降解影响最大;预测出优化条件为:pH 值
phenol by a mixed bacterial culture and it constituent pure
-1
8.09、温 度 30.49 ℃、PNP 初 始 浓 度 81.01 mg·L ;在
strains[J].Materials Today:Proceedings,2016,10(3):3505-3524.
优化后条件下实验测得菌株降解率为 91.1%,比优化 [10] 李可峰,陈海涛,吴龙飞,等 . 细菌的光响应及其机制研究进展
前 提 高 2.1%,与 预 测 的 降 解 率 92.3% 相 差 1.2% [J]. 微生物学通报,2018,45(7):1574-1587.
LI Ke‑feng,CHENG Hai‑tao,WU Long‑fei,et al. Behavior
and mechanism of bacterial response to light illumination[J].
(<2%),因此,响应面预测的数据可靠。
Microbiol. China,2018,45(7):1574-1587.
(3)在响应面优化条件下 H 菌株生长初期 PNP 浓
[11] LIANG Fang‑nan,BAI Hong‑juan,CHAI Chun‑jing,et al. An‑
度迅速下降,可能由于吸附或吸收作用引起,H 菌株持
aerobic biodegradation of 2,4‑dinitrotoluene by Rhodobacter‑
续降解 PNP,降解率达到最大值 91.1%,同时,利用一 sphaeroides[J].Microbiology China,2016,43(2):279-284.
级动力学方程模拟优化条件下 PNP 浓度随时间的变 [12] 王玉芬,张肇铭,胡筱敏,等 . 球形红细菌好氧降解氯代苯研究
-1 [J]. 环境工程学报,2011,5(5):1187-1193.
化,模拟出最大速率反应常数 0.0144 h 和最短半衰
WANG Yu‑fen, ZHANG Zhao‑ming, HU Xiao‑min, et al.
Study on aerobic degradation of chlorobenzene by Rhodo‑
期 43.3 h。
ba‑cter sphaeroides[J].Chinese Jouinal of Environmental Engi‑
neering,2011,5(5):1187-1193.
参考文献:
[1] 崔庆忠,焦清介,任慧,等 . KNO 3 /C 6 H 5 NO 3 /NC 点火药研究[J]. [13] 康鹏洲,白红娟,罗征,等 . 球形红细菌对六价铬的生物还原与三
含能材料,2007,15(3):209-213. 价铬积累[J]. 国际药学研究杂志,2018,45(4):380-386.
CUI Qing‑zhong,JIAO Qing‑jie,REN Hui,et al. Study on KANG Peng‑zhou,BAI Hong‑juan,LUO Zheng,et al. Biologi‑
KNO 3 /C 6 H 5 NO 3 /NC type composition[J]. Chinese Journ‑al of cal reduction of hexavalent chromium and trivalent c‑hromi‑
Energetic Materials(Hanneng Cailiao),2007,15(3):209-213. um accumulation by Rhodobacter sphaeroides[J].Journal of In‑
ternational Pharmaceutical Research,2018,45(4):380-386.
[2] 任磊,史延华,贾阳,等 . 菌株 Arthrobacter sp. CN2 降解对硝基
苯酚的特性与动力学[J]. 环境科学,2015,36(5):1757-1762. [14] 白红娟,王珊,柴春境,等 . 球形红细菌降解 RDX 的动力学及其机
REN Lei,SHI Yan‑hua,JIA Yang,et al. Biodegradation charac‑ 理研究[J]. 火炸药学报,2015,38(6):51-60.
teristics and kinetics of p‑nitrophenol by strain Arthrobacter BAI Hong‑juan,WANG Shan,CHAI Chun‑jing,et al. Study on
sp.CN2[J].Environmental Science,2015,36(5):1757-1762. degradation kinetics and mechanism of explosive hexahydro‑1,
[3] 郑凤英,钱沙华,李顺兴,等 . 3,5‑二硝基水杨酸表面修饰纳米 Ti 3,5‑trinitro‑1,3,5‑triazine(RDX)by Rhodobacter sphaeroides[J].
O 2 吸附对硝基苯酚[J]. 环境科学,2006,27(6):1140-1143. Chinese Jouinal of Explosives & Propellants,2015,38(6):51-60.
ZHENG Feng‑ying,QIAN Sha‑hua,LI Shun‑xin,et al. Adsorp‑ [15] 齐永强,王红旗,刘敬奇,等 . 土壤石油微生物降解影响因子的正
tion of p‑nitrophenol by nanosized titani‑um dioxide surface 交实验分析[J]. 地球学报,2003,24(3):279-284.
modified with 3,5‑dinitrosalicylic acid[J]. Environmental Sci‑ QI Yong‑qiang,WANG Hong‑qi,LIU Jing‑qi,et al. Impact of
ence,2006,27(6):1140-1143. several factors on the bioremediation of oil in soil[J]. Acta
[4] 万年升,顾继东,黄锦辉,等 .Achromobacter xylosoxidans NS12 Geoscientia Sinica,2003,24(3):279-284.
的 分 离 和 对 硝 基 苯 酚 的 降 解[J]. 环 境 科 学 ,2007,28(2): [16] 张东升,余丽胜,焦纬洲,等 . 基于响应面法的超声强化铁碳微电
422‑426. 解处理硝基苯废水工艺优化研究[J]. 含能材料,2018,26(2):
WAN Nian‑sheng,GU Ji‑dong,HUANG Jin‑hui,et al. Isola‑ 178-184.
tion of Achromobacter xylosoxidans NS12 and degradation of ZHANG Dong‑sheng,YU Li‑sheng,JIAO Wei‑zhou,et al.
nitrophenols[J].Environmental Science,2007,28(2):422-426. Treatment of nitrobenzene wastewater via ultrasonic enhanced
[5] Zhilin Yang,Junxian Chen,Yang Zhou. Understanding the hy‑ iron‑carbon micro‑electrolysis with response surface methodol‑
ogy[J]. Chinese Journal of Energetic Materials(Hanneng Cail‑
drogen transfer mechanism forthe biodegra‑dation of 2,4,
www.energetic-materials.org.cn
Chinese Journal of Energetic Materials,Vol.27, No.7, 2019(542-549) 含能材料