Page 62 - 《含能之美》2019封面论文
P. 62
549
球 形 红 细 菌 降 解 对 硝 基 酚 特 性 及 响 应 面 优 化
iao),2018,26(2):178-184. 2008,48(11):1486-1492.
DONG Xiao‑jun,HONG Qing,LI Lian,et al. Characteriza‑
[17] 曾茂贵,李颖 . 正交设计与响应面优化法对瓜蒌桂枝解痉颗粒提
取工艺的比较[J]. 福建中医药大学学报,2014,24(3):32-36. tion of a p‑nitrophenol degrading bacterium Pseudom‑nas sp.
ZENG Mao‑gui,LI Ying. Comparative study on orthogonal de‑ PDS‑7 and cloning of degradation relevant genes[J].Acta Mi‑
sign and response surface optimiza‑tion used for extraction of crobiologica Sinica,2008,48(11):1486-1492.
gualou guizhi jiejing granules[J]. Journal of Fujian University [24] 尹园,马佳歌,倪春蕾,等 . 居间驹形氏杆菌发酵大豆糖蜜生产细
of Tra‑ditional Chinese Medicine,2014,24(3):32-36. 菌纤维素条件的优化[J]. 食品科学,2017,38(18):8-16.
YI Yuan,MA Jia‑ge,NI Chun‑lei,et al. Optimization of bacte‑
[18] 姚竹云,张肇铭 . 几株光合细菌的表型特征及 DNA‑DNA 同源性
分析[J]. 应用与环境生物学报,1996,2(1):84-89. rial cellulose production by fermented soybean molas‑ses with
YAO Zhu‑yun,ZHANG Zhao‑ming. Phenotypic features and Komagataeibacter intermedius[J].Acta Microbiologica Sinica,
DNA‑DNA homology analyses of some photosynthetic b‑acte‑ 2017,38(18):8-16.
ria[J].Chinese Journal of Applied and Environmental Biology, [25] 刘雪莲 . 接种量对红景天药渣发酵制有机肥的影响[J]. 吉林农
1996,2(1):84-89. 业,2014,20(22):1674-1685.
LIU Xue‑lian. Effect of inoculation amount on the production
[19] 陈正军 . 黄河兰州段铬还原菌和对硝基酚降解菌的分离筛选及
其在微生物燃料电池中的应用研究[D]. 兰州:兰州大学,2016. of organic fertilizer from rhodiola‑sachalinensis residues[J]. Ji‑
CHEN Zheng‑jun. Isolation and screening of strains for chro‑ lin Agriculture,2014,20(22):1674-1685.
mate reduction and p‑nitrophenol degradati‑on from the Lan‑ [26] Samuel M. Bioremediation of p‑Nitrophenol by Pseudomonas
zhou reaches of the Yellow river and their applications in mi‑ putida strain[J]. Journal of Environmental Health Science and
crobial fuel cells[D]. Lanzhou:Lanzhou University,2016. Engineering,2014,12(1):1-8.
[20] 徐向宏 . 试验设计与 Design‑Expert、SPSS 应用[M]. 北京:科学出 [27] 郑永良,肖婷,钟玉林,等 . 一株酚降解菌株的分离鉴定及特性研
版社,2010. 究[J]. 湖北农业科学,2010,20(9):2097-2100.
XU Xiang‑hong. Test design and application of Design‑Expert ZHENG Liang‑yong,XIAO Ting,ZHONG Yu‑lin,et al. Isola‑
and SPSS[M]. Beijing:Science Press,2010. tion and identification of a phenol degra‑dation strain and its
[21] 丁丹,胡忠策,金赞芳,等 . 光合细菌降解废水中对硝基苯酚的研 characteristics analysis[J]. Hubei Agricultural Sciences,2010,
究[J]. 安徽农业科学,2010,38(19):219-221. 20(9):2097-2100.
DING Dan,HU Zhong‑ce,JIN Zan‑fang,et al. Study on degrada‑ [28] Tian L,Zhong J J. Kinetics and key enzyme activities of phen‑
tion of p‑nitrophenol in wastewater by photosyntheticbacteria[J]. anthrene degradation by Pseudomonas mendocina[J]. Process
Journal of Anhui Agricultural Sciences,2010,38(19):219-221. Biochemistry,2002,37(12):1431-1437.
[29] 赵 婷 婷 ,白 红 娟 ,康 鹏 洲 ,等 . 光 合 细 菌 球 形 红 细 菌 降 解 HMX
[22] 胡筱敏,董怡华,李亮,等 . 光合细菌 PSB‑1D 对 2‑氯苯酚的降解
特性研究[J]. 环境科学,2010,31(7):1672-1678. [J]. 含能材料,2018,26(4):352-358.
HU Xiao‑min,DONG Yi‑hua,LI Liang,et al. Biodegradation ZHAO Ting‑ting, BAI Hong‑juan, KANG Peng‑zhou,et al.
characteristics of o‑chlorophenol with photosynthetic bacteria Degradation of HMX by photosynthetic bacteria Rhodobacter
PSB‑1D[J].Environmental Science,2010,31(7):1672-1678. sphaeroides[J]. Chinese Journal of Energetic Materials(Han‑
[23] 董 小 军 ,洪 青 ,李 恋 ,等 . 对 硝 基 苯 酚 降 解 菌 Pseudomonas sp. neng Cailiao),2018,26(4):352-358.
PDS‑7 的降解特性及其降解相关基因的克隆[J]. 微生物学报,
Degradation of p⁃nitrophenol by Rhodobacter Spheroides and Optimization of Response Surface Methodology
SUN Hui⁃min,BAI Hong⁃juan,ZHANG Qing
(School of Environment and Safety Engineering,North University of China,Taiyuan 030051,China)
Abstract:With p‑nitrophenol(PNP)as the target pollutant,the degradation characteristics of PNP by Rhodobacter sphaeroides
H strain were studied. The degradation conditions were optimized by single factor test and response surface analysis,and the
degradation ability of H strain to PNP was improved. Different reaction systems have been set up to prove that H strain living
cells are the main body of degrading PNP,and can degrade PNP under anaerobic light,anaerobic darkness,aerobic light and
aerobic darkness. The single factor experiments show that the significant influencing factors are initial concentration of PNP,pH
value and temperature. The optimal degradation conditions after response surface optimization are:initial concentration of PNP
is 81.01 mg·L ,pH value is 8.09 and temperature is 30.49 ℃. The predicted value of PNP degradation rate is 92.3%,which is
-1
1.2%(<2%)different from the actual value(91.1%). Under the optimum conditions,the relationship between the growth of H
strain and the concentration of PNP with time shows that the concentration of PNP decreased from 81.01 mg·L -1 to 20.33 mg·L -1
within 96 hours of the growth adaptation period of H strain,and the corresponding degradation rate is 74.9%. Then,in the expo‑
nential growth period of 96-168 hours,PNP is rapidly degraded,and the degradation rate reaches 91.1%. At the same time,the
first‑order kinetic equation of PNP degradation of H strain under this condition was fitted.
Key words:p‑nitrophenol(PNP);Rhodobacter sphaeroides;degradation characteristics;response surface optimization
CLC number:TJ55;X172 Document code:A DOI:10.11943/CJEM2019056
(责编:张 琪)
CHINESE JOURNAL OF ENERGETIC MATERIALS 含能材料 2019 年 第 27 卷 第 7 期 (542-549)