Page 53 - 《含能之美》2019封面论文
P. 53

455
            低 温 共 烧 陶 瓷 爆 炸 箔 起 爆 芯 片 的 设 计 、制 备 与 发 火 性 能
           [15] ZHU Peng,CHEN Kai,XU Cong,et al. Development of a    WANG Yao,SUN Xiu‑juan,GUO Fei,et al. Study on electri‑
                monolithic micro chip exploding foil initiator based on low  cal characteristic and flyer driven ability of Al / Ni exploding
                                                                     foil[J]. Initiators & Pyrotechnics,2016(3):5-8.
                temperature co ‑ fired ceramic[J]. Sensors and Actuators A:
                Physical,2018(276):278-283.                     [18] 罗斌强 . 金属箔电爆炸及其在冲击动力学中的应用[D]. 合肥:
                                                                     中国科学技术大学,2012.
           [16] 今 中 佳 彦 . 多 层 低 温 共 烧 陶 瓷 技 术[M]. 北 京 :科 学 出 版 社 ,
                2010:1-16.                                           LUO Bin‑qiang. Electrical explosive of metallic foils and its ap‑
                Yoshihiko Imanaka. Multilayered low temperature cofired ce‑  plication in dynamic mechanics[D]. Hefei:University of Sci‑
                                                                     ence and Technology of China,2012.
                ramics(LTCC)technology[M]. Beijing:Science Press,2010:
                1-16.                                           [19] CHEN Qing ‑chou,LI Yong,MA Tao. Characterization of the
                                                                     super‑short shock pulse generated by an exploding foil initiator
           [17] 王窈,孙秀娟,郭菲,等 . Al/Ni 爆炸箔电爆特性及驱动飞片能
                力研究[J]. 火工品,2016(3):5-8.                            [J]. Sensors and Actuators A:Physical,2019,286:91-97.

            Design,Fabrication and Ignition Performance of LTCC Exploding Foil Initiation Chip


            ZHANG Qiu ,CHEN Kai ,ZHU Peng ,XU Cong ,QIN Xin ,YANG Zhi ,SHEN Rui⁃qi 1
                                                                      1
                                                   1
                                                            1
                                          1
                      1
                                2
           (1. School of Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;2. Beijing Institute of Aerospace Systems
            Engineering,Beijing 100076,China)
            Abstract:Low‑temperature co‑fired ceramic(LTCC)technology was employed to realize the integrated fabrication of exploding
            foil initiation chip. 5 μm thick Au bridge foil(300 μm×300 μm)was prepared by screen printing,using raw porcelain sheets of
            25 μm and 50 μm thickness as the flyers for the chip. Two kinds of chips with the barrel shape of circular(Φ =400 μm)and
            square(L×W=300 μm×300 μm)were obtained. The electrical explosion characteristics of Au bridge foil were studied under the
            discharge of 0.22 μF capacitor. The velocity characteristics of the ceramic flyer and its morphology in motion process were ana‑
            lyzed by photon Doppler velocimetry. Results show that the maximum energy utilization rate of Au bridge foil at 1.8 kV,and the
            final speed of flyer increases with the increase of the firing voltage. Besides,the outlet velocity of flyer in square barrel is
            106-313 m·s ,which is higher than that in circular barrel at the same firing condition. In addition,the thicker of the ceramic
                       -1
            flyer,the more complete it will be during the course of flying. The exploding foil initiation chip prepared by the LTCC technolo‑
            gy can successfully detonate the HNS explosive and ignite the BPN ignition powder. The minimum detonation voltage and mini‑
            mum ignition voltage of LTCC exploding foil initiation chip(50 μm thick ceramic flyer,circular barrel)are 2.5 kV and 1.4 kV,
            respectively.
            Key words:low‑temperature co‑fired ceramic(LTCC);exploding foil initiation chip;Au bridge foil;ceramic flyer
            CLC number:TJ45                            Document code:A                  DOI:10.11943/CJEM2018338

                                                                                                     (责编:姜 梅)

































            CHINESE JOURNAL OF ENERGETIC MATERIALS              含能材料                2019 年  第 27 卷  第 6 期 (448-455)
   48   49   50   51   52   53   54   55   56   57   58