CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
  • Volume 32,Issue 9,2024 Table of Contents
    Select All
    Display Type: |
    • >Editorial
    • Editorial: Blast Effect and Safety Protection

      2024, 32(9):884-884.

      Abstract (78) HTML (19) PDF 821.66 K (721) Comment (0) Favorites

      Abstract:

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
    • >Energetic Express
    • Energetic Express-2024.9

      2024, 32(9):885-886.

      Abstract (68) HTML (19) PDF 911.54 K (603) Comment (0) Favorites

      Abstract:

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
    • >Explosion and Damage
    • Counter-Intuitive Behavior of Flexible Polyurea-Protected Concrete Target Plate on Back Blast Surface under Blast Load

      2024, 32(9):887-898. DOI: 10.11943/CJEM2024144

      Abstract (109) HTML (65) PDF 4.79 M (671) Comment (0) Favorites

      Abstract:The final deformation of a metal structure under impulsive load occurring in the direction opposite to that of loading, which is a phenomenon known as counter-intuitive behavior. It was found that the flexible polyurea-protected concrete target plate on the back blast surface also experienced counter-intuitive behavior under 75 g TNT blast load. To investigate the counter-intuitive behavior of the flexible polyurea-protected concrete target plate on the back blast surface under blast load, a finite element model of the back blast surface of the flexible polyurea-protected concrete target plate subjected to blast load was developed using the ANSYS/LS-DYNA finite element software. The finite element model was utilized to analyze the dynamic response regularity of the flexible polyurea sheltered concrete target plate on the back blast surface, and to study the occurrence mechanism of the target plate's counter-intuitive behavior from the perspective of energy. Taking the center point displacement and deflection of the concrete target plate as indexes, the influence of the amount of explosive charge and coating thickness of polyurea on the counter-intuitive behavior of the target plate was analyzed parametrically. The results demonstrate that the counter-intuitive behavior of target plate is attributed to strain energy release from the polyurea coating, energy dissipation from concrete damage, and mutual transformation of energy between both materials. Furthermore, it is found that explosive charge mass is the dominant factor affecting counter-intuitive behavior. The concrete target plate is unable to undergo counter-intuitive behavior when either the charge mass was too small or too large. Within a range of coating thicknesses from 2 mm to 8 mm, an initial increase followed by subsequent decline in bending degree was observed for the target plate exhibiting counter-intuitive behavior.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
      • 104+1
      • 105+1
      • 106+1
      • 107+1
      • 108+1
      • 109+1
      • 110+1
      • 111+1
      • 112+1
      • 113+1
      • 114+1
      • 115+1
      • 116+1
      • 117+1
      • 118+1
      • 119+1
      • 120+1
      • 121+1
      • 122+1
      • 123+1
      • 124+1
      • 125+1
      • 126+1
      • 127+1
      • 128+1
      • 129+1
      • 130+1
      • 131+1
      • 132+1
      • 133+1
      • 134+1
      • 135+1
      • 136+1
      • 137+1
      • 138+1
      • 139+1
      • 140+1
      • 141+1
      • 142+1
      • 143+1
      • 144+1
      • 145+1
      • 146+1
      • 147+1
      • 148+1
      • 149+1
      • 150+1
      • 151+1
      • 152+1
      • 153+1
      • 154+1
      • 155+1
      • 156+1
      • 157+1
      • 158+1
      • 159+1
      • 160+1
      • 161+1
      • 162+1
      • 163+1
      • 164+1
      • 165+1
      • 166+1
      • 167+1
      • 168+1
      • 169+1
      • 170+1
      • 171+1
      • 172+1
      • 173+1
      • 174+1
      • 175+1
      • 176+1
      • 177+1
      • 178+1
      • 179+1
      • 180+1
      • 181+1
      • 182+1
      • 183+1
      • 184+1
      • 185+1
      • 186+1
      • 187+1
      • 188+1
      • 189+1
      • 190+1
      • 191+1
      • 192+1
      • 193+1
      • 194+1
      • 195+1
      • 196+1
      • 197+1
      • 198+1
      • 199+1
      • 200+1
      • 201+1
      • 202+1
      • 203+1
      • 204+1
      • 205+1
      • 206+1
      • 207+1
      • 208+1
      • 209+1
      • 210+1
      • 211+1
      • 212+1
      • 213+1
      • 214+1
      • 215+1
      • 216+1
      • 217+1
      • 218+1
      • 219+1
      • 220+1
      • 221+1
      • 222+1
      • 223+1
      • 224+1
      • 225+1
      • 226+1
      • 227+1
      • 228+1
      • 229+1
      • 230+1
      • 231+1
      • 232+1
      • 233+1
    • Characteristics of after-effect parameters of Shaped Charge Jet Penetrating Finite Thickness Steel Target

      2024, 32(9):899-910. DOI: 10.11943/CJEM2024107

      Abstract (73) HTML (18) PDF 2.84 M (821) Comment (0) Favorites

      Abstract:To study the characteristics of after-effect parameters of shaped charge jet penetrating finite thickness steel target, the experiments on small shaped charge jet formation and penetration on finite thickness plate with after-effect target were carried out. The numerical simulation on the process of shaped charge jet penetrating finite thickness target plate was carried out by ANSYS/LS-DYNA finite software. The influence of target plate thickness, standoff and after-effect material density on the after-effect parameters of shaped charge jet penetration was analyzed, including the residual jet tip diameter d, tip velocity v and after-effect initiation ability v2d. The results show that with the increase of target thickness, the after-effect initiation ability v2d shows a linear attenuation trend, and around 16% of the initial initiation parameter is lost for every 20 mm increase in thickness. In the range of standoff that the jet keeps continuous, with the increase of standoff, the after-effect initiation ability v2d first increases and then decreases, and its stagnation point appears at the standoff of 8 times the shaped charge diameter. In the range of common explosive density, with the increase of after-effect material density ρ, the attenuation rate of after-effect initiation ability v2d first decreases and then increases. At the same time, there is a stagnation point in the v2d-ρ curve. The peak value of v2d is distributed between ρ=1.6-1.8 g·cm-3, and the stagnation point position moves to the right with the increase of penetration time.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
      • 104+1
      • 105+1
      • 106+1
      • 107+1
      • 108+1
      • 109+1
      • 110+1
      • 111+1
      • 112+1
      • 113+1
      • 114+1
      • 115+1
      • 116+1
      • 117+1
      • 118+1
      • 119+1
      • 120+1
      • 121+1
      • 122+1
      • 123+1
      • 124+1
      • 125+1
      • 126+1
      • 127+1
      • 128+1
      • 129+1
      • 130+1
      • 131+1
      • 132+1
      • 133+1
      • 134+1
      • 135+1
      • 136+1
      • 137+1
      • 138+1
      • 139+1
      • 140+1
      • 141+1
      • 142+1
      • 143+1
    • Blast Load Characteristic of Reactive Damage Element Warheads in Enclosed Space

      2024, 32(9):911-920. DOI: 10.11943/CJEM2024138

      Abstract (31) HTML (20) PDF 2.73 M (557) Comment (0) Favorites

      Abstract:In order to characterize the enclosed space blast loads of reactive damage element warheads, comparative enclosed space blast tests of reactive damage element warheads, inert warheads and bare charges were carried out. Combining the high-speed data acquisition system and three-dimensional scanning technology, the blast pressure, temperature and deformation response of the loaded structure in cabin and the energy release characteristics of the reactive materials for different types of warheads were analyzed. The results show that the reactive damage element warhead substantially increases the quasi-static pressure, the peak temperature and the residual deformation of the loaded structure in the cabin. Compared to inert warheads and bare charges, the blast pressure, temperature and structural residual deformation are improved by maxima of 79.7%, 93.6% and 62.1%. In addition, the energy release rate and energy release amount of the reactive material show a positive correlation with the detonation energy, and the energy release amount of the reactive material shows a convergence phenomenon with the increase of the blast energy. Based on the load characteristics of reactive damage element warheads and the blast response law of sheet metal, it was found that the continuous energy release phenomenon of reactive materials leads to large increases in the quasi-static pressure of the cabin and the impulse applied to the structure within 1 ms, which together affect the residual deformation of the structure.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
      • 104+1
      • 105+1
      • 106+1
      • 107+1
      • 108+1
      • 109+1
      • 110+1
      • 111+1
      • 112+1
      • 113+1
      • 114+1
      • 115+1
      • 116+1
      • 117+1
      • 118+1
      • 119+1
      • 120+1
      • 121+1
      • 122+1
      • 123+1
      • 124+1
      • 125+1
      • 126+1
      • 127+1
    • Transfer Characteristics of Explosion Energy Released by the Charge Confined to Tubes of Different Materials with Lateral Annular Slits

      2024, 32(9):921-929. DOI: 10.11943/CJEM2023266

      Abstract (109) HTML (222) PDF 2.38 M (807) Comment (0) Favorites

      Abstract:To study the transfer characteristics of explosion energy released by the charge confined to tubes of different materials with lateral annular slits, explosion experiments were conducted involving charges with or without confinement to tubes of four materials. The high speed schlieren photographic system and shock wave overpressure monitoring system were employed to capture the propagation process of shock wave and obtain the distribution law of overpressure respectively, so that the explosion energy transfer law for the charges confined to tubes with lateral annular slits and the influence of tube material on its energy transfer characteristics were analyzed. The results showed that after the explosion of the charge confined to tubes with lateral annular slit, both the detonation product and shock waves firstly propagated outward towards the direction with slit, but the propagation towards the opposite direction is relatively delayed. Compared with the symmetric distribution of overpressure generated by a conventional cylindrical charge, the lateral annular slits in tubes could increase the overpressure in the direction with slit, but decrease that in the opposite direction. The asymmetric distribution of overpressure proved that the charge confined to tubes with lateral annular slits induced Munroe Effect in the slit direction. The hierarchy of Munroe Effect caused by lateral annular slits presented by materials: stainless steel (SS) > polyvinyl chloride (PVC) > fiber reinforced plastic (FRP) > plexiglass (PMMA).

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
      • 104+1
      • 105+1
      • 106+1
      • 107+1
      • 108+1
      • 109+1
      • 110+1
      • 111+1
      • 112+1
      • 113+1
      • 114+1
      • 115+1
      • 116+1
      • 117+1
      • 118+1
      • 119+1
    • Failure Mechanism and Energy Absorption Characteristic of CFRP Laminates under Small-quantity and Near-field Blast Loading

      2024, 32(9):930-941. DOI: 10.11943/CJEM2024177

      Abstract (39) HTML (26) PDF 3.43 M (386) Comment (0) Favorites

      Abstract:To study the failure mechanism and energy absorption of carbon fiber reinforced polymer (CFRP) composites subjected to small-quantity and near-field blast loading,free-field blast tests and scanning electron microscope (SEM) tests were carried out on CFRP laminates. Meanwhile, a damage model was established based on the 3D Hashin failure criterion, and the dynamic response of CFRP laminates under near-field blast loading were simulated. Combined with the test results, the failure mechanism and energy absorption of CFRP laminates were analyzed. Results show that there are differences in the failure modes between the facing and back blast surfaces of CFRP laminates. The matrix cracking, fiber fracture or center perforation mainly appear on the facing blast surface, and the delamination occurs at the fiber-matrix interface. The large-area delamination failure and the fragment dispersion of the back blast surface are mainly due to the influence of the reflected tension wave, and the delamination of appears inside the matrix. During the response process of laminates, the high stress area is concentrated on the boundary of the center perforation and distributed along the fiber direction, and the stress levels of 0° ply and 90° ply are larger than that of ±45° ply. Compared with the facing blast surface of laminates, the layers of the back blast surface absorb and transform large energy, accounting for 52%-56% of the total energy absorption.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
      • 104+1
      • 105+1
      • 106+1
      • 107+1
      • 108+1
      • 109+1
      • 110+1
      • 111+1
      • 112+1
      • 113+1
      • 114+1
      • 115+1
      • 116+1
      • 117+1
      • 118+1
      • 119+1
      • 120+1
      • 121+1
      • 122+1
      • 123+1
    • >Calculation and Simulation
    • A Novel Equation of State for Detonation Products and Its Application in Predicting the Detonation Performance of Explosives

      2024, 32(9):942-951. DOI: 10.11943/CJEM2024021

      Abstract (74) HTML (25) PDF 1.15 M (662) Comment (0) Favorites

      Abstract:For accurately describe the thermodynamic relationship of detonation products under high temperature and pressure, so as to achieve reliable prediction of the detonation performance of CHNO elemental/mixed explosives and energetic metal salts. In this work, a new equation of state (EOS): Virial-Peng-Long (VPL) for gaseous detonation products, was established based on the theoretical calculation of the 2-5th order virial coefficients of Exp-6 potential within a wide dimensionless temperature range. At the same time, a new EOS for condensed metal products: Wu-Chen-Peng (WCP) EOS, was established by introducing a more accurate“cold pressing” term, and a “lattice vibration” term which considered the changes in the thermal motion of metals under high pressure. Then, the VPL EOS was applied to calculate the detonation parameters of some typical CHNO elemental/mixed explosives, and the detonation CJ parameters and driving capacity of some typical energetic metal salts were evaluated using VPL and WCP. By comparing with experimental values, it is shown that the prediction deviation of detonation velocity of pentaerythritol tetranitrate (PETN) is within ±2.1%, with a maximum of about 2.5%; The absolute prediction error of the stable speed of copper cylinder driven by RHT-901 is less than 1%. VPL EOS and WCP EOS in this work can accurately evaluate the detonation performance of energetic metal salts. The relative error of detonation CJ parameters calculation for lead azide is within ±4%, and the absolute value of relative error in predicting the speed of copper azide driven flyer is within 1%.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
    • Equivalent Numerical Simulation Method for Penetration Resistance of UHMWPE Laminate

      2024, 32(9):952-963. DOI: 10.11943/CJEM2024054

      Abstract (44) HTML (14) PDF 2.13 M (719) Comment (0) Favorites

      Abstract:To enhance the modeling and computational efficiency of numerical simulations for penetration resistance in ultra-high molecular weight polyethylene fiber (UHMWPE) laminates, an equivalent mechanical model of UHMWPE laminates was established based on the theory of three-dimensional equivalent elastic constants, and a three-dimensional equivalent rapid simulation method suitable for predicting the penetration resistance of fiber composite laminates was developed. As verified by the UHMWPE laminates" penetration test data, the equivalent method can accurately simulate and predict the staged penetration characteristics of laminates by taking into account the influence of the fiber lay-up on the mechanical properties of the laminates, and the average errors for the ballistic performance of 9.1-60.0 mm laminates are less than 10%. The method bypasses the need for detailed modeling of fiber bundles and matrices, as required in mesoscopic scale numerical simulations, and eliminates the necessity of specifying individual fiber/resin ply orientations and inserting numerous bonding elements, as in quasi-mesoscopic scale simulations.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
    • >Safety Performance and Assess
    • Molecular Dynamics Simulations of the Condensation Behavior of Nitroglycerine-containing Volatiles on Solid Surfaces

      2024, 32(9):964-971. DOI: 10.11943/CJEM2024176

      Abstract (59) HTML (12) PDF 1.94 M (578) Comment (0) Favorites

      Abstract:The condensation and accumulation of Nitroglycerin (NG)-containing volatiles on various solid surfaces during the propellant rolling process, which pose safety hazards, were investigated using molecular dynamics simulation methods. The study was conducted by constructing a hybrid system model consisting of NG volatiles and solid surfaces, examining the effects of solid surface material, surface roughness, and NG content on molecular dynamics characteristic parameters such as radial distribution function, mean square displacement, diffusion coefficient, and relative density distribution of NG volatiles in the hybrid system. The findings demonstrate that as the mass fraction of NG increases, the size of volatile condensate clusters on the solid surface progressively diminishes. Conversely, the condensation ratio of volatiles exhibits a trend of initial increase followed by a decrease, with the maximum condensation ratio occurring at 70 % NG, corresponding to a diffusion coefficient of 0.0364. The diffusion coefficient for the condensation of volatiles containing NG on a silica (SiO2) surface is 2.1228, which is substantially greater than that on surfaces composed of copper (Cu), calcium oxide (CaO), and ferrum (Fe). However, the uniformity of the SiO2 surface condensate cluster is poor. The introduction of surface roughness factors has opposite effects on the condensation amount of volatiles on the SiO2 and Fe surfaces. When the SiO2 surface goes from smooth to roughness of 0.4 nm, the diffusion coefficient increases from 2.1228 to 10.7156, and the condensation amount of volatiles on the surface increases; however, when the Fe surface goes from smooth to roughness of 0.4 nm, the diffusion coefficient decreases from 17.5673 to 1.8462, and the condensation amount of the surface volatiles decreases.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
    • Evaluation of Underwater Explosion-proof Effect of Corrugated Steel-concrete Slab Composite Structure Under Contact Explosion

      2024, 32(9):972-985. DOI: 10.11943/CJEM2024032

      Abstract (20) HTML (12) PDF 7.14 M (637) Comment (0) Favorites

      Abstract:In order to explore the underwater anti-explosion protection effect of different corrugated steel-concrete composite structures, the finite element-smoothed particle hydrodynamics (FEM-SPH) coupling algorithm was used to establish an underwater multi-media coupling explosion model. Different corrugated steel-concrete slab composite structure protection schemes were designed to explore the underwater wave cutting and energy absorption effects of different composite structure protection layers, including 3, 6, 9, 12 mm thick corrugated steel composite structure, 30°, 45°, 60°, 75° corrugated steel composite structure and 10, 30, 50, 70 mm wave height corrugated steel composite structure. The energy consumption sharing rate was proposed to evaluate the protection effect of the composite structure. The results show that simulation results of the front and back explosion surfaces of the concrete slab are in good agreement with experimental results, which verifies the simulation process of underwater contact explosion. Under different composite structure protection schemes, the peak pressure of the composite structure with 12 mm thick corrugated steel, the composite structure with 75° corrugated steel and the composite structure with 70 mm wave height is 63.2%, 60% and 57.9% lower than that of the unprotected scheme, respectively. The maximum protection rates are 63.2%, 60.0% and 57.9%, respectively, and the energy consumption sharing rates are 69.48%, 66.26% and 63.51%, respectively. The energy absorption effect and protection effect of the optimal composite structure with 12 mm thickness, 75° angleand 70 mm wave height are significantly better than those of the composite structure under the influence of single factor. The research results can provide a theoretical basis for the application of different corrugated steel-concrete composite structures in the field of underwater anti-explosion protection.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
      • 104+1
      • 105+1
      • 106+1
      • 107+1
      • 108+1
      • 109+1
      • 110+1
      • 111+1
      • 112+1
      • 113+1
      • 114+1
      • 115+1
      • 116+1
      • 117+1
      • 118+1
      • 119+1
      • 120+1
      • 121+1
      • 122+1
      • 123+1
      • 124+1
      • 125+1
      • 126+1
      • 127+1
      • 128+1
      • 129+1
      • 130+1
      • 131+1
      • 132+1
      • 133+1
      • 134+1
      • 135+1
      • 136+1
      • 137+1
      • 138+1
      • 139+1
      • 140+1
      • 141+1
      • 142+1
      • 143+1
      • 144+1
      • 145+1
      • 146+1
      • 147+1
      • 148+1
      • 149+1
      • 150+1
      • 151+1
      • 152+1
      • 153+1
      • 154+1
      • 155+1
      • 156+1
      • 157+1
      • 158+1
      • 159+1
      • 160+1
      • 161+1
      • 162+1
      • 163+1
      • 164+1
      • 165+1
      • 166+1
      • 167+1
      • 168+1
      • 169+1
      • 170+1
      • 171+1
      • 172+1
      • 173+1
      • 174+1
      • 175+1
      • 176+1
      • 177+1
      • 178+1
      • 179+1
      • 180+1
      • 181+1
      • 182+1
      • 183+1
      • 184+1
      • 185+1
      • 186+1
      • 187+1
      • 188+1
      • 189+1
      • 190+1
      • 191+1
      • 192+1
      • 193+1
      • 194+1
      • 195+1
      • 196+1
      • 197+1
      • 198+1
      • 199+1
      • 200+1
      • 201+1
      • 202+1
      • 203+1
      • 204+1
      • 205+1
      • 206+1
      • 207+1
      • 208+1
      • 209+1
      • 210+1
      • 211+1
      • 212+1
      • 213+1
      • 214+1
      • 215+1
      • 216+1
      • 217+1
      • 218+1
      • 219+1
      • 220+1
      • 221+1
      • 222+1
      • 223+1
      • 224+1
      • 225+1
      • 226+1
      • 227+1
      • 228+1
      • 229+1
      • 230+1
      • 231+1
      • 232+1
      • 233+1
      • 234+1
      • 235+1
    • >Reviews
    • Research Progress on Internal Blast Effects and Dynamic Mechanical Behavior of Explosion Containment Vessels

      2024, 32(9):986-1008. DOI: 10.11943/CJEM2024236

      Abstract (77) HTML (27) PDF 6.63 M (621) Comment (0) Favorites

      Abstract:The study and application of explosion containment vessels (ECVs) subjected to internal blast loading is a multidisciplinary and interdisciplinary issue encompassing energetic materials, explosion and impact dynamics, and vibration mechanics. The investigation on the internal blast effects and dynamic mechanical behavior of ECVs is an important foundation for enhancing the explosion-resistant performance of equipments, and the mechanisms of strain growth and anti-intuitive phenomenon are important scientific issues. The relevant research progress and key scientific findings are reviewed from five aspects: the internal blast loading characteristics and effects within ECVs, the dynamic response mechanisms of metal ECVs, the complex working conditions of ECVs, the blast effects of thermobaric explosives and fragmentation warheads, as well as composite ECVs. The analysis demonstrates that establishing an effective mechanical analysis model and fully revealing the dynamic response mechanisms of structures can effectively guide blast damage assessment and protective structures’ analysis and design under complex working conditions. Considering the challenges and opportunities posed by high destructive explosives and high-performance protective materials, this study proposes the fundamental directions and emerging trends in the study of blast damage and safety protection.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
      • 104+1
      • 105+1
      • 106+1
      • 107+1
      • 108+1
      • 109+1
      • 110+1
      • 111+1
      • 112+1
      • 113+1
      • 114+1
      • 115+1
      • 116+1
      • 117+1
      • 118+1
      • 119+1
      • 120+1
      • 121+1
      • 122+1
      • 123+1
      • 124+1
      • 125+1
      • 126+1
      • 127+1
      • 128+1
      • 129+1
      • 130+1
      • 131+1
      • 132+1
      • 133+1
      • 134+1
      • 135+1
      • 136+1
      • 137+1
      • 138+1
      • 139+1
      • 140+1
      • 141+1
      • 142+1
      • 143+1
      • 144+1
      • 145+1
      • 146+1
      • 147+1
      • 148+1
      • 149+1
      • 150+1
      • 151+1
      • 152+1
      • 153+1
      • 154+1
      • 155+1
      • 156+1
      • 157+1
      • 158+1
      • 159+1
      • 160+1
      • 161+1
      • 162+1
      • 163+1
      • 164+1
      • 165+1
      • 166+1
      • 167+1
      • 168+1
      • 169+1
      • 170+1
      • 171+1
      • 172+1
      • 173+1
      • 174+1
      • 175+1
      • 176+1
      • 177+1
      • 178+1
      • 179+1
      • 180+1
      • 181+1
      • 182+1
      • 183+1
      • 184+1
      • 185+1
      • 186+1
      • 187+1
      • 188+1
      • 189+1
      • 190+1
      • 191+1
      • 192+1
      • 193+1
      • 194+1
      • 195+1
      • 196+1
      • 197+1
      • 198+1
      • 199+1
      • 200+1
      • 201+1
      • 202+1
      • 203+1
      • 204+1
      • 205+1
      • 206+1
      • 207+1
      • 208+1
      • 209+1
      • 210+1
      • 211+1
      • 212+1
      • 213+1
      • 214+1
      • 215+1
      • 216+1
      • 217+1
      • 218+1
      • 219+1
      • 220+1
      • 221+1
      • 222+1
      • 223+1
      • 224+1
      • 225+1
      • 226+1
      • 227+1
      • 228+1
      • 229+1
      • 230+1
      • 231+1
      • 232+1
      • 233+1
      • 234+1
      • 235+1
      • 236+1
      • 237+1
      • 238+1
      • 239+1
      • 240+1
      • 241+1
      • 242+1
      • 243+1
      • 244+1
      • 245+1
      • 246+1
      • 247+1
      • 248+1
      • 249+1
      • 250+1
      • 251+1
      • 252+1
      • 253+1
      • 254+1
      • 255+1
      • 256+1
      • 257+1
      • 258+1
      • 259+1
      • 260+1
      • 261+1
      • 262+1
      • 263+1
      • 264+1
      • 265+1
      • 266+1
      • 267+1
      • 268+1
      • 269+1
      • 270+1
      • 271+1
      • 272+1
      • 273+1
      • 274+1
      • 275+1
      • 276+1
      • 277+1
      • 278+1
      • 279+1
      • 280+1
      • 281+1
      • 282+1
      • 283+1
      • 284+1
      • 285+1
      • 286+1
      • 287+1
      • 288+1
      • 289+1
      • 290+1
      • 291+1
      • 292+1
      • 293+1
      • 294+1
      • 295+1
      • 296+1
      • 297+1
      • 298+1
      • 299+1
      • 300+1
      • 301+1
      • 302+1
      • 303+1
      • 304+1
      • 305+1
      • 306+1
      • 307+1
      • 308+1
      • 309+1
      • 310+1
      • 311+1
      • 312+1
      • 313+1
      • 314+1
      • 315+1
      • 316+1
      • 317+1
      • 318+1
      • 319+1
      • 320+1
      • 321+1
      • 322+1
      • 323+1
      • 324+1
      • 325+1
      • 326+1
      • 327+1
      • 328+1
      • 329+1
      • 330+1
      • 331+1
      • 332+1
      • 333+1
      • 334+1
      • 335+1
      • 336+1
      • 337+1
      • 338+1
      • 339+1
      • 340+1
      • 341+1
      • 342+1
      • 343+1
      • 344+1
      • 345+1
      • 346+1
      • 347+1
      • 348+1
      • 349+1
      • 350+1
      • 351+1
      • 352+1
      • 353+1
      • 354+1
      • 355+1
      • 356+1
      • 357+1
      • 358+1
      • 359+1
      • 360+1
      • 361+1
      • 362+1
      • 363+1
      • 364+1
      • 365+1
      • 366+1
      • 367+1
      • 368+1
      • 369+1
      • 370+1
      • 371+1
      • 372+1
      • 373+1
      • 374+1
      • 375+1
      • 376+1
      • 377+1
      • 378+1
      • 379+1
      • 380+1
      • 381+1
      • 382+1
      • 383+1
      • 384+1
      • 385+1
      • 386+1
      • 387+1
      • 388+1
      • 389+1

Energetic Materials for Vapor Cloud/thermobaric Explosion

Vol. , No.,

Current Issue


Table of Contents

Archive

Journal Browsing
The current ranking