摘要
为研究聚偏二氟乙烯(PVDF)含量对铝基固体推进剂燃烧性能的影响。通过溶剂‑非溶剂法制备了包覆量为2%~14%的Al@PVDF复合粉体。结合热重‑差热分析、定容燃烧及同步点火等测试方法,对比分析了复合铝粉的热反应性和相应固体推进剂的能量及燃烧性能。结果表明,PVDF包覆结构能显著提高铝粉的热反应性,PVDF包覆量为6%时,铝粉的热增重和放热焓达最大值78.96%和16.14 kJ·
图文摘要
Al@PVDF composite powders with different coating contents (2%-14%) were synthesized via the solvent and non‑solvent method and incorporated into solid propellants. The influence of PVDF content on combustion performances was investigated, including energy release, ignition delay, burning rate and condensed combustion products (CCPs). The staged action mechanism of PVDF on Al combustion was elucidated.
固体推进剂作为一类通过燃烧形式进行化学反应并通过流体形式进行物理做功的特种含能材料,其性能将直接决定固体火箭发动机的推进效
聚偏二氟乙烯(PVDF
铝粉和氟化物之间的紧密接触,如通过“核壳”结
点火和燃烧是铝粉在铝基固体推进剂中发挥作用的两个关键环
为此,本研究采用溶剂‑非溶剂法制备了具有核壳结构的Al@PVDF复合粉,将其应用于铝基固体推进剂中,通过调整PVDF的包覆含量来精确控制推进剂中的氟含量,研究氟化物含量对铝基固体推进剂的能量输出、点火延迟和团聚行为等燃烧性能的影响规律,深入探讨铝基固体推进剂燃烧过程中氟化物对铝燃烧的促进机制。
原材料:球形微米铝粉(Al,4~5 μm),远洋粉体科技有限公司;PVDF,麦克林生化科技有限公司;N,N‑二甲基甲酰胺(DMF,99.8%),国药集团化学试剂有限公司;高氯酸铵(AP,Ⅲ类,120 μm),天元航材;HTPB,(Ⅰ类)、癸二酸二辛酯(DOS)和异佛尔酮二异氰酸酯(IPDI),阿拉丁生化科技有限公司。
仪器:场发射扫描电子显微镜(FE‑SEM),Ultra Plus,Zeiss;热重‑差示扫描量热仪(STA),STA449F3,NETZSCH;X射线光电子能谱(XPS),AXIS SUPRA+;傅里叶变换红外光谱(FTIR),iN10‑iS50;X射线衍射仪(XRD),SmartLab SE。
(1)Al@PVDF复合粉:参照文献中的溶剂‑非溶剂法制
(2)铝基固体推进剂:采用药浆浇铸方法制
samples | components / % | work parameters | |||||||
Al@PVDF | AP | HTPB | DOS | IPDI |
Isp / N·s·k | Tc / K | |||
F0 | 17 | 0 | 68 | 12 | 2 | 1 | 2587.2 | 3318.39 | |
F1 | 16.66 | 0.34 | 68 | 12 | 2 | 1 | 2582.6 | 3294.24 | |
F2 | 16.32 | 0.68 | 68 | 12 | 2 | 1 | 2577.5 | 3269.61 | |
F3 | 15.98 | 1.02 | 68 | 12 | 2 | 1 | 2572.0 | 3244.47 | |
F4 | 15.64 | 1.36 | 68 | 12 | 2 | 1 | 2566.1 | 3218.81 | |
F5 | 15.30 | 1.70 | 68 | 12 | 2 | 1 | 2559.7 | 3192.61 | |
F6 | 14.96 | 2.04 | 68 | 12 | 2 | 1 | 2552.9 | 3165.85 | |
F7 | 14.62 | 2.38 | 68 | 12 | 2 | 1 | 2545.6 | 3138.52 |
Note: Isp is the ideal specific impulse of solid propellant samples and Tc is the adiabatic flame temperature in combustion chamber.
采用场发射扫描电子显微镜(FE‑SEM)及其配套的能谱仪(EDS)对原料铝粉和Al@PVDF复合粉的表面形貌和元素分布进行了表征,加速电压:15 KV。通过X射线光电子能谱(XPS)和傅立叶变换红外光谱(FTIR)获得了Al@PVDF复合粉的成分、结构和结合能。采用热重‑差示扫描量热仪(STA)对原料铝粉和Al@PVDF复合粉进行热分析测试,试样量:5~15 mg,温度范围:40~1300 ℃,升温速率:10 K·mi
采用X射线衍射仪(XRD)对铝基固体推进剂样品的冷凝燃烧产物(CCPs)的物相组成进行测试,扫描范围:20°~90°,扫描速度:5 °·mi
通过SEM对原料铝粉及Al@PVDF复合粉进行表面形貌表征,结果如

图1 原料铝粉及不同PVDF包覆量的Al@PVDF复合粉的SEM图像及其粒度分布
Fig.1 SEM images of raw‑Al and Al@PVDF powders with different PVDF‑coating contents and results of particle size distributions
为验证铝粉表面包覆结构的成功构建及其形成机制,选取中间包覆量的Al@PVDF_8%复合粉,利用FTIR和XPS对其化学组成和结合能进行了表征,结果如

a. FT‑IR spectra

b. XPS spectra

c. Al 2p spectra of Raw‑Al

d. Al 2p spectra of Al@PVDF_8%
图2 原料铝粉及Al@PVDF_8%复合粉的红外光谱图和光电子能谱图及其Al 2p精细谱图
Fig.2 FT‑IR, XPS and Al 2p spectra of raw‑Al and Al@PVDF_8% powders
40~1300 ℃的空气环境中,采用STA测量了粉体样品的质量及热流变化,其TG‑DSC曲线如

a. TG curves

b. DSC curve
图3 原料铝粉及不同PVDF包覆量的Al@PVDF复合粉的TG和DSC曲线
Fig.3 TG and DSC curves of raw‑Al and Al@PVDF powders with different PVDF coating contents
为确保Al@PVDF复合粉的包覆层在固体推进剂制备过程中的结构完整性,使用SEM‑EDS表征了固体推进剂样品F0~F7的截面结构以及元素分布,结果如

图4 固体推进剂样品F0~F7截面的SEM及EDS图像
Fig.4 SEM and EDS images of cross sections for F0~F7 samples
为了获得PVDF含量对固体推进剂实际能量输出的影响规律,测量了固体推进剂样品F0~F7的燃烧放热量及压力随时间的动态变化。燃烧放热量的结果见

a. heat release of combustion

b. pressure‑time curves
图5 固体推进剂样品F0~F7的燃烧放热量及其燃烧过程的压力‑时间变化曲线
Fig.5 Heat release of combustion and pressure‑time curves for F0-F7 samples
燃烧过程的压力变化如
通过比较AlO特征峰(486 nm)与整体峰出现的时间差,量化表征了固体推进剂样品F0~F7的铝氧(Al─O)反应点火延

图6 固体推进剂样品F0~F7燃烧过程中Al─O反应的点火延迟
Fig.6 Ignition delay of Al─O reaction during combustion process for F0-F7 samples
固体推进剂样品F0~F7燃烧过程中的火焰结构由高速摄像机捕捉,结果如

图7 固体推进剂样品F0~F7的燃烧火焰结构序列图像
Fig.7 Sequence images of combustion flame structure for F0-F7 samples
固体推进剂样品F0~F7的燃速与压力之间的关系如

图8 固体推进剂样品F0~F7在不同压力下的燃速
Fig.8 Burning rates under different pressures for F0-F7 samples
samples | burning rates (r) under different pressures (p) / mm· | r=a | |||
---|---|---|---|---|---|
0.5 MPa | 1.0 MPa | 1.5 MPa | 2.0 MPa | ||
F0 | 3.27±0.05 | 4.34±0.09 | 5.13±0.13 | 6.09±0.13 |
4.38 |
F1 | 3.55±0.14 | 4.55±0.05 | 5.39±0.06 | 6.62±0.13 |
4.69 |
F2 | 3.75±0.06 | 4.68±0.05 | 5.59±0.13 | 6.82±0.09 |
4.87 |
F3 | 4.34±0.08 | 5.10±0.10 | 6.28±0.13 | 7.06±0.13 |
5.39 |
F4 | 4.04±0.07 | 4.82±0.04 | 5.69±0.08 | 6.83±0.12 |
5.05 |
F5 | 4.51±0.05 | 5.39±0.20 | 6.21±0.12 | 7.59±0.22 |
5.61 |
F6 | 4.49±0.19 | 5.20±0.08 | 6.03±0.12 | 7.00±0.11 |
5.42 |
F7 | 5.69±0.15 | 6.37±0.27 | 7.50±0.20 | 8.10±0.23 |
6.67 |
Note: r is the burning rate of propellant samples in mm·

a. 325-1000 nm

b. 450-550 nm
图9 固体推进剂样品F0~F7燃烧火焰的全波最大发射光谱
Fig.9 Full wave maximum emission spectra of combustion flame for F0-F7 samples
对固体推进剂样品F0~F7的冷凝燃烧产物(CCPs)形貌和粒径进行了表征,如

图10 固体推进剂样品F0~F7冷凝燃烧产物的SEM图像
Fig.10 SEM images of condensed combustion products for F0-F7 samples

图11 固体推进剂样品F0~F7冷凝燃烧产物的XRD谱图
Fig.11 XRD patterns of condensed combustion products for F0-F7 samples
samples | coating content of PVDF / % | relative content / % | |
---|---|---|---|
Al | Al2O3 | ||
F0 | 0 | 26.8 | 73.2 |
F1 | 2 | 12.0 | 88.0 |
F2 | 4 | 6.6 | 93.4 |
F3 | 6 | 5.5 | 94.5 |
F4 | 8 | 5.8 | 94.2 |
F5 | 10 | 3.4 | 96.6 |
F6 | 12 | 2.7 | 97.3 |
F7 | 14 | 1.2 | 98.8 |
基于PVDF含量对固体推进剂燃烧性能的影响规律,结合冷凝燃烧产物(CCPs)的团聚特征,在

图12 固体推进剂燃烧过程中铝颗粒的形态演变示意图
Fig.12 Schematic diagrams of morphological evolution of aluminum particles during solid propellant combustion
当PVDF包覆量较低(2%~4%)时,如
随着PVDF包覆量的增加(6%~8%),如
当PVDF含量过量时(10%~14%),如
本研究通过溶剂‑非溶剂法制备了系列包覆含量的Al@PVDF复合粉体,系统探究了PVDF含量对铝基固体推进剂燃烧性能的影响,并由此分析了其调控机制。
(1)热分析结果表明,PVDF包覆可显著提升铝粉反应活性,其热增重和放热焓随PVDF的增加而呈现出先增后减的趋势,在包覆量为6%时达到最大值(78.96%和16.14 kJ·
(2)点火燃烧实验显示,PVDF可有效改善铝粉的点火性能,Al‑O反应的延迟随着PVDF含量的增加呈现下降趋势(53~16 ms),并在包覆量大于6%后趋于稳定。固体推进剂的燃速压力指数随PVDF包覆量的增加而呈现三阶段的变化,具体而言,从0.43降至0.36,最后降至0.26。
(3)结合冷凝燃烧产物分析后发现,PVDF对铝燃烧的作用机制随其含量增加呈现三阶段演化:低包覆量(2%~4%)时PVDF的热解产物HF显著抑制铝粉的团聚行为;中包覆量时(6%~8%)热解产物加速诱发铝颗粒破碎点火但也易导致熔融液滴间的二次团聚;高包覆量(10%~14%)促使过量的HF随铝颗粒进入气相区作用再次破碎团聚物。
参考文献
庞爱民, 郑剑. 高能固体推进剂技术未来发展展望[J]. 固体火箭技术, 2004, (04): 289-293. [百度学术]
PANG Ai‑min, ZHENG Jian. Prospect of the research and development of high energy solid propellant technology[J]. Journal of Solid Rocket Technology, 2004, (04): 289-293. [百度学术]
SUNDARAM D, YANG V, YETTER R A. Metal‑based nanoenergetic materials: synthesis, properties, and applications[J]. Progress in Energy and Combustion Science, 2017, 61: 293-365. [百度学术]
廖雪钦, 苑继飞, 刘建忠, 等. 含铝固体推进剂铝团聚抑制方法研究进展[J]. 推进技术, 2023, 44(3): 22-31. [百度学术]
LIAO Xue‑qin, YUAN Ji‑fei, LIU Jian‑zhong, et al. Research progress on inhibition methods of aluminum agglomeration of aluminized solid propellants[J]. Journal of Propulsion Technology, 2023, 44(3): 22-31. [百度学术]
GALLIER S, GODFROY F. Aluminum combustion driven instabilities in solid rocket motors[J]. Journal of Propulsion and Power, 2009, 25(2): 509-521. [百度学术]
DENG H Y, YI Z R, SHEN Q, et al. Enhancing the combustion properties of interface optimized metastable intermixed composites PVDF/μ‑Al by noncovalently functionalized graphene[J]. Materials & Design, 2022, 223: 111103. [百度学术]
SHEN J, ZENG Y C, LI Q Z, et al. Convenient folding‐hot‐pressing fabrication and enhanced piezoelectric properties of high β‐phase‐content poly (vinylidene fluoride) films[J]. Interdisciplinary Materials, 2024, 3(5): 715-725. [百度学术]
HE B, HAN Z W, WANG J Y, et al. Construction of Al@PTFE composites with excellent ignition and combustion properties through mechanical and thermal activation[J]. Journal of Alloys and Compounds, 2024, 987: 174178. [百度学术]
SIPPEL T R, SON S F, GROVEN L J. Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles[J]. Combustion and Flame, 2014, 161(1): 311-321. [百度学术]
唐伟强, 杨荣杰, 李建民, 等. 高铝固体推进剂中氟化物促进铝燃烧研究进展[J]. 固体火箭技术, 2020, 43(6): 679-686. [百度学术]
TANG Wei‑qiang, YANG Rong‑jie, LI Jian‑min, et al. Research progress of fluorides in high aluminum solid propellant to promote aluminum combustion[J]. Journal of Solid Rocket Technology, 2020, 43(6): 679-686. [百度学术]
LI R L, TONG L J, JIANG Y T, et al. SnS2 nanoparticles embedded in sulfurized polyacrylonitrile composite fibers for high‐performance potassium‐ion batteries[J]. Interdisciplinary Materials, 2024, 3(1): 150-159. [百度学术]
MA X X, LI Y X, HUSSAIN L, et al. Core‑shell structured nanoenergetic materials: Preparation and fundamental properties[J]. Advanced Materials, 2020, 32(30): 2001291. [百度学术]
ZHANG L C, BAI Z C, WANG R B, et al. Dynamic layer‑by‑layer surface self‑assembly on aluminum fuel for improving the comprehensive performance of propellants[J]. Chemical Engineering Journal, 2024, 480: 147356. [百度学术]
姚启发, 毛超超, 邵玉玲, 等. 基于新型氟碳黏合剂的固体推进剂燃烧性能[J]. 含能材料, 2022, 30(8): 804-810. [百度学术]
YAO Qi⁃fa, MAO Chao⁃chao, SHAO Yu⁃ling, et al. Combustion performance of solid propellant based on new fluorocarbon binder[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2022, 30(8): 804-810. [百度学术]
BELAL H, HAN C W, GUNDUZ I E, et al. Ignition and combustion behavior of mechanically activated Al‑Mg particles in composite solid propellants[J]. Combustion and Flame, 2018, 194: 410-418. [百度学术]
WANG H Y, REHWOLDT M, KLINE D J, et al. Comparison study of the ignition and combustion characteristics of directly‑written Al/PVDF, Al/Viton and Al/THV composites[J]. Combustion and Flame, 2019, 201: 181-186. [百度学术]
XIONG J W, ZHANG M Q, WAN W T, et al. Effect of PTFE content on the laser‑induced ignition and combustion characteristics of Al@ PTFE composite fuels[J]. Applied Thermal Engineering, 2025, 259: 124773. [百度学术]
胡驰, 郭亚, 罗观, 等. 氟橡胶包覆对微米铝粉燃烧性能的影响规律[J]. 含能材料, 2021, 29(10): 1001-1007. [百度学术]
HU Chi, GUO Ya, LUO Guan, et al. Effect of fluororubber coating on combustion properties of micro⁃sized aluminum powder[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2021, 29(10): 1001-1007. [百度学术]
YAO Q F, XIA M, WANG C, et al. A new fluorocarbon adhesive: Inhibiting agglomeration during combustion of propellant via efficient F‑Al2O3 preignition reaction[J]. Carbon Energy, 2024, 6(6): e467. [百度学术]
WANG C B, QIN M, YI Z R, et al. Oxidation mechanism of core‑shell structured Al@ PVDF powders synthesized by solvent/non‑solvent method[J]. Materials, 2022, 15(9): 3036. [百度学术]
李佳贺, 杜芳, 唐长盛, 等. 铝锂合金稳定化包覆及其推进剂应用[J]. 含能材料, 2024, 32(1): 2-11. [百度学术]
LI Jia⁃he, DU Fang, TANG Chang⁃sheng, et al. Stabilization coating of aluminum⁃lithium alloy and its application in propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao) 2024, 32(1): 2-11. [百度学术]
LYU J Y, YU J H, TANG D Y, et al. Unexpected burning rate independence of composite propellants on the pressure by fine interfacial control of fuel/oxidizer[J]. Chemical Engineering Journal, 2020, 388: 124320. [百度学术]
KE X, GUO S F, ZHANG G S, et al. Safe preparation, energetic performance and reaction mechanism of corrosion‑resistant Al/PVDF nanocomposite films[J]. Journal of Materials Chemistry A, 2018, 6(36): 17713-17723. [百度学术]
ZHANG L C, SU X, WANG S, et al. In situ preparation of Al@ 3‑Perfluorohexyl‑1, 2‑epoxypropane@ glycidyl azide polymer (Al@ PFHP@ GAP) high‑energy material[J]. Chemical Engineering Journal, 2022, 450: 137118. [百度学术]
HE W, LIU P J, GONG F y, et al. Tuning the reactivity of metastable intermixed composite n‑Al/PTFE by polydopamine interfacial control[J]. ACS applied materials & interfaces, 2018, 10(38): 32849-32858. [百度学术]
HE W, LYU J Y, TANG D Y, et al. Control the combustion behavior of solid propellants by using core‑shell Al‑based composites[J]. Combustion and Flame, 2020, 221: 441‑452. [百度学术]
WANG H Y, HAGEN E, SHI K R, et al. Carbon fibers as additives to engineer agglomeration and propagation of aluminized propellants[J]. Chemical Engineering Journal, 2023, 460: 141653. [百度学术]
王芳, 张鑫鹏, 王鼎程, 等. Al‑LiH复合燃料制备及性能[J]. 含能材料, 2024, 32(1): 12-19. [百度学术]
WANG Fang, ZHANG Xin‑peng, WANG Ding‑cheng, et al. Preparation and performance of Al‑LiH composite fuel[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2024, 32(1): 12-19. [百度学术]
AO W, LIU P J, YANG W J. Agglomerates, smoke oxide particles, and carbon inclusions in condensed combustion products of an aluminized GAP‑based propellant[J]. Acta Astronautica, 2016, 129: 147-153. [百度学术]
XU R X, YU M H, XUE Z H, et al. Enhancing the ignition and combustion performances of solid propellants incorporating Al particles inside oxidizers[J]. ACS Applied Materials & Interfaces, 2023, 15(48): 56442-56453. [百度学术]
COHEN N S. A pocket model for aluminum agglomeration in composite propellants[J]. AIAA Journal, 1983, 21(5): 720-725. [百度学术]
JIANG Z F, ZHAO F Q, QIN Z, et al. Insights into the fragmentation of aluminum hydride and its effect on combustion and agglomeration of HTPB propellant[J]. ACS Applied Materials & Interfaces, 2024, 16(34): 45640-45659. [百度学术]