摘要
为了改善Al粉在混合炸药中的释能特性,综合微结构设计和Al颗粒表面改性优势,构筑了三维网状六硝基六氮杂异伍兹(CL‑20)/Al@Co/硝化细菌纤维素(NBC)复合物。首先采用置换法在Al粉表面包覆Co,形成核壳结构Al@Co粒子;再利用模板法将Al@Co和CL‑20沉积在NBC的三维网状结构中,得到三维网状CL‑20/Al@Co/NBC复合物。采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和傅里叶变换红外光谱(FT‑IR)进行形貌结构表征,并通过热分析、感度和燃烧测试进行性能分析。结果表明,Al@Co粒子为Co在Al表面形成一层厚度约32 nm包覆层。CL‑20/Al@Co/NBC复合物呈三维网状结构,与相应的NBC+CL‑20+Al混合物及CL‑20/Al/NBC复合物相比,Al的高温热分解峰温分别提前123.7 ℃和99.5 ℃,放热量分别增加5.93 kJ·
图文摘要
含铝炸药是一种应用广泛的混合炸药,通过在配方中加入单体积密度和能量密度均较高的Al粉,可显著提升炸药体系的能量水平,优化炸药爆炸的能量输出结
为了改善含铝炸药中Al粉的释能特性,目前的主要技术途径有含铝炸药的微结构设计和Al粉的表面改性。微结构设计是通过调节含铝炸药中各组分间的结合状态、粒度、均一性等,来提升含铝炸药的反应完全性,调控能量输出结构。冯晓军
Al粉表面改性是为了提高其在含铝炸药中的应用性能,如改善与其它组分的相容性、增强分散性或提高能量释放效率等。现有研究主要通过包覆技术实现Al粉表面改性,已报道的包覆材料有惰性聚合
基于此,本研究综合Al粉微结构设计(三维网状结构的构筑)和表面改性(Co包覆改性Al),拟以具有三维纳米网状结构的硝化细菌纤维素(NBC)为模板,通过溶剂非溶剂法将Al@Co和CL‑20共同沉积到NBC的网络中,构筑具有三维网状的CL‑20/Al@Co/NBC含铝炸药,并通过溶剂‑非溶剂结晶过程参数调控,来控制重结晶CL‑20的晶型和粒径。对所制备样品的形貌、结构、热分解性能、燃烧性能以及机械感度进行表征测试。
原料CL‑20,平均粒径38 μm,白色结晶粉末,中国工程物理研究院化工材料研究所;NBC,含氮量12.98%,自制;Al粉,粒度1~3 μm,纯度99%,上海超威纳米科技股份有限公司;乙酸乙酯和正己烷,分析纯,成都市科隆化学品有限公司;去离子水,自制。
昆山市超声仪器有限公司KQ5200DE数控超声波清洗器;保定兰格恒流泵有限公司LSP02‑18型注射泵;德国Carl Zeiss公司UItra‑55型场发射扫描电镜(FE‑SEM);德国CarlZeiss公司Libra 2000 FE透射电子显微镜(TEM);荷兰Panalytical公司X’Pert PRO型X射线衍射(XRD)仪;德国布鲁克公司TENSOR 2型傅里叶红外光谱(FT‑IR)仪;美国Thermo Fisher Scientific公司K‑Alpha X射线光电子能谱(XPS);BKT‑4500振动样品磁强计;德国耐驰公司STA449F5型同步热分析仪;成都光纳科技有限公司FASTCAM Mini UC100高速摄像机;BFH‑PEx型轻型落锤撞击敏感度测试仪;FSKM10 L轻摩擦感度测试仪。
Al@Co粒子的制备: Al@Co粒子的制备主要参考文献[
CL‑20/Al@Co/NBC复合物的制备:各个组分的含量参考含铝炸药的配方,其质量百分比分别为:CL‑20 80%、Al 10%及NBC 10%。将0.10 g NBC、0.80 g CL‑20溶解在乙酸乙酯溶剂中(2 mL)形成均一溶液,然后加入0.10 g Al@Co,500 rpm搅拌30 min,再超声30 min使其充分分散,形成均匀的悬浮液,将10 mL正己烷溶剂以1 mL·mi
为了对比,采用相同的方法制备了CL‑20/Al/NBC复合物。同时将0.10 g NBC、0.80 g CL‑20、0.10 g Al加入10 mL正己烷溶剂中,搅拌30 min后烘干12 h,得到机械混合物,命名为NBC+CL‑20+Al混合物。
采用振动样品磁强计对Al@Co粒子的磁性进行测试分析,样品量为(100±1) mg,相对精度优于±1%,实验在室温条件下进行,环境温度为22 ℃。
采用热分析对Al粉、Al@Co粒子、CL‑20/Al@Co/NBC复合物、CL‑20/Al/NBC复合物及NBC+CL‑20+Al混合物的热性能进行分析,以氧化铝空坩埚为参比物,温度范围在35~1200 ℃,升温速率为10 K·mi
采用电阻丝加热结合高速摄像机对NBC+CL‑20+Al混合物、CL‑20/Al/NBC复合物及CL‑20/Al@Co/NBC复合物进行开放式燃烧性能测试,试样量100 mg,采样率为1000帧·
参照GB/T 21567-2008,采用BFH‑PEx型轻型落锤撞击敏感度测试仪对原料CL‑20、NBC+CL‑20+Al混合物、CL‑20/Al/NBC复合物及CL‑20/Al@Co/NBC复合物进行撞击感度测试,落锤质量2 kg,试样量(30±1) mg,每发试样测试30次;参照GB/T 21566-2008,采用FSKM10 L轻摩擦感度测试仪对样品进行摩擦感度测试,试样量(20±1) mg,每发试样测试30次。
对原料Al粉及Al@Co粒子进行SEM及TEM测试,结果如

图1 原料Al粉的SEM及TEM图
Fig.1 SEM and TEM images of raw Al particles

图2 Al@Co粒子的SEM及TEM图(a) 50k倍的SEM;(b) 80k倍的SEM;(c) 单个Al@Co粒子的TEM图;(d) (c) 图白色虚框部分放大的TEM图;(e)高分辨TEM图
Fig.2 SEM and TEM images of Al@Co particles (a)SEM with 50k magnification times, (b)SEM with 80k magnification times, (c)TEM image of single Al@Co particle, (d) partially enlarged TEM image of white dashed box in (c) image, (e)high‑resolution TEM image

图3 原料Al与Al@Co粒子的XRD图
Fig.3 XRD spectra of the raw Al and Al@Co particles

图4 Al@Co粒子的EDS图
Fig.4 Typical SEM mapping images of Al@Co particles

图5 Al@Co粒子在室温下的磁滞回线
Fig.5 The hysteresis loop of Al@Co particles at room temperature
为了进一步研究制备Al@Co粒子Co元素的价态,对Al@Co粒子进行了高分辨XPS光谱分析,结果如

a. Co 2p spectrum

b. wide spectra
图6 Al@Co粒子的XPS图
Fig.6 XPS images of Al@Co particles
原料、CL‑20/Al@Co/NBC及对比样CL‑20/Al/NBC复合物的SEM测试结果如

图7 原料及复合物的SEM图及CL‑20/Al@Co/NBC复合物的EDS图(a)原料CL‑20;(b)原料NBC;(c)CL‑20/Al/NBC;(d)CL‑20/Al@Co/NBC;(e、f)CL‑20/Al@Co/NBC的EDS图
Fig.7 SEM images of raw materials and composites and EDS images of CL‑20/Al@Co/NBC composite (a) raw CL‑20; (b) raw NBC; (c) CL‑20/Al/NBC; (d) CL‑20/Al@Co/NBC; (e and f) EDS images of the CL‑20/Al@Co/NBC
研究通过XRD以及FT‑IR来确认CL‑20/Al@Co/NBC和CL‑20/Al/NBC复合物中CL‑20的晶型,其结果显示在

a. XRD

b. FT‑IR spectra
图8 原料、CL‑20/Al@Co/NBC及CL‑20/Al/NBC复合物的XRD与FT‑IR图谱
Fig.8 XRD and FT‑IR spectra of raw meterials, CL‑20/Al@Co/NBC and CL‑20/Al/NBC composites
热分析测试结果显示在

a. Al and Al@Co

b. composites and mixtures
图9 原料、复合物及混合物的DSC曲线图
Fig.9 DSC curves of raw material, composites and mechanical mixture
由
为了更好地评估三维网状结构CL‑20/Al@Co/NBC复合物的能量释放特性,利用高速摄像机对NBC+CL‑20+Al混合物、CL‑20/Al/NBC复合物及CL‑20/Al@Co/NBC复合物进行了燃烧性能对比,结果如

图10 高速摄像机拍摄的燃烧图 (a)NBC+CL‑20+Al混合物; (b)CL‑20/Al/NBC复合物; (c)CL‑20/Al@Co/NBC复合物
Fig.10 Combustion images taken by a high‑speed camera (a)NBC+CL‑20+Al mixture, (b)CL‑20/Al/NBC composite, (c)CL‑20/Al@Co/NBC composite
CL‑20/Al@Co/NBC复合物热分解和燃烧性能的显著改善,可能与微米Al颗粒的Al2O3层及Al和Co之间的高温自蔓延效
原料CL‑20、NBC+CL‑20+Al混合物、CL‑20/Al/NBC以及CL‑20/Al@Co/NBC复合物的撞击感度和摩擦感度测试数据见
sample | IS / J | FS / N |
---|---|---|
raw CL‑20 | 2 | 56 |
NBC+CL‑20+Al mixture | 2 | 128 |
CL‑20/Al/NBC composite | 25 | 144 |
CL‑20/Al@Co/NBC composite | 30 | 192 |
从
(1)以NBC为模板结合溶剂‑非溶剂法,将CL‑20和Al@Co颗粒均匀嵌入到NBC的三维网状结构,得到三维网状CL‑20/Al@Co/NBC复合物。重结晶后的CL‑20仍为ε晶型,其粒径在2~4 μm。
(2)与原料Al粉相比,Al@Co颗粒将Al的高温氧化放热峰提前了39.2 ℃,总放热量提升了43.4%。与NBC+CL‑20+Al混合物及CL‑20/Al/NBC复合物相比,CL‑20/Al@Co/NBC复合物中Al粉的高温氧化放热峰温分别提前了123.7 ℃和99.5 ℃,放热量分别增加5.93 kJ·
(3)CL‑20/Al@Co/NBC复合物点火延迟时间小于2 ms,与NBC+CL‑20+Al混合物相比提前了25 ms,与CL‑20/Al/NBC相比提前了2 ms,点火延迟时间更短、燃速更快。
(4)与CL‑20原料、NBC+CL‑20+Al混合物及CL‑20/Al/NBC复合物相比,CL‑20/Al@Co/NBC复合物的撞击感度(30 J)和摩擦感度(192 N)大幅降低,安全性能显著提升。
(5)三维网络结构的构筑结合Co对Al的改性可显著提升Al粉的反应效率,改善热分解和燃烧性能。
参考文献
SUNDARAM DS, PURI P, YANG V, et al. A general theory of ignition and combustion of nano‑ and micron‑sized aluminum particles[J]. Combustion and Flame, 2016, 169: 94-109. [百度学术]
胥会祥, 李兴文, 赵凤起, 等. 纳米金属粉在火炸药中应用进展[J]. 含能材料, 2011, 19(2): 232-239. [百度学术]
XU Hui‑xiang, LI Xing‑wen, ZHAO Feng‑qi, et al. Review on application of nano‑metal powders in explosive and propellants[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2011, 19(2): 232-239. [百度学术]
李鑫, 赵凤起, 郝海霞, 等. 不同类型微/纳米铝粉点火燃烧特性研究[J].兵工学报 , 2014 , 35(5): 640-647. [百度学术]
LI Xin, ZHAO Feng‑qi, HAO Hai‑xia, et al. Research on ignition and combustion properties of different micro /nano aluminum powders[J]. Acta Armamentarii, 2014, 35(5): 640-647. [百度学术]
李伟, 包玺, 唐根, 等. 纳米铝粉在高能固体推进剂中的应用[J]. 火炸药学报, 2011, 34(5): 67-70. [百度学术]
LI Wei, BAO Xi, TANG Gen, et al. Application of nano‑aluminum powder in high energy solid propellant[J].Chinese Journal of Explosives & Propellants, 2011, 34(5): 67-70. [百度学术]
冯晓军, 薛乐星, 曹芳洁, 等. CL‑20基含铝炸药组分微结构对其爆炸释能特性的影响[J]. 火炸药学报, 2019, 42(6): 608-613. [百度学术]
FENG Xiao‑jun, XUE Xing‑le, CAO Fang‑jie, et al. Effect of Ingredients microstructure of CL‑20‑based aluminum‑containing explosives on explosion energy release[J]. Chinese Journal of Explosives & Propellants, 2019, 42(6): 608-613. [百度学术]
唐伟强, 杨荣杰, 李建东, 等. 高铝固体推进剂中氟化物促进铝燃烧研究进展[J]. 固体火箭技术, 2020, 43(6): 679-686. [百度学术]
TANG Wei‑qiang, YANG Rong‑jie, LI Jian‑dong, et al. Research progress of fluorides in high aluminum solid propellant to promote aluminum combustion[J]. Journal of Solid Rocket Technology, 2020, 43(6): 679-686. [百度学术]
张庆端. 火药用原材料性能与制备[M]. 北京:北京理工大学出版社, 1995. [百度学术]
ZHANG Qing‑duan. Performance and preparation of raw materials for gunpowder[M]. Beijing:Beijing Institute of Technology Press, 1995. [百度学术]
晏嘉伟, 屈炜宸, 杜芳, 等. 铝基核壳材料AP/Al的制备及性能研究[J]. 火炸药学报, 2024, 47(3): 271-278. [百度学术]
YAN Jia‑wei, QU Wei‑chen, DU Fang, et al. Preparation and properties of aluminum based core‑shell material AP/Al[J]. Chinese Journal of Explosives & Propellants, 2024, 47(3): 271-278. [百度学术]
WANG Hai‑yang, ZACHARIAH MR, XIE Li‑feng, et al. Ignition and combustion characterization of nano‑Al‑AP and nano‑Al‑CuO‑AP micro‑sized composites produced by electrospray technique[J]. Energy Procedia, 2015, 66: 109-112. [百度学术]
肖春, 祝青, 谢虓, 等. PDA包覆铝粉及其在HTPB中的分散稳定性[J]. 火炸药学报, 2017, 40(3): 60-76. [百度学术]
XIAO Chun, ZHU Qing, XIE Xiao, et al. Polydopamine coated on aluminum powders and its disperse stability in HTPB[J]. Chinese Journal of Explosives & Propellants, 2017, 40(3): 60-76. [百度学术]
SUN Xu, SONG Xiu‑duo, YUAN Zhi‑feng, et al. High performance nAl@CuO core‑shell particles with improved combustion efficiency and the effect of interfacial layers on combustion[J]. Journal of Alloys and Compounds, 2023, 942: 168879. [百度学术]
XIAO Fei, LIU Zhen‑hui, LIANG Tai‑xin, et al. Establishing the interface layer on the aluminum surface through the self‑assembly of tannic acid (TA): Improving the ignition and combustion properties of aluminum[J]. Chemical Engineering Journal, 2021, 420: 130523. [百度学术]
JI Jie, LIANG Li, XU Heng, et al. Facile solvent evaporation synthesis of core‑shell structured Al@PVDF nanoparticles with excellent corrosion resistance and combustion properties[J]. Combustion and Flame, 2022, 238: 111925. [百度学术]
ZHAO Wan‑jun, JIAO Qing‑jie, OU Ya‑peng, et al. Perfluoroalkyl Acid‑Functionalized Aluminum Nanoparticles for Fluorine Fixation and Energy Generation[J]. ACS Applied Nano Materials, 2021, 4(6): 6337-6344. [百度学术]
WANG Jun, QU Yan‑yang, GONG Fei‑yan, et al. A promising strategy to obtain high energy output and combustion properties by self‑activation of nano‑Al[J]. Combustion and Flame, 2019, 204: 220-226. [百度学术]
ZHENG Yuan‑feng, ZHENG Zhi‑jian, LU Guan‑cheng, et al. Mesoscale study on explosion‑induced formation and thermochemical response of PTFE/Al granular jet[J]. Defence Technology, 2023, 23: 112-125. [百度学术]
胡驰, 郭亚, 罗观, 等. 氟橡胶包覆对微米铝粉燃烧性能的影响规律[J].含能材料, 2021, 29(10): 1001-1007. [百度学术]
HU Chi, GUO Ya, LUO Guan, Effect of fluororubber coating on combustion properties of micrgsized aluminum powder[J]. Chinese Journal of Energetic Materials, 2021, 29(10): 1001-1007. [百度学术]
SHU Yao, ZHANG Wen‑chao, FAN Zhi‑min, et al. Improving the combustion efficiency and agglomeration of aluminum‑water propellants via n‑Al/CuO metastable intermolecular composites[J].Combustion and Flame, 2024, 260: 113246. [百度学术]
QIN Li‑jun, YAN Ning, LI Jian‑guo, et al. Enhanced energy performance from core‑shell structured Al@Fe2O3 nanothermite fabricated by atomic layer deposition[J]. RSC Advances, 2017, 7(12): 7188-7197. [百度学术]
FAHD A, ZORAINY MY, DUBOIS C, et al. Combustion characteristics of EMOFs/oxygenated salts novel thermite for green energetic applications[J]. Thermochimica Acta, 2021, 704: 179019. [百度学术]
CHEN An, WU Bo, LI Lan, et al. Liquid metal embrittlement to boost reactivity and combustion performance of Al in composite propellants[J].Fuel, 2023, 331: 125726. [百度学术]
CHEN An, WU Bo, LI Xiao‑dong, et al. Pushing the limits of energy performance in micron‑sized thermite: Core‑shell assembled liquid metal‑modified Al@Fe2O3 thermites[J]. ACS Applied Energy Materials, 2021, 4(10): 11777-11786. [百度学术]
CHENG Zhi‑peng, CHU Xiao‑zhong, ZHAO Wei, et al. Controllable synthesis of Cu/Al energetic nanocomposites with excellent heat release and combustion performance[J]. Applied Surface Science, 2020, 513: 145704. [百度学术]
WANG Chao, ZOU Xiang‑rui, YIN Shi‑pan, et al. Improvement of ignition and combustion performance of micro‑aluminum particles by double‑shell nickel‑phosphorus alloy coating[J]. Chemical Engineering Journal, 2022, 433: 133585. [百度学术]
KIM KT, KIMB DW, KIM SH, et al. Synthesis and improved explosion behaviors of aluminum powders coated with nano‑sized nickel film[J]. Applied Surface Science, 2017, 415: 104-108. [百度学术]
CHENG Zhi‑peng, CHU Xiao‑zhong, YIN Jing‑zhou, et al. Formation of composite fuels by coating aluminum powder with a cobalt nanocatalyst: Enhanced heat release and catalytic performance[J]. Chemical Engineering Journal, 2020, 385: 123859. [百度学术]
MILANESE C, MAGLIA F, TACCA A, et al. Ignition and reaction mechanism of Co‑Al and Nb‑Al intermetallic compounds prepared by combustion synthesis[J]. Journal of Alloys and Compounds, 2020, 421: 156-162. [百度学术]
徐向远, 郭泽荣, 相宁, 等. Al@Co微米核壳含能粒子的可控制备与性能[J]. 含能材料, 2023, 31(6): 561-567. [百度学术]
XU Xiang‑yuan, GUO Ze‑rong, XIANG Ning, et al. Controlled preparation and properties of Al@Co micron core‑shell energetic particles[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2023, 31(6): 561-567. [百度学术]
LIU Xiang‑qian, YU Yan‑an, NIU Yan‑li, et al. Cobalt nanoparticle decorated graphene aerogel for efficient oxygen reduction reaction electrocatalysis[J]. International Journal of Hydrogen Energy, 2017, 42(9): 5930-5937. [百度学术]
CHEN Bing‑feng, LI Feng‑bo, HUANG Zhi‑jun, et al.Carbon‑coated Cu‑Co bimetallic nanoparticles as selective and recyclable catalysts for production of biofuel 2,5‑dimethylfuran[J]. Applied Catalysis B‑Environmental, 2016, 200: 192-199. [百度学术]
JI Jin‑cheng, MEI Meng‑yun, ZHU Wei‑hua. Reactive molecular dynamics studies of the interfacial reactions of core‑shell structured CL‑20‑based aluminized explosives at high temperature[J]. Energetic Materials Frontiers, 2022, 3(4): 257-272. [百度学术]