摘要
为探究隧道内甲烷蒸气云爆炸波的传播规律与特性,采用Ls‑dyna软件中的CE/SE(时空守恒元和求解元)法建立隧道内甲烷空气预混爆炸模型,并通过试验数据验证了模型的准确性。通过数值仿真展示了9.5%浓度燃爆波传播至不同位置的典型波形,分析了超压和温度的传播演化规律,探讨了不同浓度甲烷蒸气云爆炸条件下超压和热辐射对隧道内人员的杀伤效应。研究表明:燃爆压力波在隧道轴向可分为自由扩展、反射耗散、壁面加速和马赫传播4个阶段,压力变化呈现碰壁跃升、反射衰减和稳定传播3种特征;在隧道径向表现为沿壁面做周期性反射传播,强度随甲烷的消耗逐渐递减。温度场的演化规律在隧道轴向表现为由爆炸中心向隧道出入口对称传播,温度峰值沿程衰减迅速;径向则表现为向隧道底部辐射,随着时间推移,截面温度逐渐趋于一致并缓慢降低。综合燃爆超压和热辐射的杀伤效应,5.0%浓度的甲烷燃爆致死范围为距爆源13.51 m,严重损害范围为13.51~23.51 m,中度损害范围为23.51~160 m;6.5%浓度的甲烷燃爆致死范围为距爆源16.46 m,严重损害范围为16.46~45.36 m,中度损害为范围45.36~160 m;9.5%浓度的甲烷燃爆致死范围为距爆源20.58 m,严重损害范围为20.58~160 m。
图文摘要
Based on the three‑dimensional CE/SE method and chemical reaction model, a methane‑air premixed vapor cloud explosion model in a tunnel was established, and the accuracy of the model was validated through experimental data. The propagation characteristics of the combustion explosion wave in both axial and radial directions of the tunnel were revealed. The evolution pattern of the temperature field following the exothermic combustion reaction was investigated. Finally, the effects of overpressure and thermal radiation from the combustion on the lethality to human inside the tunnel were studied under three different concentration scenarios.
工业化发展迅速的时代背景下,我国每年有大量危险化学品通过隧道运输到全国各地,该类物质在隧道内的燃爆事故时有发生,这无疑会对隧道自身结构稳定性、内部人员安全以及周边环境造成巨大威胁。因此,研究隧道内可燃气体泄漏的燃爆问题,尤其是对燃爆冲击波在隧道内的传播特征、演化过程以及对人员的毁伤效应的研究,具有极大的科研价值和社会意义。
国内外学者对易燃蒸气云于自由敞开空间的爆炸特征已有较多成
在可燃气体爆炸模拟方面,诸多数值模型虽发展较为完善,但描述气体的燃烧爆炸过程均有所欠缺,如TNO‑MultiEnergy
目前,采用CE/SE法针对隧道内蒸气云爆炸特征的研究成果尚少,尤其综合考虑冲击波与高温对人体的杀伤效应更是鲜有分析。为此,本研究采用CE/SE方法模拟了隧道内甲烷蒸气云燃爆过程,得到燃爆波的传播及温度场的演化规律,研究了燃爆超压与热辐射于隧道内的杀伤效应,以期为隧道安全防护和紧急救援工作提供科学依据。
燃爆波是含有化学反应的强间断流动,对于数值模拟的精度要求很高。本研究采用的CE/SE方法是一种计算守恒性方程的格式,从控制方程的时空积分形式出发,在时间和空间上都能够很好地保证物理量的守恒性,使得该格式有着较高的精度,并且对间断具有很强的分辨率。为了进行甲烷/空气燃爆的数值计算,在三维CE/SE方
(1) |
(2) |
式中,x、y、z、t分别是空间和时间坐标,E、F、G分别是x、y、z方向上的流矢量,U是守恒项矢量,u、v、w分别是x、y、z方向上的速度分量,m·
基元反应模型的基元反应过程可以表示为:
(3) |
式中,i=1,2,…,ns;k=1,2,…,nr,nr为模型中基元反应的个数;和为第i个组分k步反应的正向和逆向反应的化学计量系数;Xi表示组分。
第i个组分的质量生成率为:
(4) |
式中,Wi为第i组分的摩尔质量,g·mo
(5) |
式中,Cxi=ρi/Wi是第i组分的摩尔密度,TB是第三体效应指数,Kf,k和Kb,k为正反应和逆反应常数。
逆反应常数Kb,k可表示为正反应常数Kf,k和压力平衡常数的比值,而正反应常数Kf,k可由Arrhenius公式求得:
(6) |
式中,Ak为第k个基元反应方程的指前因子,Eak为第k个基元反应方程的活化能,kJ·mo
基元化学反应模型是通过一系列基元反应来描述化学反应过程,其中反应物、中间产物和生成物的浓度变化是由这些反应叠加得到,基元反应符合真实的化学反应过程,并且得到的结果也较为准确。为此本研究使用的基元化学反应模型源于李象远
ID | reaction chemistry equations | Ak | Eak |
---|---|---|---|
1 | CH4+OH=CH3+H2O | 4.13E+13 | 6460 |
2 | CH4+O2=CH3+HO2 | 1.04E+13 | 56940 |
3 | CH4+M=CH3+H+M | 3.00E+16 | 85800 |
4 | CH3+OH=CH2+H2O | 7.00E+12 | 0 |
5 | CH3+O2=CH2O+OH | 6.38E+11 | 13500 |
6 | CH3+M=CH2+H+M | 2.24E+15 | 82700 |
7 | CH2O+HO2=HCO+H2O2 | 6.42E+12 | 18010 |
8 | CH2O+O2=HCO+HO2 | 7.07E+16 | 46720 |
9 | CH2+O2=HCO+OH | 8.06E+12 | 1500 |
10 | HCO+O2=CO+HO2 | 3.70E+13 | 3110 |
11 | HCO+M=H+CO+M | 1.05E+14 | 13000 |
12 | CO+OH=H+CO2 | 9.72E+11 | 2630 |
13 | CO+O2=CO2+O | 2.53E+13 | 47800 |
14 | H2O2(+M)=OH+OH(+M) | 2.21E+15 | 50230 |
15 | H2+HO2=H2O2+H | 3.01E+13 | 26080 |
16 | H2+OH=H+H2O | 4.38E+13 | 6990 |
17 | H2+O2=HO2+H | 1.76E+14 | 57820 |
18 | H2+O=H+OH | 6.83E+13 | 10380 |
19 | H2+M=H+H+M | 3.33E+14 | 102070 |
20 | HO2+H=OH+OH | 7.08E+13 | 1500 |
21 | O2+H=O+OH | 1.04E+14 | 15600 |
22 | O2+H(+M)=HO2(+M) | 1.14E+14 | 0 |
研究建立隧道物理模型,隧道径向截面为双曲线圆拱形,截面高度8.0 m、宽度14.2 m,衬砌厚度1.5 m、总长度200.0 m,结构剖面如
图1 隧道轴、径向模型及测点布置示意图
Fig.1 Tunnel model in different axis and measuring point layout
研究选用甲烷预混填充方式,忽略其稳定分布后的浓度分层,根据甲烷泄漏稳定后的蒸气云团形状特
a. radial section
b. axial section
图2 隧道中线轴向及径向0点截面蒸气云图
Fig.2 Vapor cloud diagrams of tunnel in different axis sections
(1)初始条件:空气域和甲烷/空气预混域的气压为101.3 kPa,温度为298 K,空气部分由体积分数21%氧气和79%氮气组成,忽略气体的黏性耗散,预混气部分甲烷和空气中的氧气摩尔比分别取1∶2、1∶3、1∶4,即体积分数分别为9.5%、6.5%、5.0%。整个隧道空间处于静止状态,计算开始时气体界限消失。
(2)网格划分:CE/SE方法具有网格无关性,即不同网格下的爆轰波流场结构区别不大,不会影响爆轰波的位置和传播模态,只是激波捕捉分辨率略有不同,综合考虑计算成本和计算精度,本模型网格划分的单元尺寸设为20 cm,网格总数为9,140,432。
(3)边界条件:设置隧道壁及底板为绝热的壁面反射边界条件,即物质不能在该边界上进行传输;隧道两端位置为出口边界条件,即物质可以从该边界流出,并且流出后不会对隧道内流场产生影响。
(4)点火设置:采用瞬时点火的方式,即在特定时间和位置瞬时引入高温和高能量,从而引发燃料燃烧。点火圆心设置在甲烷云团最厚位置的最下端,三维坐标为(0,0,5),计算开始时刻点火源温度1500 K。
为验证隧道内爆源甲烷/空气混合气体爆炸数值模型的有效性,并准确地描述爆炸冲击波在隧道中传播的衰减规律,参照文献[
a. test arrangement
b. comparison of pressure histories
图3 试验布置和数值模拟压力时程结果对比(距封闭端34.85 m处)
Fig.3 Test arrangement and comparison of test and numerical results for pressure histories(34.85 m from the closed end)
由
在隧道这类半封闭环境中,燃爆冲击波于传播途中遇到障碍物阻挡时则会发生反射现
a. forward reflection
b. oblique reflection
c. mach reflection
图4 燃爆的三种反射类型
Fig.4 Three reflection patterns of combustion
隧道内甲烷蒸气云爆炸时,压力波会明显先于火焰锋面传播,形成两波三区结
图5 燃爆的两波三区流场
Fig.5 Two‑wave and three‑zone flow field of combustion
不同浓度甲烷蒸气云爆炸条件下,隧道内初始压力波反射及后期马赫波形成,如
a. first reflection flow field
b. forming mach wave flow field
图6 三种不同浓度的甲烷蒸气云爆炸流场云图
Fig.6 Combustion flow field diagrams of methane vapor clouds with three concentrations
为探究甲烷蒸气云于隧道内爆炸的波形特征,本研究以体积浓度9.5%的甲烷蒸气云为例,模拟得到距爆炸中心5,22,41,59 m共4种典型超压波形,如
图7 隧道内燃爆波的四种超压波形
Fig.7 Four overpressure waveforms of combustion in tunnel
初始蒸气云爆炸冲击波表现为无规律振荡衰减,爆源附近冲击波以规则正反射和斜反射为主;随着传播距离增加,斜反射逐渐占主导,并在特定角度下形成马赫波,使得降压曲线变得平滑,整个过程涉及化学反应放热、气体膨胀、隧道空间特性对后继波的加速以及流场叠加效应。结合各典型位置测点的波形分析,将隧道蒸气云爆炸分为自由扩展、反射耗散、壁面加速、马赫传播四个阶段。不同阶段甲烷蒸气云爆炸沿隧道轴向的超压云图,如
图8 9.5%体积浓度甲烷蒸气云爆炸沿隧道轴向超压流场云图
Fig.8 Overpressure cloud maps of combustion by 9.5% concentration methane vapor cloud along tunnel axial
自由扩展阶段为爆炸中心原点至22 m范围内,蒸气云被引燃后形成的初始火焰波迅速向隧道底板和两边扩散,开始以层流燃烧速度传播,超压曲线瞬时呈指数型增长,见
图9 甲烷爆炸时各个监测点峰值超压流场云图
Fig.9 Peak overpressure cloud maps at different monitoring points in a methane vapor cloud combustion
图10 隧道轴向截面温度演化
Fig.10 Temperature evolution maps of axial sections in tunnel
结合气体爆炸动力学弱冲击波爆炸理论等知识,建立甲烷爆炸超压随距点火源距离变化的非线性计算公式,并结合实验数据进行了验证。在此基础上进一步推导出温度计算公式如
(7) |
式中,T1=298 K,k=1.4为绝热系数,p=101.3 kPa,Δp为超压,Pa。
图11 9.5%体积浓度甲烷蒸气云爆炸沿程温度曲线与理论计算比较
Fig.11 Comparison of temperature curves along the explosion path of 9.5% concentration methane vapor cloud with theoretical calculations
图12 隧道径向截面温度演化
Fig.12 Temperature evolution maps of radial sections in tunnel
根据人体平均身高及身体薄弱部位,选取距地1.5 m处的测点观察甲烷蒸气云于隧道内燃爆的杀伤效应。陈国华
overpressure strength/kPa | damage effect | degree of injury |
---|---|---|
127.49 | most of the people died | fatal |
49.04 | severe damage or death to internal organs | severe |
23.54 | hearing organ damage or fracture | moderate |
10.79 | flesh wound | slight |
三种不同浓度甲烷燃爆的冲击波峰值压力衰减曲线,如
图13 三种不同浓度甲烷燃爆超压沿程衰减曲线
Fig.13 Decay curves of methane combustion overpressure in three concentrations along the tunnel
隧道内发生燃爆产生强烈高温是此类事故的重要表征,主要表现为热辐射对人体的损害。为确定热辐射的杀伤范围,选择Bake
火球直径:
(8) |
式中,W是燃烧的甲烷气的总质量,kg;D是火球的直径,m。
距爆源中心不同距离的辐射通量:
(9) |
式中,q是热辐射通量,W·
结合模拟得到的各测点的温度值从而计算出距爆源中心不同距离的辐射通量,热辐射强度引起的热损伤危害标
thermal intensity / kW· | damage effect | degree of injury |
---|---|---|
37.5 | 1% death within 10 s; 100% death within 1 min | fatal |
25.0 | more than second‑degree severe burns within 10 s; 50% death within 1min | severe |
12.5 | first‑degree burns within 10 seconds; 1% death within 1 minute | moderate |
4.0 | exposure for more than 20 seconds can cause pain | sight |
1.6 | prolonged exposure does not cause discomfort | safe |
三种不同浓度的甲烷燃爆热辐射强度沿程衰减曲线,如
图14 三种不同浓度甲烷燃爆热辐射强度沿程衰减曲线
Fig.14 Decay curves of methane combustion thermal radiation intensity in three concentrations
超压和热辐射强度对人员的杀伤范围,如
degree of injury | volume fraction | explosion overpressure / m | thermal radiation / m | combined effect / m |
---|---|---|---|---|
fatal | 9.5% | 0-17.84 | 0-20.58 | 0-20.58 |
6.5% | 0-12.14 | 0-16.46 | 0-16.46 | |
5.0% | / | 0-13.51 | 0-13.51 | |
severe | 9.5% | 17.84-160 | 20.58-23.87 | 20.58-160 |
6.5% | 12.14-45.36 | 16.46-19.32 | 16.46-45.36 | |
5.0% | 0-23.51 | 13.51-15.92 | 13.51-23.51 | |
moderate | 9.5% | / | 23.97-29.42 | / |
6.5% | 45.36-160 | 19.32-24.39 | 45.36-160 | |
5.0% | 23.51-160 | 15.92-20.63 | 23.51-160 | |
sight | 9.5% | / | 29.42-43.58 | / |
6.5% | / | 24.39-40.06 | / | |
5.0% | / | 20.63-37.8 | / | |
safe | 9.5% | / | 43.58-160 | / |
6.5% | / | 40.06-160 | / | |
5.0% | / | 37.8-160 | / |
基于三维CE/SE方法和化学反应模型,建立了隧道内甲烷空气预混蒸气云爆炸模型,并通过试验数据验证了模型的准确性,揭示了燃爆波的传播及温度场的演化规律,探究了三种不同浓度下燃爆超压与热辐射对隧道内人员的杀伤效应。主要结论如下:
(1)甲烷蒸气云爆炸超压在隧道轴向传播可分为自由扩展、反射耗散、壁面加速、马赫传播。超压峰值呈现先瞬时上升,达到峰值后骤减,且各个阶段对应的典型波形也均有差异。在隧道径向传播表现为沿壁面传播,上下反射,爆炸产生的最大超压在拱脚处,为275 kPa,强度随甲烷的消耗逐渐递减。
(2)甲烷蒸气云爆炸的温度演化规律沿轴向表现为由爆炸中心往隧道出入口对称传播,温度沿程衰减迅速,随着时间的推移核心高温区向隧道远端移动的特征。爆炸中心于径向截面产生温度峰值为920 K,高温核心区从拱顶向底板辐射,随着时间推移,截面温度逐渐趋于一致并缓慢降低。
(3)燃爆超压和热辐射均可导致人员死亡,低浓度(5.0%)的甲烷燃爆超压即会对隧道内所有位置人员造成中度以上伤害,中高浓度(6.5%和9.5%)的燃爆超压对人员存有致死威胁,致死范围分别为12.14 m、17.37 m。热辐射的致死范围更大,低中高浓度(5.0%、6.5%、9.5%)对应致死范围分别为13.51 m、16.46 m、20.58 m。
参考文献
于成龙, 李浩淼, 范韬. 乙醇水溶液蒸气云爆炸特征试验研究[J]. 中国安全生产科学技术, 2023, 19(S2):75-80. [百度学术]
YU Cheng‑long, LI Hao‑miao, FAN Tao. Experimental study on vapor cloud explosion characteristics of ethanol aqueous solution[J]. Journal of Safety Science and Technology, 2023, 19(S2): 75-80. [百度学术]
赵洪祥, 袁景. 蒸气云爆炸荷载计算方法比选研究[J]. 安全与环境学报, 2023, 23(11):3944-3950. [百度学术]
ZHAO Hong‑xiang, YUAN Jing. Research on calculation method selection of vapor cloud explosion load[J]. Journal of Safety and Environment, 2023, 23(11):3944-3950. [百度学术]
GRAHAM A, EDMUND C, JULIE H, et al. A review of very large vapor cloud explosions: Cloud formation and explosion severity[J]. Journal of Loss Prevention in the Process Industries, 2017, 48:367-375. [百度学术]
李静野, 蒋新生, 余彬彬,等. 大尺度开敞空间油料蒸气云爆炸超压与火焰传播机制研究[J]. 爆炸与冲击, 2022, 42(3):160-175. [百度学术]
LI Jing‑ye, JIANG Xin‑sheng, YU Bin‑bin, et al. Visualization experimental research of oil gas vapor cloud deflagration in large‑scale unconfined space[J]. Explosion and Shock Waves, 2022, 42(3):160-175. [百度学术]
EUGINIA D M, TASNEEM A, S. M T, et al. A method for the estimation of overpressure generated by open air hydrogen explosions[J]. Journal of Loss Prevention in the Process Industries, 2018, 52:99-107. [百度学术]
闫秋实, 张亚楠, 李述涛,等. 综合管廊内燃气爆炸荷载特性实验研究和数值模拟[J]. 爆破, 2021, 38(1):140-146. [百度学术]
YAN Qiu‑shi, ZHANG Ya‑nan, LI Shu‑tao, et al. Experimental study and numerical simulation of gas explosion load characteristics in integrated pipeline corridor[J]. Blasting, 2021, 38(1):140-146. [百度学术]
YANG Y, YANG S G, FANG Q, et al. Large‑scale experimental and simulation study on gas explosion venting load characteristics of urban shallow buried pipe trenches[J]. Tunnelling and Underground Space Technology, 2022, 123:104409. [百度学术]
吴建松,蔡继涛,赵亦孟,等. 城市综合管廊燃气爆炸传播特性实验研究[J].清华大学学报(自然科学版),2022,62(6):987-993. [百度学术]
WU Jian‑song, CAI Ji‑tao, ZHAO Yi‑meng, et al. Experimental study of the propagation characteristics of gas explosions in urban utility tunnels[J]. Journal of Tsinghua University. Science and Technology(Natural Science Edition), 2022, 62(6):987-993. [百度学术]
ZHU Y F, WANG D M, SHAO Z L, et al. Investigation on the overpressure of methane‑air mixture gas explosions in straight large‑scale tunnels[J]. Process Safety and Environmental Protection, 2020, 135:101-112. [百度学术]
ZHANG Q, PANG L. Analysis of the temperature distribution in the explosion of a methane/air mixture in a tunnel[J]. Journal of Engineering Physics and Thermophysics, 2012, 85:1413-1418. [百度学术]
谭迎新, 张一博, 王海宾,等. 封闭空间内甲烷爆炸对白鼠的杀伤作用研究[J].中国安全科学学报, 2014, 24(3): 38-41. [百度学术]
TAN Ying‑xin, ZHANG Yi‑bo, WANG Hai‑bin, et al. Study on animal injury caused by gas explosion in enclosed space[J]. China Safety Science Journal(CSSJ), 2014, 24(3):38-41. [百度学术]
MA Qiu‑ju, ZHONG Ming‑yu, GUO Yu‑hao, et al. Study on the characteristic of boiling expansion process of superheated LPG and its vapor cloud explosion[J]. Journal of Loss Prevention in the Process Industries, 2022, 78:104831. [百度学术]
张瑞华, 陈国华, 张晖, 等. TNO多能法在蒸气云爆炸模拟评价中的工程应用[J]. 华南理工大学学报(自然科学版), 2006, 34(5):109-114. [百度学术]
ZHANG Rui‑hua, CHEN Guo‑hua, ZHANG Hui, et al. Engineering applications of TNO multi‑energy method in VCE simulation assessment[J]. Journal of South China University of Technology(Natural Science Edition), 2006, 34(5):109-114. [百度学术]
郑远攀, 张应安, 冯长根,等. 基于多能法和概率方程的井喷爆炸后果分析[J].科技导报, 2008, 26(21): 43-47. [百度学术]
ZHENG Yuan‑pan, ZHANG Yin‑gan, FENG Chang‑gen, et al. Consequence analysis for explosion of blowout based on multi‑energy model and probit equation[J]. Science & Technology Review, 2008, 26(21): 43-47. [百度学术]
王邵军, 吕东, 张网. 基于TNO多能法的蒸气云爆炸伤害范围评估研究[J]. 消防科学与技术, 2009, 28(8):180-181. [百度学术]
WANG Shao‑jun, LV Dong, ZHANG Wang. Research on damage range assessment of steam cloud explosion based on TNO multi‑energy method[J]. Fire Science and Technology, 2009, 28(8):180-181. [百度学术]
VANDEN B, A C. The multi‑energy method: A framework for vapor cloud explosion blast prediction[J]. Journal of Hazardous Materials, 1989, 12:1-10. [百度学术]
吕东, 李晋, 杨军. 蒸气云爆炸定量评估系统的研究与开发[J]. 消防科学与技术, 2009, 28(12): 82-84. [百度学术]
LV Dong, LI Jin, YANG Jun. Research and development of quantitative evaluation system for vapor cloud explosion[J]. Fire Science and Technology, 2009, 28(12): 82-84. [百度学术]
BAKER Q A. Vapor cloud explosion analysis[J]. Process Safety Progress, 1996(2):106-109. [百度学术]
李春孝. 民用液化气泄漏爆炸威力的探析[J]. 消防科学与技术, 2004, 23(2):173-174. [百度学术]
LI Chun‑xiao. Analysis on explosion power of civil liquefied gas leakage[J]. Fire Science and Technology, 2004, 23(2):173-174. [百度学术]
宋元宁, 于立友, 李彩霞. TNT当量法预测某石化设备爆炸后果评价[J]. 中国安全生产科学技术, 2005, 1(3): 66-68. [百度学术]
SONG Yuan‑ning, YU Li‑you, LI Cai‑xia. Evaluation of explosion consequences of a petrochemical equipment predicted by TNT equivalent method[J]. Journal of Safety Science and Technology, 2005, 1(3): 66-68. [百度学术]
CHANG S C, TO W M. A New Numerical Framework for Solving Conservation Laws—The Method of Space‑Time Conservation Element and Solution Element[R]. NASA TM‑104495, 1991. [百度学术]
WU Y, MA F, YANG V. Space‑time method for detonation problems with finite‑rate chemical kinetics[J]. International Journal of Computational Fluid Dynamics,2004,18(3)277-287. [百度学术]
昝文涛, 洪滔, 董贺飞. 基于CE/SE方法模拟空气中RDX‑Al悬浮粉尘的两相爆轰[J]. 爆炸与冲击, 2016, 36(5): 603-610. [百度学术]
ZAN Wen‑tao, HONG Tao, DONG He‑fei. Numerical simulation of two‑phase detonation of suspending RDX‑Al dust in air with CE/SE[J]. Explosion and Shock Waves, 2016, 36(5):603-610. [百度学术]
王放. 基于改进CE/SE方法的煤油/空气连续旋转爆轰发动机工作特性研究[D]. 南京:南京理工大学, 2022. [百度学术]
WANG Fang. Research on Operating Characteristics of kerosene/Air Continuous Rotating Detonation Engine based on improved CE/SE method[D]. Nanjing: Nanjing University of Science and Technology, 2022. [百度学术]
HAMID R, HOSSEIN S. Fluid structure interaction with a finite rate chemistry model for simulation of gaseous detonation metal‑forming[J]. International Journal of Hydrogen Energy, 2019, 44(41):23289-23302. [百度学术]
SHEN H, LIU K X, ZHANG D L. Three dimensional simulation of detonation propagation in a rectangular duct by an improved CE/SE scheme[J]. Chinese Physics Letters, 2011, 28(12): 124-135. [百度学术]
WANG G, ZHU H, SUN Q, et al. An improved CE/SE scheme and its application to dilute gas‑particle flows[J]. Computer Physics Communications, 2011, 182(8): 1589-1601. [百度学术]
ZHANG Z J, WEN C Y, LIU Y F, et al. Application of CE/SE method to gas‑particle two‑phase detonations under an Eulerian‑Lagrangian framework[J]. Journal of Computational Physics, 2019, 394: 18-40. [百度学术]
李象远, 姚晓霞, 申屠,等. 高等学校化学学报[N]. 2020, 41:512-520. [百度学术]
LIAO K X, WANG Y W, CHEN D, et al. Parametric study on natural gas leakage and diffusion in tunnels[J]. Journal of Pipeline Systems Engineering and Practice, 2023, 14(2):04023003. [百度学术]
徐景德. 矿井瓦斯爆炸冲击波传播规律及影响因素的研究[D]. 北京:中国矿业大学, 2006. [百度学术]
XU Jing‑de. Research on shock wave propagation law and influencing factors of mine Gas explosion[D]. Beijing: China University of Mining and Technology, 2006. [百度学术]
武丹, 王健平. 粘性及热传导对于爆轰波的影响[J]. 应用力学学报, 2012, 29(6): 630-635. [百度学术]
WU Dan, WANG Jian‑ping. Influences of viscosity and thermal conductivity on detonation waves[J]. Chinese Journal of Applied Mechanics, 2012, 29(6): 630-635. [百度学术]
张连玉, 汪令羽, 苗瑞生. 爆炸气体动力学基础[M]. 北京:北京工业出版社, 1987. [百度学术]
段玉龙, 周心权, 龚武,等. 矿井瓦斯爆炸后巷道空气温度分布规律[J]. 中国矿业大学学报, 2010, 39(3): 318-323. [百度学术]
DUAN Yu‑long, ZHOU Xin‑quan, GONG Wu, et al. Temperature Distribution in Lane‑way Air After Mine Methane Explosions[J]. Journal of China University of Mining & Technology, 2010, 39(3): 318-323. [百度学术]
段玉龙,余明高,姚新友,等. 瓦斯爆炸后空间温度分布及热危害区域分析研究[J].中国安全生产科学技术,2018,14(1):56-62. [百度学术]
DUAN Yu‑long, YU Ming‑gao, YAO Xin‑you, et al. Spatial temperature distribution and thermal hazard region analysis after gas explosion[J]. Journal of Safety Science and Technology,2018,14(1):56-62. [百度学术]
陈国华, 吴家俊. 地下密闭空间燃气爆炸冲击波传播规律[J]. 天然气工业, 2017, 37(2):120-125. [百度学术]
CHEN Guo‑hua, WU Jia‑jun. Propagation laws of gas explosion shock waves in underground confined space[J]. Natural Gas Industry, 2017, 37(2):120-125. [百度学术]
BAKER W E, COX P A, WESTINE J J, et al. Explosion Hazards and Evaluation[M]. Elsevier Science ,1983. [百度学术]
WANG Kan, QIAN Xin‑ming, HE Yu‑ru, et al. Failure analysis integrated with prediction model for LNG transport trailer and thermal hazards induced by an accidental VCE: A case study[J]. Engineering Failure Analysis, 2020, 108:104351. [百度学术]