摘要
为了开发一种快速高效且绿色环保的二硝酰胺铵/吡嗪‑1,4‑二氧化物(ADN/PDO)共晶制备新途径并表征其性能,采用反应结晶法,以纯水作为溶剂,制备了ADN/PDO共晶,采用光学显微镜(OP)、单晶X射线衍射(SXRD)以及粉末X射线衍射(PXRD)对共晶的形貌和结构进行表征。结果显示,ADN/PDO共晶晶体呈棱柱状,由ADN和PDO分子按摩尔比2∶1结合形成,室温下晶体密度为1.779 g·c
图文摘要
A new and highly efficient method has been developed to prepare the ADN/PDO cocrystal, and the cocrystal has been comprehensively characterized.
固体推进
共晶技
为提高ADN/PDO共晶制备效率,实现高效制备,促进其全面性能表征评估。本研究采用溶液反应共结晶
ADN,自制,纯度>95%;PDO购于Toronto Research Chemicals公司,纯度≥98%,原料ADN与PDO分子结构见

图1 ADN、PDO分子结构
Fig.1 Chemical structures of ADN and PDO
ZEISS Axio Scope.A1显微镜、Bruker APEX‑Ⅱ‑CCD型衍射仪(用于单晶X射线衍射)、X'Pert Pro MPD型衍射仪(用于粉末X射线衍射)、METTLER TOLEDO DSC 3+差示扫描量热仪(DSC)、上海一恒BPS‑50CB型恒温恒湿箱。
采用反应结晶

图2 反应结晶法制备ADN/PDO共晶示意图
Fig.2 Schematic diagram of the reaction crystallization preparation for ADN/PDO cocrystal
采用ZEISS Axio Scope.A1显微镜对原料ADN、PDO及ADN/PDO共晶进行晶体形貌表征。
采用Bruker APEX‑Ⅱ‑CCD型号衍射仪,石墨单色化Mo‑Kα射线衍射,λ=0.071073 mm,在温度296 K的条件下以ω/2θ的扫描方式进行单晶X射线衍射(SXRD)。分别使用OLEX2、SHELXS2软件处理衍射数据、进行晶体结构解析,从而确定共晶的晶体结构和晶体学数据。
采用X’Pert Pro MPD型衍射仪测定粉末X射线衍射(PXRD)数据,扫描范围5°~50°,CuKα(λ=0.154056 nm)衍射靶,管电压40 kV,管电流40 mA,设置步长、步速分别为0.03°、0.4 s。
采用METTLER DSC分析仪对原料和共晶进行差示扫描量热法(DSC)测试。铝坩埚中放入约1.5 mg的样品,于40 mL·mi
将ADN原料和共晶样品完全干燥后,称取一定量的样品分别置于两个独立的玻璃容器中,在温度为30 ℃,相对湿度为80%的BPS‑50CB恒温恒湿箱中,敞口静置24 h。此期间,每隔1 h对样品进行称重,监测其质量随时间的变化情况,同步记录随时间推移时的样品状态,并计算样品的吸湿率,计算公式如
(1) |
式中,m1表示干燥样品的重量,mg;m2表示样品在吸收空气中的水分后在给定时间测量的重量,mg。
采用光学显微镜表征ADN、PDO及ADN/PDO共晶的形貌,其结果如

a. ADN

b. PDO

c. ADN/PDO cocrystal
图3 原料及共晶显微镜图
Fig.3 Optical micrographs of raw materials and ADN/PDO cocrystal
为了进一步确定ADN/PDO共晶结构,采用SXRD对析出的共晶晶体进行测试与表征,其结果如
structure parameter | ADN/PDO cocrystal |
---|---|
chemical formula | C4H12N10O10 |
formula weight | 360.3 |
temperature / K | 294 |
stoichiometry | 2∶1 |
crystal system | monoclinic |
space group | P21/c |
a / Å | 11.5959(2) |
b / Å | 8.18580(10) |
c / Å | 7.22370(10) |
β / (°) | 101.202(2) |
V / | 672.623(18) |
Z | 4 |
ρcalc / g·c | 1.779 |
index ranges | -14≤ h ≤14, -10≤ k ≤9, -8≤ l ≤9 |
reflections collected | 4820 |
independent reflections | 1395[R(int)=0.0216] |
F(000) | 372 |
data/restraints/parameters | 1395 / 8 / 125 |
Goodness‑of‑fit on | 1.112 |
R1, wR1[I>2sigma(I)] | 0.0438, 0.1118 |
R2, wR2 (all data) | 0.0453, 0.1133 |
结合Hirshfeld表面和2D指纹图谱对共晶中分子间相互作用力进行分析(

a. packing type diagram

b. intermolecular interaction of ADN/PDO cocrystal

c. 2D fingerprint plot

d. percentage of different contact types
图4 ADN/PDO共晶晶体结构及分子间主要相互作用
Fig.4 crystal structure and main intermolecular interactions for ADN/PDO cocrystal
在形貌表征和单晶X射线衍射基础上,对ADN、PDO和ADN/PDO共晶样品进行粉末X射线衍射测试,其结果如

图5 原料及ADN/PDO共晶的PXRD图谱
Fig.5 PXRD patterns of raw materials and ADN/PDO cocrystal
采用DSC进一步测试ADN、PDO和ADN/PDO共晶的热性能,其结果如

图6 ADN、PDO、ADN/PDO共晶的DSC曲线
Fig.6 DSC thermograms for ADN, PDO, ADN/PDO
在温度为30 ℃和相对湿度80%的实验环境下,采用定性和定量法对ADN、ADN/PDO共晶样品进行吸湿性测试,

a. hygroscopic changes

b. hygroscopicity curves
图7 ADN、ADN/PDO共晶的吸湿性测试及吸湿率曲线
Fig.7 Hygroscopicity test and hygroscopicity curves of ADN and ADN/PDO cocrystal
采用NASA CEA程序对ADN/PDO共晶及ADN单组分的能量特性进行理论计算,结果如
sample | ρ / g·c | OB(CO) | ΔHf / kJ·mo | Isp / s | C* / m· | Mc | Tc / K |
---|---|---|---|---|---|---|---|
ADN | 1.808 | +26% | -124.84 | 197.5 | 1303.7 | 24.79 | 2161.7 |
ADN/PDO | 1.779 | 0 | 696.21 | 277.9 | 1829.1 | 22.54 | 3697.96 |
Note: ρ is the experimental density at temperature. OB(CO) is the oxygen balance (CO). ΔHf is the enthalpy of formation. Isp is the specific impulse. C* is the characteristic velocity. Mc is the average molecular weight of combustion products. Tc is the combustion chamber temperature.
为解决ADN的强吸湿性问题,通过共晶技术,以水为溶剂,快速制备了ADN/PDO共晶,并采用光学显微镜、X射线衍射技术、热分析、吸湿性测试等手段进行表征,同时对其能量性能进行预测,得到具体结论如下:
(1)采用溶液反应结晶实现ADN/PDO共晶高效制备,该方法简单高效,且绿色环保,适宜工艺放大。
(2)ADN/PDO共晶由ADN与PDO以2∶1摩尔比,通过N─H…O氢键和NO2─π作用结合形成,其室温晶体密度1.779 g·c
(3)ADN/PDO共晶吸湿率仅为2.6%,大幅度降低ADN(45%)吸湿性,同时理论比冲高达277.9 s,明显高于ADN(197.5 s),具有抗吸湿性且能量较高,潜在巨大应用前景。
参考文献
雷晴, 卢艳华, 何金选. 固体推进剂高能氧化剂的合成研究进展[J]. 固体火箭技术, 2019, 42(2): 175-185. [百度学术]
LEI Qing, LU Yan‑hua, HE Jin‑xuan. Recent advances in synthesis of high energetic oxidizers for solid propellants [J]. Journal of Solid Rocket Technology, 2019, 42(2): 175-85. [百度学术]
MASON B P, ROLADN C M. Solid propellants[J]. Rubber Chemistry and Technology, 2019, 92(1): 1-24. [百度学术]
李瑞勤, 姜一帆, 张明, 等. 固体推进剂含能燃烧催化剂研究现状与发展趋势[J]. 火炸药学报, 2023, 46(1): 1-15. [百度学术]
LI Rui‑qin, JIANG Yi‑fan, ZHANG Ming, et al. Research status and development trend of energetic combustion catalysts for solid propellant[J]. Journal of Explosives and Explosives, 2023, 46(1): 1-15. [百度学术]
TRACHE D, KLAPOETKE T M, MAIZ L, et al. Recent advances in new oxidizers for solid rocket propulsion[J]. Green Chemistry, 2017, 19(20): 4711-4736. [百度学术]
LI Qi, HE Yi, PENG Ru‑fang. Graphitic carbon nitride (g‑C3N4) as a metal‑free catalyst for thermal decomposition of ammonium perchlorate[J]. Rsc Advances, 2015, 5(31): 24507-24512. [百度学术]
URBANSKY E T. Perchlorate as an environmental contaminant[J]. Environmental Science and Pollution Research, 2002, 9(3): 187-192. [百度学术]
OOMMEN, JAIN. Ammonium nitrate: a promising rocket propellant oxidizer[J]. Journal of Hazardous Materials, 1999, 67(3): 253-281. [百度学术]
赵庆华, 李岚, 梁彦会, 等. 硝酸铵基绿色洁净固体推进剂的研究进展[J]. 化学推进剂与高分子材料, 2012,10(6):30-33+46. [百度学术]
ZHAO Qing‑Hua, LI Lan, LIANG Yan‑Hui, et al. Research on migration resistance of ferrocene‑based hyperbranched poly (amine) ester [J]. Chemical Propellants and Polymer Materials, 2012, 10(6): 30-33+46. [百度学术]
李雅津, 谢五喜, 刘运飞, 等. ADN及其固体推进剂燃烧特性的研究进展[J]. 火炸药学报, 2021, 44(2): 130-138. [百度学术]
LI Ya‑jin, XIE Wu‑xi, LIU Yun‑fei, et al. Research progress on combustion characteristics of ADN and ADN‑Based propellants[J]. Journal of Explosives and Explosives, 2021, 44(2): 130-138. [百度学术]
KUMAR P. An overview on properties, thermal decomposition, and combustion behavior of ADN and ADN based solid propellants[J]. Defence Technology, 2018, 14(6): 661-673. [百度学术]
VENKATACHALAM S, SANTHOSH G, NINAN K N. An overview on the synthetic routes and properties of ammonium dinitramide (ADN) and other dinitramide salts[J]. Propellants Explosives Pyrotechnics, 2004, 29(3): 178-187. [百度学术]
NAIR U R, ASTHANA S N, RAO A S, et al. Advances in high energy materials[J]. Defence Science Journal, 2010, 60(2): 137-151. [百度学术]
MA Xin‑yi, JIN Shao‑hua, XIE Wu‑xi, et al. A novel green electrically controlled solid propellant with good electrical response and high energy performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128550. [百度学术]
CUI Jian‑hua, HAN Jin‑yu, WANG Jian‑ge, et al. Study on the crystal structure and hygroscopicity of ammonium dinitramide[J]. Journal of Chemical and Engineering Data, 2010, 55(9): 3229-3234. [百度学术]
CHEN Fu‑yao, XUAN Chun‑lei, LU Qiang‑qiang, et al. A review on the high energy oxidizer ammonium dinitramide: Its synthesis, thermal decomposition, hygroscopicity, and application in energetic materials[J]. Defence Technology, 2023, 19: 163-195. [百度学术]
BENNION J C, MATZGER A J. Development and evolution of energetic cocrystals[J]. Accounts of Chemical Research, 2021, 54(7): 1699-1710. [百度学术]
HEINTZ T, HERRMANN M J. Properties and structure of ADN‑Prills[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(6): 679-686. [百度学术]
马跃, 张海林. 球形二硝酰胺铵研究[J]. 固体火箭技术, 2002(01): 29-32. [百度学术]
MA Yue, ZHANG Hai‑lin. Study on prilled ammonium dinitramide (ADN)[J]. Solid Rocket Technology, 2002(01): 29-32. [百度学术]
TEIPEL U, HEINTZ T, KRAUSE H. Crystallization of spherical ammonium dinitramide (ADN) particles[J]. Propellants, Explosives, Pyrotechnics, 2000, 25: 81-85. [百度学术]
HEINTZ T, PONTIUS H, ANIOL J, et al. Ammonium dinitramide (ADN)‑prilling, coating, and characterization[J]. Propellants, Explosives, Pyrotechnics, 2009, 34: 231-238. [百度学术]
胥会祥, 廖林泉, 刘愆, 等. 聚氨酯黏合剂包覆球形ADN的性能研究[J]. 含能材料, 2008, 16(6): 712-715. [百度学术]
XU Hui‑xiang, LIAO Lin‑quan, LIU Qian, et al. Properties of prilled ammonium dinitramide (ADN) coated by polyurethane binders[J]. Journal of Energetic Materials, 2008, 16(6): 712-715. [百度学术]
杨宗伟, 李洪珍, 刘渝, 等. 共晶含能材料的研究进展及发展展望[J]. 中国材料进展, 2022, 41(2): 81-91+139. [百度学术]
YANG Zong‑wei, LI Hong‑zhen, LIU Yu, et al. Research progress and prospect of energetic cocrystal materials[J]. Materials Progress in China, 2022, 41(2): 81-91+139. [百度学术]
李纲, 王健, 任晓婷, 等. 固体推进剂氧化剂的共晶改性研究进展[J]. 固体火箭技术, 2021, (005): 044. [百度学术]
LI Gang, WANG Jian, REN Xiao‑ting, et al. Research progress co‑crystal modification of solid propellant oxidants[J]. Solid Rocket Technology, 2021, (005): 044. [百度学术]
BOND A D. What is a co‑crystal?[J]. CrystEngComm, 2007, 9(9): 833-834. [百度学术]
LEE T, CHEN J W, LEE H L, et al. Stabilization and spheroidization of ammonium nitrate: co‑crystallization with crown ethers and spherical crystallization by solvent screening[J]. Chemical Engineering Journal, 2013, 225: 809-817. [百度学术]
CHENG Min‑min, LIU Xun, LUO Qing‑ping, et al. Cocrystals of ammonium perchlorate with a series of crown ethers: preparation, structures, and properties [J]. CrystEngComm, 2016, 18(43): 8487-8496. [百度学术]
王灏静, 马媛, 李洪珍, 等. ADN/18C6共晶制备与表征[J]. 含能材料, 2018, 26(6): 545-548. [百度学术]
WANG Hao‑jing, MA Yuan, LI Hong‑zhen, et al. Preparation and characterization of ADN/18C6 cocrystal[J]. Journal of Energetic Materials, 2018, 26(6): 545-548. [百度学术]
BELLAS M K, MATZGER A J. Achieving balanced energetics through cocrystallization[J]. Angewandte Chemie International Edition, 2019, 58(48): 17185-17188. [百度学术]
BELLAS M K, MACKENZIE L V, MATZGER A J. Lamellar architecture affords salt cocrystals with tunable stoichiometry[J]. Crystal Growth & Design, 2021, 21(6): 3540-3546. [百度学术]
QIAO Shen, LI Hong‑zhen, YANG Zong‑wei. Decreasing the hygroscopicity of ammonium dinitramide (ADN) through cocrystallization[J]. Energetic Materials Frontiers, 2022, 3(2): 84-89. [百度学术]
BENNETT A J, MATZGER A J. Progress in predicting ionic cocrystal formation: The case of ammonium nitrate[J]. Chemistry-A European Journal, 2023, 29(27). [百度学术]
FRISCH M, TRUCKS G, SCHLEGEL H, et al. Gaussian 09, Revision D. 01[CP]. Gaussian, Inc., Wallingford CT, 2009. [百度学术]
MCBRIDE B J, ZEHE M J, CLEVELAND, et al. NASA glenn co efficients for calculating thermodynamic properties of individu al species: TP‑2002‑211556[P], 2002. [百度学术]