摘要
为准确描述爆轰产物在高温高压下的热力学关系,拓展应用范围,实现CHNO单质/混合炸药与含能金属盐爆轰性能的可靠预测,基于Exp‑6势的维里系数理论值建立了新气态爆轰产物状态方程Virial‑Peng‑Long(VPL),并基于更准确的“冷压”项与考虑金属高压热运动变化的“晶格振动”项建立了新凝聚态金属产物三项式状态方程Wu‑Chen‑Peng(WCP)。应用VPL计算了几种典型CHNO单质/混合炸药的爆轰参数,应用VPL与WCP评价了几种典型含能金属盐的爆轰CJ参数与驱动做功能力。结果表明,相比VLW和BKW,基于VPL能够更准确评价CHNO单质/混合炸药的爆轰性能,对太安(PETN)爆速预测偏差在±2.1%以内,最高不超过2.5%;对RHT‑901驱动圆筒稳定速度预测误差绝对值<1%。而VPL与WCP能够准确预测含能金属盐爆轰性能,其中对叠氮化铅爆轰CJ参数计算相对误差不超过±4%;对铜叠氮化物驱动飞片速度预测相对误差绝对值小于1%。
图文摘要
基于爆轰产物状态方程进行炸药爆轰参数的热力学计算是研究炸药爆轰过程的基础,也是预测未知炸药爆轰性能、指导炸药装药配方设计与新炸药合成的重要方法。近年来,高能量密度含能材料分子设计得到大量研究,爆轰性能热力学计算有助于筛选具有合适爆轰性能的炸药分
目前常用的BKW与VLW状态方程仍存在一些不足。其中BKW状态方程提出的较早,也应用最为广泛。但一方面,BKW使用多套参数计算不同类型炸药,缺乏通用
针对以上问题,为提高爆轰热力学计算的准确性,同时拓展计算的材料范围实现对含能金属盐爆轰性能的准确预测。本研究通过理论分析与计算,建立新的气态产物状态方程Virial‑Peng‑Long(VPL)与凝聚态金属产物状态方程Wu‑Chen‑Peng(WCP)。将VPL与WCP应用在CHNO炸药与含能金属盐爆轰参数计算中,通过与实验值及其他状态方程计算值对比分析,并评价新状态方程在预测这两类含能材料的爆轰CJ参数及做功能力方面的准确性与适用性。
凝聚炸药的气态爆轰产物在CJ状态下可达到几至几十吉帕的压力与几千开尔文的温度,密度超过炸药自身装药密度,其热力学关系已经不能用理想气体状态方程来描述。维里状态方程考虑了分子体积与分子间相互作用,理论上适合描述气体在高温高压下的热力学关
(1) |
式中,Vm是气体的摩尔体积,c
维里状态方程中的n阶维里系数可根据Mayer展开理
(2) |
(3) |
式中,kB是Boltzmann常数,1.3806488×1
(4) |
式中,ε是分子间最大吸引能,J;
对于Exp‑6势宽广温度范围内的2阶维里系数已有计算研
(5) |
式中,fij的表达式如
对于4阶和5阶维里项,四分子和五分子间相互作用的Mayer展开形式十分复杂,很难直接求解。
Barker

图1 L‑J 6‑12势4~5阶维里系数计算值与文献值对比
Fig.1 Comparison between the calculated values and the literature values of the 4-5th order Virial coefficients of L‑J 6‑12 potential
从
通过基于维里系数理论计算值构建的Exp‑6势下2~5阶维里项,建立了Virial‑Peng‑Long(VPL)状态方程,如下所示:
(6) |
(7) |
(8) |
(9) |
(10) |
(11) |
(12) |
式中,bx、cx、dx、ex分别代表2阶、3阶、4阶、5阶无量纲维里系数‑温度关系拟合式系数。VPL状态方程中的2~5阶维里项参数如
type | value | type | value | type | value | type | value | type | value |
---|---|---|---|---|---|---|---|---|---|
b1 | -1.76358 | b15 | -57.48673 | c12 | 0.04845 | d9 | -0.71993 | e3 | -17.56250 |
b2 | -2.22513 | b16 | 0.14818 | c13 | -12.27360 | d10 | -8.50898 | e4 | -4.58881 |
b3 | -2.66841 | b17 | -1305.43710 | c14 | 0.05856 | d11 | -0.01212 | e5 | 18.27770 |
b4 | -0.75632 | c1 | -1.14019 | c15 | -43.70161 | d12 | -15.88648 | e6 | -8.71393 |
b5 | 3.37443 | c2 | -3.12627 | c16 | 0.04603 | d13 | -7.38927 | e7 | 0.05914 |
b6 | -0.38402 | c3 | -2.43735 | c17 | -215.78612 | d14 | -1.40048 | e8 | -0.88679 |
b7 | 1.08068 | c4 | -0.83587 | d1 | -2.35225 | d15 | -1.31933 | e9 | 1.328E‑7 |
b8 | -2.22385 | c5 | 5.18488 | d2 | -3.78631 | d16 | -0.87972 | e10 | 0.00612 |
b9 | -0.81853 | c6 | -0.66549 | d3 | -2.49397 | d17 | 3.52562 | e11 | -17.37990 |
b10 | -1.56972 | c7 | 1.80678 | d4 | -1.23009 | d18 | -0.99915 | e12 | 0.01819 |
b11 | 0.05199 | c8 | -2.44981 | d5 | 2.23154 | d19 | 5.25646 | e13 | -5.24886 |
b12 | 0.10393 | c9 | -0.21886 | d6 | -1.09693 | d20 | -1.55510 | e14 | 0.00104 |
b13 | -191.46520 | c10 | -6.32838 | d7 | 2.20097 | e1 | -1.57831 | e15 | -66.58590 |
b14 | 0.06510 | c11 | 0.00992 | d8 | -3.78632 | e2 | -12.25167 |
Note: bx, cx, dx, ex are fitting coefficients of the dimensionless virial coefficient‑temperature relationship for second, third, fourth, and fifth orders, respectively.
在得到准确的维里项形式后,需要确定合适的产物分子势参数,使VPL状态方程能够准确描述气态产物热力学关系。考虑炸药几种主要气态产物,参考其在高温高压下pVT关系实验或分子动力学计算数
species | ε/kB / K | b0 / c | MAPE / % | ref. |
---|---|---|---|---|
H2 | 25.4 | 57.11 | 1.248 |
[ |
O2 | 97.6 | 75.38 | 1.035 |
[ |
CO2 | 164.4 | 105.33 | 1.157 |
[ |
CO | 96.4 | 98.12 | 0.965 |
[ |
NO | 134.8 | 76.96 | 1.248 |
[ |
N2 | 83.9 | 96.28 | 0.671 |
[ |
CH4 | 145.3 | 84.25 | 1.184 |
[ |
Note: ε/kB and b0 are parameters of Exp‑6 potential.
可以看到,优化后的产物分子势参数使VPL能准确描述产物单组分气体的热力学关系,计算相对误差在1%左右。对于强极性产物水,考虑极性分子间相互作用与温度相关性,参考文献[
(13) |
(14) |
理论上,对于金属,无论是固体还是液体,其高温高压热力学关系均可通过三项式状态方程描
(15) |
式中,pC(V)是描述金属在零温下p‑V关系的“冷压”项;pIon(V,T)是考虑金属微观晶格振动的“晶格振动”项;pEle(V,T)是考虑微观下金属自由电子运动贡献的“电子运动”项。
对于“冷压”项,本研究使用物理背景清晰,形式简单,普适性强,适合描述金属在较大压力范围内热力学关系的Vinet状态方
(16) |
(17) |
V0 K是金属在零温下的比容,可以根据金属热膨胀关系式近似给
(18) |
对于“冷压”项参数B0 K和,根据金属在常温常压下的热力学Gruneisen系数Γ0与室温(≈300 K)下金属冲击波速度us与粒子速度up关系式参
(19) |
(20) |
(21) |
对于金属三项式状态方程中的“晶格振动”项,本研究采用基于德拜模型得到的自由能表达
(22) |
(23) |
式中,N=NA/M,M是金属的摩尔质量,g·mo
(24) |
式中,ΘD(V0)是常温常压下金属的德拜温度,K。将式(31)代入式(27),可以得到完善的“晶格振动”项。根据热力学基本关系可以得到“晶格振动”项的压力形式:
(25) |
对于“电子运动”项,使用基于电子系统费米统计理论得到的金属自由电子气状态方
(26) |
式中,β0是金属的电子比热系数,J·k
species | ρ0 / g·c | ρ0 K | B0 K / GPa | B′0 K | Γ | ΘD(V0 / K | β / J· |
---|---|---|---|---|---|---|---|
Cu | 8.930 | 9.068 | 142.1074 | 5.05 | 1.98 | 321 |
1.08×1 |
Ag | 10.490 | 10.675 | 116.0718 | 5.21 | 2.41 | 231 |
6.00×1 |
Pb | 11.340 | 11.642 | 49.8341 | 4.86 | 2.74 | 87 |
1.45×1 |
Ni | 8.875 | 8.979 | 192.6397 | 4.76 | 1.83 | 450 |
1.21×1 |
Note: ρ0, Γ0, ΘD(V0), β0 are the density, Gruneisen coefficient, Debye temperature, and electron specific heat of metals at room temperature and atmospheric pressure; ρ0 K, B0 K, and B′0 K are the density, bulk moduli, and the first‑order partial derivative of the B0 K with respect to pressure of metals at zero temperature and atmospheric pressure.
将以上新建立的VPL和WCP状态方程植入基于最小自由能原理求解爆轰产物平衡组成的热力学程
首先应用新建立的状态方程VPL计算CHNO单质/混合炸药的爆轰性能,为了更全面地评价新状态方程计算准确性,分别计算了不同类型炸药的不同种类爆轰性能参数,包括太安(PETN)的爆速,黑索今(RDX)的爆轰CJ压力,以及熔黑梯‑901(RHT‑901)的爆轰产物做功能力。
PETN的爆轰过程接近理想爆

a. comparison between calculated and experimental results

b. relative error between calculated and experimental results
图2 PETN不同装药密度下爆速计算值与实验值对比
Fig.2 Comparison between calculated and experimental detonation velocities of PETN under different loading densities
通过
作为一种常用炸药,RDX在不同装药密度下的爆轰CJ压力实验数据较为丰富,使用VPL状态方程计算了RDX在0.56~1.80 g·c

a. comparsion between calculated and experimental results

b. relative error between calculated and experimental results
图3 RDX不同装药密度下爆轰CJ压力计算值与实验值对比
Fig.3 Comparison between calculated and experimental detonation CJ pressure of RDX under different loading densities
通过
为评价VPL对炸药爆轰产物做功能力计算准确性。使用VPL状态方程计算了典型CHNO混合炸药RHT‑901的爆轰产物等熵膨胀p‑V关系,如

图4 应用VPL计算得到的RHT‑901 爆轰产物等熵膨胀p‑V关系
Fig.4 p‑V relationship of isentropic expansion of RHT‑901 detonation products calculated using VPL equation of state
根据所得数据使用基于非线性最小二乘法的SEQS程序拟合了RHT‑901的爆轰产物JWL状态方程参数,如
parameters | ρ0 / g·c | A / GPa | B / GPa | R1 | R2 | ω | E0 / Mbar |
---|---|---|---|---|---|---|---|
value | 1.705 | 297.3745 | 1.34495 | 3.3345895 | 0.6589378 | 0.3 | 0.0950146 |
Note: ρ0 is loading density of RHT‑901. A, B, R1, R2, ω, E0 are JWL equation of state parameters of RHT‑901.
圆筒试验是评价炸药做功能力的标准方法,使用基于VPL计算值拟合得到的爆轰产物Jones‑Wilkins‑Lee(JWL)状态方程参数,使用非线性动力学仿真软件LS‑DYNA对RHT‑901的标准圆筒试验进行动力学仿真,仿真模型如

图5 RHT‑901标准圆筒试验动力学仿真模型结构图
Fig.5 Simulation geometric structure model of the standard cylinder test of RHT‑901
使用LS‑PrePost软件对仿真结果进行后处理,输出圆筒壁速度曲线与文献[

图6 RHT‑901标准圆筒试验圆筒壁速度历程仿真结果与实验值对比
Fig.6 Comparison between calculated and experimental values of cylindrical wall velocity history in standard cylinder test of RHT‑901
type | reference | u t=20 / m· | relative error / % |
---|---|---|---|
experimental results |
[ | 1676 | 0 |
VPL | in this study | 1661 | -0.895 |
VLW |
[ | 1711 | 2.088 |
BKW |
[ | 1861 | 11.038 |
从
使用新爆轰产物状态方程VPL与WCP对叠氮化铅、斯蒂芬酸铅、硝酸肼镍、5‑硝基四唑亚铜、乙炔银‑硝酸银五种含能金属盐在不同密度下的爆速D进行了计算,并与相关文献记载的实验

图7 五种含能金属盐爆速计算结果与实验值对比
Fig.7 Comparison between calculated and experimental values of detonation velocity of five energetic metal salts
LA—lead azide, LSt—lead styphnate, NHN—nickel hydrazine nitrate, CuNT—copper(I)‑5‑nitrotetrazolate, AgCN—silver acetylide‑silver nitrate
不难看到
type | experimental result | calculated results | relative error / % |
---|---|---|---|
D |
4726 m· |
4807 m· | 1.714 |
pCJ | 17.12 GPa | 17.78 GPa | 3.855 |
使用VPL与WCP计算了铜叠氮化物CuN4.432
parameters | ρ0 / g·c | D / m· | pCJ / GPa | A / GPa | B / GPa | R1 | R2 | ω | E0 / Mbar |
---|---|---|---|---|---|---|---|---|---|
value | 2.215 | 5640 | 15.36 | 179.11568 | 1.10224 | 3.319194 | 0.6540107 | 0.19 | 0.083062 |
Note: ρ0, D, pCJ are loading density, detonation velocity, and detonation CJ pressure of CuN4.4329; A, B, R1, R2, ω, E0 are JWL equation of state parameters of CuN4.4329.
基于计算值使用LS‑DYNA对CuN4.4329爆轰驱动飞片过程进行动力学仿真,仿真模型如

图8 CuN4.4329爆轰驱动飞片动力学仿真模型结构图
Fig.8 Simulation geometric structure model of the detonation driven flyer test for CuN4.4329
使用LS‑PrePost软件对仿真结果进行后处理,输出飞片速度曲线并与文献[

图9 CuN4.4329爆轰驱动飞片速度历程仿真结果与实验值对比
Fig.9 Comparison between calculated and experimental values of detonation driven flyer velocity history for CuN4.4329
type | experimental result | calculated results | relative error / % |
---|---|---|---|
uaverage |
2483 m· |
2459 m· | -0.967 |
type |
experimental result | calculated results | relative error / % |
uaverage |
2483 m· |
2459 m· | -0.967 |
研究通过理论计算得到了Exp‑6势在
(1) 使用VPL计算了PETN、RHT‑901等几种典型CHNO单质/混合炸药的爆轰参数,通过对比表明通过VPL能够准确评价CHNO单质/混合炸药爆轰性能。对PETN爆速计算偏差在±2.1%以内,最高不超过2.5%;对RDX爆轰CJ压力预测相对误差在±6%以内;对RHT‑901圆筒实验筒壁稳定速度预测偏差绝对值<1%。计算准确性相比BKW和VLW两种状态方程有了显著提高。
(2) 使用VPL与WCP评价了叠氮化铅、硝酸肼镍等几种典型含能金属盐的爆轰CJ参数与驱动做功能力,通过对比表明基于VPL与WCP能够准确预测含能金属盐爆轰性能。其中对叠氮化铅爆轰CJ参数计算偏差不超过4%;对铜叠氮化物驱动飞片速度预测相对误差在1%以内。
本研究建立的新爆轰产物状态方程VPL与WCP可用于CHNO单质/混合炸药与含能金属盐爆轰参数的热力学计算。为进一步实现VPL与WCP在爆炸动力学仿真中的直接应用,提高仿真的准确性,下一步有待进行爆轰热力学计算与动力学仿真的耦合研究。
参考文献
吴雄. VLW爆轰产物状态方程的发展及应用[J]. 火炸药学报, 2021, 44(1): 1-7. [百度学术]
WU Xiong. Development and application of VLW equation of state for detonation products[J]. Chinese Journal of Explosives & Propellants, 2021, 44(1): 1-7. [百度学术]
SUCESKA M, ANG H G, STIMAC B, et al. BKW EOS: History of modifications and further improvement of accuracy with temperature‑dependent covolumes of polar molecules[J]. Propellants, Explosives, Pyrotechnics, 2023, 48(1): e202100278. [百度学术]
HOBBS M L, SCHMITT R G, MOFFAT H K. JCZS3‑an improved database for EOS calculations[R]. SAND2018‑6389C, 2018. [百度学术]
韩勇. 炸药爆轰产物状态方程理论与应用研究[D]. 绵阳: 中国工程物理研究院, 2015. [百度学术]
HAN Yong. Theoretical and applied research on the equation of state for detonation products[D]. Mianyang: China Academy of Engineering Physics, 2015. [百度学术]
韩勇, 郭向利, 龙新平. 高温高压CO2状态方程研究[J]. 含能材料, 2016, 24(5): 462-468. [百度学术]
HAN Yong, GUO Xiang‑li, LONG Xin‑ping. High tempertaure and high pressure equation of state of carbon dioxide[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2016, 24(5): 462-468. [百度学术]
赵雅琦. 短脉冲加载下小尺寸装药二维冲击起爆与爆轰特性[D]. 北京: 北京理工大学, 2022. [百度学术]
ZHAO Ya‑qi. Two‑dimensional shock initiation characteristics of small‑size charges under short‑pulse loading[D]. Beijing: Beijing Institute of Technology, 2022. [百度学术]
覃文志, 龙新平, 蒋小华. 金属配合物类炸药的爆轰性能计算及数值模拟[J]. 含能材料, 2011, 19(5): 540-543. [百度学术]
QIN Wen‑zhi, LONG Xin‑ping, JIANG Xiao‑hua. Calculation of detonation parameters of metal compounds explosives[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2011, 19(5): 540-543. [百度学术]
BAI J F, ZHANG P, ZHOU C W, et al. Theoretical studies of real‑fluid oxidation of hydrogen under supercritical conditions by using the virial equation of state[J]. Combustion and Flame, 2022, 243: 111945. [百度学术]
韩勇, 龙新平, 黄毅民, 等. L‑J Exp‑6两种形式势能函数对计算无量纲第二维里系数的影响[J]. 含能材料, 2009, 17(5): 574-577. [百度学术]
HAN Yong, LONG Xin‑ping, HUANG Yi‑min, et al. Effects of L‑J and Exp‑6 potential function on calculation of reduced second virial coefficient[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2009, 17(5): 574-577. [百度学术]
KIHARA B T. Determination of intermolecular forces from the equation of state of gases[J]. Journal of the Physical Society of Japan, 1948, 3(4): 265-268. [百度学术]
BARKER J A, LEONARD P J, POMPE A. Fifth virial coefficients[J]. The Journal of Chemical Physics, 1966, 44(11): 4206-4211. [百度学术]
BELONOSHKO A, SAXENA S K. A molecular dynamics study of the pressure‑volume‑temperature properties of supercritical fluids: II. CO2, CH4, CO, O2, and H2[J]. Geochimica et Cosmochimica Acta, 1991, 55(11): 3191-3208. [百度学术]
DUAN Z H, MOLLER N, WEARE J H. Molecular dynamics simulation of PVT properties of geological fluids and a general equation of state of nonpolar and weakly polar gases up to 2000 K and 20000 bar[J]. Geochimica et Cosmochimica Acta, 1992, 56(10): 3839-3845. [百度学术]
ZAUG J M, CARTER J A, BASTEA S, et al. Experimental measurement of speeds of sound in dense supercritical carbon monoxide and development of a high‑pressure, high‑temperature equation of state[J]. The Journal of Physical Chemistry B, 2013, 117(18): 5675-5682. [百度学术]
MAZEVET S, BLOTTIAU P, KRESS J D, et al. Quantum molecular dynamics simulations of shocked nitrogen oxide[J]. Physical Review B, 2004, 69(22): 224207. [百度学术]
SPAN R, LEMMON E W, JACOBSEN R T, et al. A reference quality equation of state for nitrogen[J]. Internation Journal of Thermophysics, 1998, 19(4): 1121-1132. [百度学术]
ZHANG Z G, DUAN Z H. Prediction of the PVT properties of water over wide range of temperatures and pressures from molecular dynamics simulation[J]. Physics of the Earth and Plantary Interiors, 2005, 149(3‑4): 335-354. [百度学术]
吴强. 金属材料高压物态方程及Gruneisen系数的研究[D]. 绵阳: 中国工程物理研究院, 2004. [百度学术]
WU Qaing. Research on the high pressure equation of state and Gruneisen coefficient of metals[D]. Mianyang: China Academy of Engineering Physics, 2004. [百度学术]
MARSH S P. LASL shock Hugoniot data[M]. Berkeley: University of California Press, 1980. [百度学术]
GREEFF C W, BOETTGER J C, GRAF M J, et al. Theoretical investigation of the Cu EOS standard[J]. Journal of Physics and Chemistry of Solids, 2006, 67(9): 2033-2040. [百度学术]
陈俊祥, 于继东, 李平, 等. Gruneisen γ通用函数及完全物态方程[J], 物理学报, 2015, 64(8): 086401. [百度学术]
CHEN Jun‑xiang, YU Ji‑dong, LI Ping, et al. Universal function of Gruneisen γ and the complete equation of state[J]. Acta Physica Sinica, 2015, 64(8): 086401. [百度学术]
ALTSHULER L V, BRUSNIKIN S E, KUZMENKOV E A. Isotherms and Gruneisen functions for 25 metals[J]. Journal of Applied Mechanics and Technical Physics, 1987, 28(1): 129-141. [百度学术]
经福谦. 实验物态方程导引(第二版)[M]. 北京: 国防工业出版社, 1999: 122-128. [百度学术]
JING Fu‑qian. Introduction of experimental equation of state (Second Edition)[M]. Beijing: National Defense Industry Press, 1999: 44-46. [百度学术]
FRIED L E, HOWARD W M. Explicit Gibbs free energy equation of state applied to the carbon phase diagram[J]. Physical Review B. 2000, 61(13): 8734-8743. [百度学术]
刘琴. 炸药爆轰过程中凝聚碳相态演化与能量释放的关联机制[D]. 合肥: 中国科学技术大学, 2022. [百度学术]
LIU Qin. Correlation mechanism between phase evolution of condensed carbon and energy release during explosive detonation[D]. Mianyang: China Academy of Engineering Physics, 2011. [百度学术]
董海山, 周芬芬. 高能炸药及相关物性能[M]. 北京: 科学出版社, 1989: 150. [百度学术]
DONG Hai‑shan, ZHOU Fen‑Fen. Performance of high explosives and related substances[M]. Beijing: Science Press, 1989: 150. [百度学术]
辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册[M]. 北京: 机械工业出版社, 2018: 124-138. [百度学术]
XIN Chun‑liang, XUE Zai‑qing, TU Jian, et al. Handbook of common material parameters for finite element analysis[M]. Beijing: China Machine Press, 2018: 124-138. [百度学术]
JAFARI M, KESHAVARZ M H, ZAMANI A, et al. A novel method for assessment of the velocity of detonation for primary explosives[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(4): 342-347. [百度学术]
TAPPAN A S, BALL J P, MILLER J C. DBX‑1 (copper(I)‑5‑nitrotetrazolate) reactions at sub‑millimeter diameters[R]. SAND2013‑4254C, 2013. [百度学术]
曹仕瑾.叠氮肼镍的结构与性能[D].南京:南京理工大学,2007. [百度学术]
CAO Shi‑jin. Structure and properties of nickel azide hydrazine[D]. Nanjing: Nanjing University of Science and Technology, 2007. [百度学术]
MU Y F, ZHANG W, SHEN R Q, et al. Observations on detonation growth of lead azide at microscale[J]. Micromachines, 2022, 13(3): 451. [百度学术]
PENG Y, YU Q X, YIN Q, et al. Performance investigation of a copper azide micro detonator using experiments and simulations[J]. Propellants, Explosives, Pyrotechnics, 2022, 47(4): e202100343. [百度学术]