摘要
多环富氮含能化合物因其在构建低机械感度、良好热稳定性和高密度新型含能分子方面的独特优势,而备受国内外研究人员关注。研究将四唑环接入稠环中构建新型多环富氮骨架,利用其作为高能有机燃料和氢键供体,进一步与富有氢键受体的氧化性结构单元HClO4通过非共价键自组装,合成了3种不含结晶水的新型多环自组装含能化合物——7‑氨基‑6‑(2H‑四唑‑5‑基)‑吡唑并[1,5‑a]嘧啶高氯酸盐(1),7‑氨基‑6‑(2H‑四唑‑5‑基)‑[1,2,4]三唑并[1,5‑a]嘧啶高氯酸盐(2)和2,7‑二氨基‑6‑(2H‑四唑‑5‑基)‑[1,2,4]三唑并[1,5‑a]嘧啶高氯酸盐(3)。采用核磁共振谱(H NMR)、X‑射线单晶衍射(XRD)分析对其结构进行表征,利用差示扫描量热仪‑热重联用(DSC‑TG)和BAM法测试其热稳定性和机械感度,并运用Gaussian 09程序和EXPLO5 V6.05.02预测其爆轰性能。结果表明,3种化合物均有较高的晶体密度(密度ρ: 1.75~1.86 g·c
图文摘要
能量和安全性是含能材料的两个关键特性。现代含能材料对安全性的更高要求,推动了具有不同结构和性能的新型含能分子不断发展,以满足不同实际应用需求。大量研究表明,多环富氮含能化合物在构建具有低机械感度、良好热稳定性和高密度的新型含能分子方面具有独特优势,而备受国内外研究人员关
多环含能化合物主要包含稠环和联环形式,稠环结构具有共平面特性,可展现出强的π‑π相互作用,使得这类化合物表现出较低的机械感度和较高的热稳定
非共价键自组装策略通过高能有机燃料和氧化性(含能)结构单元在分子间的堆积/连接,调控含能化合物的能量性能。因其合成工艺简单、性能调控空间大被广泛应用于含能共晶、含能离子盐以及配位聚合物或金属‑有机框架化合物等方
基于富氮多环结构和高氯酸根离子的能量特性,同时利用非共价键自组装策略在构建不含结晶水的新型含能化合物方面的独特优势,本研究将具有高氮量的四唑环接入稠环骨架中,利用稠环和联环的结合,构建新型多环富氮骨架,将其进一步与强氧化性结构单元HClO4通过非共价键自组装,合成了3种不含结晶水的新型多环自组装含能化合物。利用X‑射线单晶衍射分析、红外光谱、核磁共振谱、元素分析对合成的含能化合物进行结构表征,通过差示扫描量热‑热重联用(DSC‑TG)技术研究其热稳定性,并利用Gaussian 09程序和EXPLO5 V6.05.02预测其爆轰性能。
试剂:7‑氨基‑6‑(2H‑四唑‑5‑基)‑吡唑并[1,5‑a]嘧啶,7‑氨基‑6‑(2H‑四唑‑5‑基)‑[1,2,4]三唑并[1,5‑a]嘧啶,2,7‑二氨基‑6‑(2H‑四唑‑5‑基)‑[1,2,4]三唑并[1,5‑a]嘧啶,实验室自制;高氯酸,分析纯,成都科隆化工试剂公司。
仪器:差示扫描量热‑热重联用仪,STA449F5,德国耐驰仪器制造有限公司;傅里叶变换红外光谱仪,TENSORⅡ,德国Bruker公司;超导核磁共振波谱仪,AVANCE 600 MHz,德国Bruker公司;元素分析仪,Vario EL CUBE,德国元素分析系统公司;BFH 12撞击感度仪、FSKM 10摩擦感度仪,美国爱迪赛恩(北京)科技有限公司。
7‑氨基‑6‑(2H‑四唑‑5‑基)‑吡唑并[1,5‑a]嘧啶(S1),7‑氨基‑6‑(2H‑四唑‑5‑基)‑[1,2,4]三唑并[1,5‑a]嘧啶(S2)和2,7‑二氨基‑6‑(2H‑四唑‑5‑基)‑[1,2,4]三唑并[1,5‑a]嘧啶(S3)的合成依据参考文献[
在25 mL烧杯中将化合物S1(1 g, 4.94 mmol)溶于20 mL配置好的55%左右的高氯酸中,逐渐升温至60 ℃,搅拌1 h后过滤,滤液自然冷却至室温,静置一段时间,有晶体析出,过滤,冷水洗涤,干燥得到淡黄色晶体0.92 g,收率61.20%。
DSC(10 ℃·mi
在25 mL烧杯中将化合物S2(1 g, 4.92 mmol)溶于20 mL配置好的55%左右的高氯酸中,逐渐升温至60 ℃,搅拌1 h后过滤,滤液自然冷却至室温,静置一段时间,有晶体析出,过滤,冷水洗涤,干燥得到淡黄色晶体0.84 g,收率56.42%。
DSC(10 ℃·mi
在25 mL烧杯中将化合物S3(1 g,4.58 mmol)溶于20 mL配置好的55%左右的高氯酸中,逐渐升温至60 ℃,搅拌1 h后过滤,滤液自然冷却至室温,静置一段时间,有晶体析出,过滤,冷水洗涤,干燥得到淡黄色晶体0.77 g,收率52.84%。
DSC(10 ℃·mi
对于化合物1~3,均选取尺寸0.22 mm×0.20 mm×0.18 mm单晶进行X射线衍射实验。晶体结构由程序SHELXS97和SHELXL97直接法解
所得3个晶体的CCDC号分别为:2322043,2322045,2322044。
parameters | 1 | 2 | 3 |
---|---|---|---|
formula | C7H7N8ClO4 | C6H6N9ClO4 | C6H7N10ClO4 |
CCDC number | 2322043 | 2322045 | 2322044 |
formula weight | 302.66 | 303.65 | 318.67 |
temperature / K | 298 | 298 | 200 |
crystal system | triclinic | monoclinic | monoclinic |
Z | 2 | 4 | 4 |
ρ / g·c | 1.863 | 1.753 | 1.829 |
space group | P21/n | Cc | |
a / Å | 8.0440(16) | 9.0976(1) | 12.2971(5) |
b / Å | 8.186(2) | 10.9541(1) | 9.0178(4) |
c / Å | 9.154(2) | 11.5557(1) | 10.955(4) |
α / (°) | 105.216(9) | 90 | 90 |
β / (°) | 94.845(9) | 92.226(1) | 107.748(1) |
γ / (°) | 109.242(8) | 90 | 90 |
F(000) | 308 | 616 | 648 |
GOF on | 1.060 | 1.067 | 1.090 |
R1 (all date) | 0.0441 | 0.0379 | 0.0389 |
wR2 (all date) | 0.1187 | 0.1100 | 0.1022 |
packing coefficient / % | 76.0 | 69.3 | 72.6 |
compound 1 | compound 2 | compound 3 | |||
---|---|---|---|---|---|
dihedral angle | angle / Å | dihedral angle | angle / Å | dihedral angle | angle / Å |
C(2)—N(1)—N(2)—C(7) | -0.1(3) | N(2)—N(1)—C(1)—N(4) | -0.3(2) | C(2)—N(3)—C(1)—N(1) | 179.2(5) |
N(1)—N(2)—C(3)—C(4) | -177.9(2) | N(2)—N(3)—N(4)—C(1) | 0.0(2) | C(1)—N(3)—C(2)—N(5) | 177.1(5) |
N(5)—N(4)—C(5)—C(4) | -178.8(2) | C(5)—N(5)—C(4)—C(2) | 0.2(3) | C(5)—N(4)—C(2)—N(3) | 176.2(4) |
N(6)—N(7)—C(5)—N(4) | 0.1(3) | C(11)—N(6)—C(5)—N(5) | -177.4(2) | N(2)—N(4)—C(5)—C(4) | 177.0(4) |
N(2)—N(1)—C(2)—C(1) | 0.1(3) | C(11)—N(7)—N(8)—C(3) | 177.6(17) | C(2)—N(3)—C(1)—N(2) | -0.4(6) |
C(7)—N(2)—C(3)—N(3) | 179.9(3) | N(7)—N(8)—C(3)—N(9) | 3.5(3) | N(2)—N(4)—C(2)—N(3) | 0.8(5) |
N(1)—N(2)—C(7)—C(1) | 0.1(3) | N(2)—N(1)—C(1)—N(4) | -0.8(2) | C(2)—N(4)—C(5)—N(6) | -177.7(4) |
N(6)—N(7)—C(5)—C(4) | 178.6(2) | N(7)—N(8)—C(5)—N(6) | -1.5(2) | C(3)—N(5)—C(2)—N(4) | 0.3(7) |
C(7)—N(8)—C(6)—C(4) | 0.7(4) | N(1)—C(1)—C(2)—C(3) | -12.1(3) | C(2)—N(5)—C(3)—C(4) | -0.1(7) |
C(7)—C(1)—C(2)—N(1) | 0.0(4) | N(4)—C(1)—C(2)—C(4) | -12.5(3) | N(9)—N(10)—C(6)—N(7) | 0.1(6) |
N(2)—C(3)—C(4)—C(5) | 177.3(2) | C(4)—C(2)—C(3)—N(8) | 0.6(2) | N(5)—C(3)—C(4)—C(6) | -178.4(5) |
C(5)—C(4)—C(6)—N(8) | -178.3(3) | C(3)—C(2)—C(4)—N(5) | -0.4(3) | N(9)—N(10)—C(6)—C(4) | 179.4(5) |
化合物1的分子结构和晶胞堆积如

图1 化合物1的晶体结构图
Fig.1 Crystal structure of compound 1
D—H…A | d(D—H) / Å | d(H…A) / Å | d(D…A) / Å | ∠(DHA) / (°) |
---|---|---|---|---|
(intra)N(3)—H(3A)…N(1) | 0.86 | 2.42 | 2.756(3) | 104 |
(intra)N(3)—H(3B)…N(4) | 0.86 | 2.15 | 2.792(4) | 131 |
(intra)C(6)—H(6A)…N(7) | 0.93 | 2.54 | 2.879(4) | 102 |
N(3)—H(3A)…O(1) | 0.86 | 2.29 | 3.047(3) | 146 |
N(6)—H(6)…O(1) | 0.91(4) | 2.43(4) | 3.009(4) | 122(3) |
N(6)—H(6)…N(1) | 0.91(4) | 2.47(4) | 3.180(3) | 135(3) |
N(6)—H(6)…O(3) | 0.91(4) | 2.29(4) | 2.894(3) | 123(3) |
N(8)—H(8)…O(3) | 0.86 | 2.18 | 2.855(3) | 135 |
N(8)—H(8)…O(4) | 0.86 | 2.35 | 2.925(3) | 125 |
C(1)—H(1)…O(2) | 0.93 | 2.47 | 3.154(3) | 130 |
C(6)—H(6A)…O(4) | 0.93 | 2.41 | 2.981(4) | 120 |
化合物2的分子结构和晶胞堆积如

图2 化合物2的晶体结构图
Fig.2 Crystal structure of compound 2
D—H…A | d(D—H) / Å | d(H…A) / Å | d(D…A) / Å | ∠(DHA) / (°) |
---|---|---|---|---|
N(2)—H(2)…O(1) | 0.94(3) | 2.45(3) | 3.081(2) | 125(2) |
N(2)—H(2)…O(4) | 0.94(3) | 1.99(3) | 2.918(2) | 173(3) |
N(5)—H(5)…O(3) | 0.86 | 2.60 | 3.104(2) | 119 |
N(5)—H(5)…N(6) | 0.86 | 2.12 | 2.939(2) | 160 |
N(9)—H(9A)…O(1) | 0.85(2) | 2.05(2) | 2.855(2) | 158(2) |
(intra)N(9)—H(9A)…N(7) | 0.85(2) | 2.48(3) | 2.769(2) | 101(19) |
(intra)N(9)—H(9B)…N(1) | 0.84(3) | 2.18(2) | 2.801(2) | 131(2) |
N(9)—H(9B)…N(3) | 0.84(3) | 2.62(2) | 3.239(2) | 132(19) |
C(4)—H(4)…O(3) | 0.93 | 2.45 | 3.064(2) | 124 |
C(4)—H(4)…O(4) | 0.93 | 2.52 | 3.437(2) | 170 |
(intra)C(4)—H(4)…N(4) | 0.93 | 2.58 | 2.909(2) | 101 |
C(11)—H(11)…O(3) | 0.93 | 2.47 | 3.027(3) | 119 |
化合物3的分子结构和晶胞堆积如

图3 化合物3的晶体结构图
Fig.3 Crystal structure of compound 3
D—H…A | d(D—H) / Å | d(H…A) / Å | d(D…A) / Å | ∠(DHA) / (°) |
---|---|---|---|---|
N(1)—H(1A)…O(3) | 0.88 | 2.22 | 3.095(6) | 172 |
N(1)—H(1B)…O(1) | 0.88 | 2.26 | 3.122(6) | 166 |
N(5)—H(5)…O(4) | 0.81(7) | 2.33(7) | 3.019(6) | 145(7) |
N(5)—H(5)…N(2) | 0.81(7) | 2.45(7) | 3.058(6) | 133(7) |
(intra)N(6)—H(6A)…N(2) | 0.88 | 2.46 | 2.785(5) | 103 |
N(6)—H(6A)…N(3) | 0.88 | 2.26 | 3.081(6) | 155 |
(intra)N(6)—H(6B)…N(7) | 0.88 | 2.21 | 2.854(7) | 130 |
N(6)—H(6B)…O(1) | 0.88 | 2.54 | 2.944(6) | 109 |
N(9)—H(9)…O(2) | 0.87(6) | 1.99(6) | 2.851(6) | 176(8) |
(intra)C(3)—H(3)…N(10) | 0.95 | 2.50 | 2.842(6) | 101 |
C(3)—H(3)…N(7) | 0.95 | 2.41 | 3.279(7) | 151 |
C(3)—H(3)…N(8) | 0.95 | 2.35 | 3.140(8) | 141 |
为了更深入研究化合物1~3的分子间相互作用力,通过CrystalExplorer 17.5软

图4 化合物1~3的Hirshfeld表面,二维指纹图以及原子间相互作用的比例
Fig.4 Hirshfeld surfaces, 2D fingerprint plot in crystal stacking and individual atomic contact percentage of compounds 1-3
利用DSC‑TG对化合物1~3的热分解行为进行测试,如

a. compound 1

b. compound 2

c. compound 3
图5 化合物1~3的DSC和TG曲线
Fig.5 DSC and TG curves of compounds 1-3
对化合物1~3开展了BAM测试,研究其撞击感度与摩擦感度。1~3的撞击感度(IS)和摩擦感度(FS)分别为:>40 J,216 N(1);4 J,144 N(2);25 J,216 N(3)。其中化合物1和3感度均低于传统高能炸药RDX(IS=7.4 J,FS=120 N);而化合物2相对敏感,这可能是因为化合物2的多环骨架平面性较其他2种化合物差,同时从Hirshfeld表面(
compound | Td / ℃ | ρ / g·c | ΩCO2 / % | Δf | IS / J | FS / N | v / m· | p / GPa |
---|---|---|---|---|---|---|---|---|
1 | 184.0 | 1.86 | -74.01 | 359.6 | >40.0 | 216 | 7570 | 22.8 |
2 | 222.5 | 1.75 | -57.96 | 392.3 | 4.0 | 144 | 7343 | 21.1 |
3 | 259.5 | 1.79 | -57.74 | 341.8 | 25.0 | 240 | 7519 | 22.0 |
TN | 295.0 | 1.65 | -73.97 | -67.0 | 15.0 | 353 | 6881 | 19.5 |
RD | 204.0 | 1.81 | -21.61 | 70.3 | 7.4 | 120 | 8795 | 34.9 |
Note: Td is decomposition temperature (onset); ρ is single crystal density (298 K); ΩCO2 is oxygen balance assuming the formation of CO2; Δf

Scheme 2 Isodemic reactions for computing the HOF of compounds 1-3
(1) 将3种含有四唑环的多环化合物作为氢键供体,与富有氢键受体的氧化性结构单元HClO4通过自组装合成了3种不含结晶水的自组装含能化合物1~3。298 K时化合物1~3的晶体密度为1.75~1.86 g·c
(2) 化合物1~3表现出良好的热稳定性(Td≥184 ℃),其中1、3具有低的机械感度(IS≥25 J, FS≥216 N),明显优于RDX。
(3) 化合物1~3均显示出较高的正生成焓(341.8~392.3 kJ·mo
致谢
感谢南京理工大学程广斌教授团队在EXPLO5计算方面给予的指导和帮助。
参考文献
石峻豪, 张文全, 张庆华. 基于呋咱结构的多环含能化合物合成研究进展[J]. 含能材料, 2023, 31(4): 374-410. [百度学术]
SHI Jun‑hao, ZHANG Wen‑quan, ZHANG Qing‑hua. Synthetic progress of furazan based polycyclic energetic compounds[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2023, 31(4): 374-410. [百度学术]
SHI J H, XIA H L, SONG S W, et al. Structure‑activity relationship analysis and molecular structure construction of fused tricyclic energetic molecules containing flexible ring[J]. Energetic Materials Frontiers, 2023, 4(3): 194-201. [百度学术]
HOU T Y, XU Z, ZHANG X P, et al. High‑density and low‑sensitivity energetic materials based on conjugated fused rings[J]. Energetic Materials Frontiers, 2022, 3(3): 166-171. [百度学术]
MIAO X Y, YANG X B, LI Y C, et al. Thermal stability of azole‑rich energetic compounds: their structure, density, enthalpy of formation and energetic properties[J]. Physical Chemistry Chemical Physics, 2023, 25(28): 18523-18544. [百度学术]
GAO H X, ZHANG Q H, SHREEVE J M. Fused heterocycle‑based energetic materials (2012-2019)[J]. Journal of Materials Chemistry A, 2020, 8(8): 4193-4216. [百度学术]
刘赛, 石伟, 王毅, 等. 富氮稠环类氮氧化物的研究进展[J]. 含能材料, 2021, 29(6): 567-578. [百度学术]
LIU Sai, SHI Wei, WANG Yi, et al. Research progress of nitrogen‑rich fused‑ring N‑oxides[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2021, 29(6): 567-578. [百度学术]
王润文, 杨春明, 刘建. 高通量计算与深度学习相结合的稠环含能化合物设计[J]. 含能材料, 2022, 30(12): 1226-1236. [百度学术]
WANG Run‑wen, YANG Chun‑ming, LIU Jian. Exploring novel fused‑ring energetic compounds via high‑throughput computing and deep learning[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2022, 30(12):1226-1236. [百度学术]
YIN P, SHREEVE J M. From N‑nitro to N‑nitroamino: preparation of high‑performance energetic materials by introducing nitrogen‑containing ions[J]. Angewandte Chemie International Edition, 2015, 54(48): 14513-14517. [百度学术]
JIANG X E, YANG Y L, DU H Y, et al. Triazene‑bridged energetic materials based on nitrotriazole: Synthesis, characterization, and laser‑ignited combustion performance[J]. Dalton Transactions, 2023, 52(16): 5226-5233. [百度学术]
XU M X, CHENG G B, XIONG H L, et al. Synthesis of high‑performance insensitive energetic materials based on nitropyrazole and 1,2,4‑triazole[J]. New Journal of Chemistry, 2019, 43(28): 11157-11163. [百度学术]
TANG Y X, KUMAR D, SHREEVE J M. Balancing excellent performance and high thermal stability in a dinitropyrazole fused 1,2,3,4‑tetrazine[J]. Journal of the American Chemical Society, 2017, 139(39): 13684-13687. [百度学术]
YIN P,ZHANG J H,IMLER G H,et al. Polynitro‑functionalized dipyrazolo‑1,3,5‑triazinanes: Energetic polycyclization toward high density and excellent molecular stability[J]. Angewandte Chemie, 2017, 129(30): 8960-8964. [百度学术]
BENZ M, KLAPÖTKE T M, STIERSTORFER J. 1‑Nitramino‑5‑aminotetrazole—a simple accessible highly energetic building block[J]. Energetic Materials Frontiers, 2022, 3(3): 161-165. [百度学术]
WANG Q, SHAO Y L, LU M. Amino‑tetrazole functionalized fused triazolo‑triazine and tetrazolo‑triazine energetic materials[J]. Chemical Communications, 2019, 55(43): 6062-6065. [百度学术]
SNYDER C J, MYERS T W, IMLER G H, et al. Tetrazolyl triazolotriazine: A new insensitive high explosive[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(3): 238-242. [百度学术]
LUO Y M, ZHENG W W, WANG X J, et al. Nitrification progress of nitrogen‑rich heterocyclic energetic compounds: a review[J]. Molecules, 2022, 27(5): 1465. [百度学术]
LI Y, CAO Y T, SONG S W, et al. Self‑assembly of iodine‑containing oxidants with nitrogen‑rich heterocyclic compounds for novel energetic biocidal agents[J]. Chemical Engineering Journal, 2022, 442: 136326. [百度学术]
WANG Y, SONG S W, HUANG C, et al. Hunting for advanced high‑energy‑density materials with well‑balanced energy and safety through an energetic host‑guest inclusion strategy[J]. Journal of Materials Chemistry A,2019,7(33):19248-19257. [百度学术]
ZHENG Y, QI X J, CHEN S T, et al. Self‑assembly of nitrogen‑rich heterocyclic compounds with oxidants for the development of high‑energy materials[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28390-28397. [百度学术]
JIANG X E, LI L, YANG Y L, et al. Boosting laser‑ignited combustion performance of energetic materials with low sensitivity: Integration of triazene‑bridged triazole with oxygen‑rich moieties via noncovalent self‑assembly[J]. Crystal Growth & Design, 2023, 23(1): 333-341. [百度学术]
ZANG J C, FENG Y A, BO Y Y, et al. Synthesis of a high‑energy‑density material through rapid replacement of crystal water of hydrates[J]. Chem, 2022, 8(10): 2678-2687. [百度学术]
JIANG L, LV R B, WANG J X, et al. Self‑Assembly fabrication of energetic perchlorates with high density and near‑infrared laser ignition capacity[J]. Crystal Growth & Design, 2023, 23(4): 2702-2709. [百度学术]
NAGAHARA K,KAWANO H,SASAOKA S,et al.Reaction of 5‑aminopyrazole derivatives with ethoxymethylene‑malononitrile and its analogues[J]. Journal of heterocyclic chemistry, 1994, 31(1): 239-243. [百度学术]
LIU Y, QI X, ZHANG W, et al. Construction of bicyclic 1,2,3‑triazine N‑oxides from aminocyanides[J]. Organic Letters, 2021, 23(3): 734-738. [百度学术]
SHELDRICK G M. SHELXS⁃97, program for crystal structure solution[CP]. University of Göttingen, Germany, 1997. [百度学术]
SHELDRICK G M. SHELXL⁃97, program for crystal structure refinement[CP]. University of Göttingen, Germany, 1997. [百度学术]
United Nations Economic Commission for Europe. Recommendations on the transport of dangerous goods[M]. Manual of tests and criteria, 6th, United Nations Publication, New York, 2015: 79-127. [百度学术]
FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian09, Gaussian, Inc[CP]. Wallingford: CT, 2009. [百度学术]
GAO H X, YE C F, PIEKARSKI C M, et al. Computational characterization of energetic salts[J]. The Journal of Physical Chemistry C, 2007, 111: 10718-10731. [百度学术]
SUĆESKA, M. EXPLO5, ver. 6.05.02[CP]. Brodarski institute, Zagreb, Croatia, 2019. [百度学术]
SPACKMAN M A, JAYATILAKA D. Hirshfeld surface analysis[J]. Crystengcomm, 2009, 11: 19-32. [百度学术]
张朝阳, 黄静, 布汝朋. 含能材料的本征结构与性能[M]. 北京: 科学出版社, 2023: 70-82. [百度学术]
ZHANG Chao‑yang, HUANG Jing, BU Ru‑peng. Intrinsic structures and properties of energetic materials[M]. Beijing: Science Press, 2023: 70-82. [百度学术]
KLAPÖTKE T M. Chemistry of high‑energy materials[M]. Walter de Gruyter GmbH & Co KG, 2022. [百度学术]