摘要
圆筒试验是目前标定炸药爆轰产物状态方程参数最常用的试验之一,为了确定炸药爆轰产物JWL状态方程参数,设计并搭建了探针式圆筒试验平台。采用一组具有径向位移差的镀金探针和20 ns高精度脉冲测时仪记录圆筒膨胀过程中的多个离散点,当圆筒在爆轰产物驱动下膨胀到探针头部形成回路时,脉冲测时仪记录下时间,据此可获得圆筒壁的位移时程曲线。研究开展了两组TNT炸药的探针式圆筒试验,得到了圆筒膨胀位移离散点,试验结果显示两组试验曲线相差较小,表明探针式圆筒试验具有较好的重复性。采用BP‑GA算法确定了TNT炸药的爆轰产物JWL状态方程参数,将确定的JWL参数代入有限元软件进行数值检验,结果显示仿真得到的位移曲线相对试验曲线的决定系数
图文摘要
A probe cylinder test was designed to record the radial expansion displacement of the cylinder wall using a set of probes and a 20 ns high‑speed pulse chronograph. Based on the designed probe cylinder test platform, the probe cylinder tests of TNT melt‑cast explosives were carried out. The discrete points of the displacement collected were fitted into the displacement function and JWL state equation parameters of TNT explosive detonation products were determined using BP‑GA algorithm.
美国LLNL实验室设计的圆筒试
目前有两种较为常见的圆筒试验方法,其中应用最为广泛的标准圆筒试验采用高速扫描照相机和氩气弹等设备直接记录圆筒壁的膨胀过
基于T‑20试验方法思想和电离探针试验思路,本研究设计并搭建了一种新型探针式圆筒试验平台,采用一组具有径向位移差的探针和高精度脉冲测时仪记录圆筒膨胀过程中的多个离散点。开展了TNT炸药的探针式圆筒试验,并由此确定了TNT炸药爆轰产物的JWL状态方程参数,为炸药状态方程新型标定试验的设计提供参考。
本研究参照文献[
本研究设计的探针式圆筒试验的示意图如

图1 探针式圆筒试验示意图
Fig.1 Schematic diagram of the probe cylinder test
本研究先后设计了10通道和18通道的高速脉冲测时仪,其中脉冲测时仪的2通道与测量炸药爆速的电线连接,其余通道与镀金探针连接(10通道和18通道测时仪分别与8个和16个探针连接)。除通道数不同外,10通道和18通道脉冲测时仪的采样频率和采样原理均相同。圆筒膨胀前期由于应力波和稀疏波的作用,圆筒壁向外膨胀的加速度较大,且膨胀速度具有波动性,而圆筒膨胀后期随着爆轰产物压力的降低,圆筒壁膨胀加速度较小,膨胀速度相对稳定。考虑到圆筒膨胀过程中不同阶段的运动特性,设置圆筒膨胀前期的探针排列密度较大,而后期排列密度较低。以采用10通道脉冲测时仪的探针式圆筒试验为例进行说明,探针的布局如

图2 探针式圆筒探针布局
Fig.2 Probe distribution of the probe cylinder test
从经济性和科学性的角度出发,本研究设计了一种采用具有位移差的镀金探针和20 ns高速脉冲测时仪记录圆筒壁膨胀过程中一系列离散点的探针式圆筒试验,试验主要设计依据可总结为以下几点:
由于OFHC无氧铜具有良好的延展性,因此圆筒在膨胀初期不会发生破裂,且Souer
在Yan
本研究分别实施了10 通道和 18 通道的TNT熔铸药柱的探针式圆筒试验各一组,TNT药柱密度为1.591 g·c

图3 圆筒试验结果
Fig.3 Experimental results of probe cylinder test
观察
(1) |
式中,ai、bi为(i=1,2)待定常数。
(2) |
将两次圆筒试验数据的平均值采用Matlab软件Trust‑Region算法按
explosive | a1 | b1 | a2 | b2 | t0 |
---|---|---|---|---|---|
TNT | 3.911 | 0.2332 | 0.09197 | 5.461 | 1.577 |
文献[

a. Radial expansion displacement history

b. Radial expansion velocity history
图4 圆筒膨胀距离时程曲线和速度时程曲线
Fig.4 Radial expansion displacement and velocity histories of cylindrical wall

图5 不同TNT的圆筒试验数据对比
Fig.5 Comparison of cylinder test data for different TNT
等熵条件下JWL状态方程形式
(3) |
式中,p为爆轰产物压力,GPa;V为爆轰产物相对比容;A、B、C、R1、R2、ω为6个常数。爆轰产物内能为:
(4) |
在爆轰产物膨胀过程中,其内能不断转换成圆筒壁和爆轰产物的动能,两者的动能之和
(5) |
式中,ρm和ρ0分别为圆筒和炸药初始密度,g·c
爆轰产物的相对比容为:
(6) |
式中,x0为初始圆筒壁厚,mm;L为圆筒膨胀位移,mm。结合

图6 TNT炸药爆轰产生的动能曲线
Fig.6 The curve of kinetic energy generated by the detonation of TNT explosive
采用自编程BP‑GA算
explosive | A/GPa | B/GPa | C/GPa | R1 | R2 | ω |
---|---|---|---|---|---|---|
TNT | 313.91 | 4.39 | 0.790 | 4.05 | 1.01 | 0.303 |
为了验证

图7 数值仿真模型
Fig.7 Numerical simulation model
TNT炸药采用JWL状态方程,材料参数如
(7) |
(8) |
须符合受限条件:
(9) |
式中,η为比容与初始比容的比值;β和n分别为硬化常数和硬化指数;下标0表示参考状态(T=300 K,p=0,ε=0);下标p和T的素数参数是该参数相对于参考状态下压力和温度的导数。Steinberg‑Guinan模型参数值均取自AUTODYN材料库(见
G0 /GPa | Y0 /GPa | Ymax /Gpa | B | N | G'p/G0 | G'T/G0 | Tm/K |
---|---|---|---|---|---|---|---|
47.7 | 0.12 | 0.64 | 36 | 0.45 | 28 | 0.38 | 1790 |

a. Radial displacement

b. Radial velocity
图8 试验和仿真结果对比
Fig.8 Comparison of experimental and simulation results
设计并搭建了探针式圆筒试验平台,实施了TNT炸药的探针式圆筒试验,根据试验结果确定了TNT炸药爆轰产物JWL状态方程参数,主要结论如下:
(1) 设计了探针式圆筒试验平台,采用1组具有径向位移差的探针和20 ns高速脉冲测时仪记录圆筒膨胀过程中的多个离散点,当圆筒膨胀到探针头部形成回路时,脉冲测时仪记录下回路形成时间,通过一组探针可得圆筒膨胀位移时程曲线。
(2) 开展了2组TNT炸药的探针式圆筒试验,得到了两条位移时程曲线,结果显示18通道相对于10通道的位移曲线的
(3) 根据圆筒试验数据采用BP‑GA算法确定了TNT炸药的爆轰产物JWL状态方程参数,代入显式有限元软件进行圆筒试验的数值计算,结果显示试验结果和仿真结果吻合较好,仿真得到的位移曲线相对试验曲线的决定系数
参考文献
Lee E L, Hornig H C, Kury J W. Adiabatic Expansion of High Explosive Detonation Products: UCRL‑50422[R]. California, Lawrence Radiation Laboratory, 1968. [百度学术]
罗一鸣, 沈飞, 蒋秋黎, 等. 两种密度 DNTF 装药的驱动性能及其产物状态方程[J]. 火炸药学报, 2021, 44(2): 175-180. [百度学术]
LUO Yi‑ming, SHEN Fei, JIANG Qiu‑li, et al. Driving performance and JWL EOS of DNTF charge with two densities[J]. Chinese Journal of Explosive & Propellants, 2021, 44(2): 175-180. [百度学术]
裴红波, 钟斌, 李星瀚,等. RDX基含铝炸药圆筒试验及状态方程研究[J]. 火炸药学报, 2019, 42(4): 403-409. [百度学术]
PEI Hong‑bo, ZHONG Bin, LI Xing‑han, et al. Study on the cylinder tests and equation of state in RDX based aluminized explosives[J]. Chinese Journal of Explosive & Propellants, 2019, 42(4): 403-409. [百度学术]
冯晓军, 薛乐星, 曹芳洁, 等. CL‑20基含铝炸药组分微结构对其爆炸释能特性的影响[J]. 火炸药学报, 2019, 42(6): 608-613. [百度学术]
FENG Xiao‑jun, XUE Le‑xing, CAO Fang‑jie, et al. Effect of ingredients microstructure of CL‑20‑based aluminum‑containing explosives on explosion energy release[J]. Chinese Journal of Explosive & Propellants, 2019, 42(6): 608-613. [百度学术]
南宇翔, 蒋建伟, 王树有, 等. 一种CL‑20基压装混合炸药JWL状态方程参数研究[J]. 含能材料, 2015, 23(6): 516-521. [百度学术]
NAN Yu‑xiang, JIANG Jian‑wei, WANG Shu‑you, et al. JWL equation of state of detonation product for CL‑20 based pressed composite explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(6): 516-521. [百度学术]
SCOTT I J. Scaled cylinder test experiments with insensitive PBX 9502 explosive[C]//In Proceedings of the 15th International Detonation Symposium. USA: Office of Naval Research, 2014: 171-180. [百度学术]
ZHERNOKLETOV M V, GLUSHAK B L. Material properties under intense dynamic loading[M]. Springer; 2006. [百度学术]
Kuz′mitskiia I V, Bel′skiia V M, SHUIKINA A N, et al. Energy release behind the Jouget point during detonation of plasticized PETN from the results of experiments by the T‑20 method[J]. Combustion, Explosion, and Shock Waves, 2014, 50(2): 235-241. [百度学术]
陈朗, 李泽仁. 激光速度干涉仪测量法在炸药圆筒试验中的应用 [J]. 爆炸与冲击, 2001, 21(3):229-232. [百度学术]
CHEN Lang, LI Ze‑ren. The cylinder tests measured by VISAR interferometer[J]. Explosion and Shock Waves, 2001, 21(3):229-232. [百度学术]
Sanchidrián J A, CASTEDO R, López L M, et al. Determination of the JWL constants for ANFO and emulsion explosives from cylinder test data[J]. Central European Journal of Energetic Materials, 2015, 12(2): 177-194. [百度学术]
CASTEDO R, NATALE M, López L M, et al. Estimation of Jones‑Wilkins‑Lee parameters of emulsion explosives using cylinder tests and their numerical validation[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112:290-301. [百度学术]
赵锋, 虞德水, 彭其先,等. 钝感炸药散心爆轰驱动平板飞片研究[J]. 含能材料, 2011, 19(5): 527-531. [百度学术]
ZHAO Feng, YU De‑shui, PENG Qi‑xian, et al. Research on flyer acceleration of divergent detonation of insensitive explosive[J]. Chinese Journal of Energetic Material(Hanneng Cailiao), 2011, 19(5): 527-531. [百度学术]
刘丹阳, 陈朗, 杨坤, 等. CL‑20基炸药爆轰产物JWL状态方程实验标定方法研究 [J]. 兵工学报, 2016(增刊1): 141-145. [百度学术]
LIU Dan‑yang, CHEN Lang, YANG Kun, et al. Calibration method of parameters in JWL equation of state for detonation products of CL‑20‑based explosives[J]. Acta Armamentarii, 2016(suppl.1): 141-145. [百度学术]
杨晨琛, 李晓杰, 闫鸿浩, 等. 爆轰产物状态方程的水下爆炸反演理论研究[J]. 爆炸与冲击, 2019, 39(9): 092201. [百度学术]
YANG Chen‑chen, LI Xiao‑jie, YAN Hong‑hao, et al. An inverse method for the equation of state of detonation products from underwater explosion tests[J]. Explosion and Shock Waves, 2019, 39(9): 092201. [百度学术]
李科斌, 董新龙, 李晓杰,等. 水下爆炸实验法在工业炸药JWL状态方程测定中的应用研究[J]. 兵工学报, 2020, 41(3): 488-494. [百度学术]
LI Ke‑bin, DONG Xin‑long, LI Xiao‑jie, et al. Research on parameters determination of JWL EOS for commercial explosives based on underwater explosion test[J]. Acta Armamentarii, 2020, 41(3): 488-494. [百度学术]
SOUERS P C, LAUDERBACH L, Garza R, et al. Upgraded analytical model of the cylinder test[J]. Propellants, Explosives, Pyrotechnics, 2013, 38(3): 419-424. [百度学术]
YANG Y, DUAN Z, LI S, et al, Evaluation of the detonation characteristics of aluminized DNAN‑based melt‑cast explosive by the detonation cylinder test[J]. Propellants, Explosives, Pyrotechnics, 2023, 47(4). [百度学术]
LI X, PEI H, ZHANG X, et al. Effect of aluminum particle size on the performance of aluminized explosives[J]. Propellants, Explosives, Pyrotechnics, 2020, 45: 807-813. [百度学术]
LAN I F, HUNG S C, CHEN C Y, et al. An improved simple method of deducing JWL parameters from cylinder expansion test[J]. Propellants, Explosives, Pyrotechnics, 1993, 18(1): 18-24. [百度学术]
宋浦, 杨凯, 梁安定, 等. 国内外 TNT 炸药的JWL状态方程及其能量释放差异分析[J]. 火炸药学报, 2013, 36(2): 42-45. [百度学术]
SONG Pu, YANG Kai, LIANG An‑ding, et al. Difference analysis on JWL‑EOS energy release of different TNT charge[J]. Chinese Journal of Explosive & Propellants, 2013, 36(2): 42-45. [百度学术]
LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products UCRL‑50422[R]. GA: Lawrence Livermore National Laboratory, 1968. [百度学术]
REAUGH J E, SOUERS P C. A constant‑density Gurney approach to the cylinder test[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(2): 124-128. [百度学术]
SOUERS P C, GARZA R, HORNIG H, et al. Metal angle correction in the cylinder test[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(1): 9-15. [百度学术]
崔浩,郭锐,顾晓辉,等. BP神经网络和圆筒能量模型标定炸药 JWL 的参数[J]. 火炸药学报, 2021, 44(5): 665-673. [百度学术]
CUI Hao,GUO Rui,GU Xiao‑hui,et al. Calibration of JWL parameters of explosive by BP neural network and cylinder energy model[J]. Chinese Journal of Explosive & Propellants, 2021, 44(5): 665-673. [百度学术]
STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high‑strain rate[J]. Journal of Applied Physics, 1980, 51(3): 1498-1533. [百度学术]
MEYERS M A. Dynamic behavior of materials[M]. New York: John Wiley & Sons, 1994. [百度学术]
Century Dynamics Inc. AUTODYN material library, Version17.0[DB]. Los Angeles, California: Century Dynamics Inc, 2016. [百度学术]