摘要
为获得与喷墨打印技术兼容且在微尺度下稳定爆轰的全溶型炸药油墨,设计了以3,4‑二硝基呋咱基氧化呋咱(DNTF)为主体炸药,聚二甲基硅氧烷(PDMS)和硝化纤维素(NC)为复合黏结体系的含能油墨。使用粘度计、电子密度仪和高速摄影仪等设备,探究了含能油墨流变特性和可打印性,采用扫描电子显微镜、纳米压痕仪及BAM撞击感度测试仪等仪器,表征了喷墨沉积样品微观形貌、力学性能和安全性能。结果表明:DNTF基含能油墨与喷墨打印技术兼容性良好,复合黏结体系能够将炸药颗粒紧密黏结。制得样品DNTF基复合物最大弹性模量达到6.438 GPa;其撞击感度和摩擦感度能量较于原料DNTF分别提升了6.5 J和24 N;在长100 mm、宽1 mm及深度1 mm的沟槽中爆速达到了7927 m·
图文摘要
DNTF‑based energetic ink matching with inkjet printing technology was designed. The formed samples were tested and characterized by microscopic morphology, mechanical properties, mechanical sensitivity, and detonation properties.
微机电系统(Micro Electronic Mechanical Systems,MEMS)火工品采用微机电的设计思想和制造技术,将微型装药、微换能元、微电子线路等集成在一个芯片上,共同组成一个发火或起爆序列,被称为第四代火工
而通过3D打印技术,利用含能墨水对MEMS含能器件进行微尺度装药,能够有效地解决装药精度和装药一致性等问题。其中,含能油墨配方的设计对于利用3D打印技术实现微装药尤为关键。近年来含能墨水配方的设计逐渐成为研究焦
3,4‑二硝基呋咱基氧化呋咱(DNTF)理论密度达到1.937 g·c
油墨配制:道康宁184由PDMS预聚物和固化剂组成,故而需要将PDMS预聚物和固化剂按照10∶1质量比混合制备PDMS。按质量比将DNTF(18%)、PDMS(1.2%)、NC(0.8%)溶于乙酸乙酯(80%)中,超声30 min至溶质完全溶解。用60目尼龙网将配好的油墨过滤以除去配制过程中混入的杂质。
样品制备:用吸管将油墨移入注射器中。通过调节压电控制器的行程、脉冲、循环等参数控制含能油墨出墨量及出墨频率,在进气压、脉冲、循环及行程分别为0.1 MPa、0.29 ms、5 ms及42%条件下,利用喷墨打印平台将油墨直接沉积到预处理的铝板上。保持加热平台温度为50 ℃,使低沸点溶剂大部分挥发的同时,通过热引发使黏结体系交联固化,得到DNTF基含能复合物。
在使用0号转子、转速为60
通过扫描电镜(SEM,Tescan MIRA3 LMH)对DNTF基含能复合物形貌进行表征,在真空度1
通过X射线衍射(XRD,Haoyuan DX‑2700)对原料DNTF及DNTF基含能复合物晶型进行表征,在管电压为40 kV的靶材(Cu),电流30 mA,步进角度0.03°,角度范围5°~50°条件下进行测试。
使用G200纳米压痕仪,对DNTF基含能复合物力学性能进行表征,获得材料的载荷‑位移曲线。选取楔形头、静态载荷模式,应力范围为0~500 mN。
采用BFH‑12型BAM撞击感度仪对原料DNTF及DNTF基含能复合物进行撞击感度测
采用FSKM10型摩擦感度测试仪对原料DNTF及DNTF基含能复合物进行摩擦感度测
采用微通道爆轰实

a. critical thickness test schematic

b. detonation velocity schematic
图1 临界厚度和爆速测试示意
Fig.1 Schematic of critical thickness test and detonation velocity tes
含能油墨想要实现利用喷墨打印技术进行微尺度装药,其可打印性至关重要。油墨可打印性主要取决于油墨的粘度、表面张力和密
(1) |
式中,ρ为油墨密度,kg·
为进一步判断DNTF基油墨能否实现高精度喷墨沉积,借助高速摄影设备拍摄油墨喷射行为和液滴飞行过程,如

a. high‑speed photograph of ink droplet jetting

b. DNTF‑based energetic film forming sample
图2 DNTF基油墨液滴喷射高速摄影图及DNTF基含能复合物成型样品图
Fig.2 High‑speed photograph of ink droplet jetting and sample photograph of DNTF‑based energetic composites
探究喷墨打印制备DNTF基含能复合物成型效果,利用SEM表征其表面和横截面,结果如

a. DNTF based energetic film surface(3000×)

b. DNTF based energetic film cross‑section(1000×)
图3 DNTF基含能复合物的SEM照片
Fig.3 SEM photos of DNTF based energetic composites
由于打印过程中涉及炸药颗粒重结晶,需确认样品晶型是否发生改变,原料DNTF和DNTF基含能复合物XRD测试结果如

图4 原料DNTF和DNTF基含能复合物的XRD谱图
Fig.4 XRD patterns of raw DNTF and DNTF‑based energetic composites
弹性模量是衡量物体对弹性形变抵抗力的重要指标,

图5 DNTF基含能复合物载荷‑位移曲线
Fig.5 Load‑displacement curve of DNTF‑based energetic composites
机械感度是表征含能材料安全性能的重要参数,原料DNTF和DNTF基含能复合物的撞击感度与摩擦感度测试结果如表2所示。在撞击感度测试中,与原料DNTF撞击感度相比,DNTF基含能复合物撞击感度为13.5 J,降感效果显著。这是由于DNTF基含能复合物中炸药颗粒分布较为均匀,同时粒径相对于原料大大减小,比表面积增大,导致其受到同等的撞击能量下,较原料DNTF颗粒数量更多,使得单个颗粒承担的冲击能量更小,造成撞击感度降低;而黏结剂有效包覆炸药颗粒亦使得撞击感度降低。
而摩擦感度测试结果表明,DNTF基含能复合物较于原料摩擦感度降低。这可能是由于在开放环境内,黏结体系形成的网状结构与残余溶剂的挥发使得DNTF基含能复合物内部孔隙随机排布,有助于将能量耗散到周围环境而不是充当热点。同时,黏结剂也能够起到钝化作用降低摩擦感度。因此,制备的DNTF基含能复合物具有较好的安全性能。
samples | impact sensitivity / J | friction sensitivity / N |
---|---|---|
raw DNTF | 6 | 120 |
DNTF based composites | 13.5 | 144 |
临界传爆尺寸和爆速是微尺寸结构装药爆轰能力的重要参数,能够反映微含能器件在微尺度下实现稳定爆轰。其计算公
(2) |
式中,A为楔形槽装药长度,mm;B为楔形槽爆炸长度,mm;C为楔形槽最大深度,mm;dc为临界传爆尺寸,mm。
爆速(V)计算公
(3) |
式中,Δt1为爆轰波从A到B耗费的时间,ns;Δt2为爆轰波从B到C耗费的时间,ns。

a. comparison before and after the critical diameter test

b. comparison before and after the explosion velocity test
图6 DNTF基含能复合物临界直径与爆速测试
Fig.6 Critical diameter and detonation velocity tests of DNTF‑based energetic composites
(1)本研究设计了一种以DNTF为主体炸药,PDMS和NC为复合黏结体系的含能油墨。含能油墨具备良好的可打印性,同时可利用喷墨打印技术直接沉积制备含能薄膜样品,成型效果较好。
(2)经由热引发交联固化的DNTF含能薄膜截面黏合紧密,最大弹性模量达到6.438 GPa;XRD图谱表明制备的DNTF基含能复合物中主体炸药DNTF晶型并未发生改变;其撞击感度和摩擦感度分别为12.5 J和144 N,相较于原料DNTF感度得到降低。
(3)爆轰测试结果表明DNTF基含能复合物临界传爆尺寸和爆速分别为1 mm×0.231 mm和7927 m·
参考文献
褚恩义, 贺爱锋, 任西, 等. 火工品集成技术的发展机遇与途径[J]. 含能材料, 2015, 23(3): 205-207. [百度学术]
CHU En‑yi, HE Ai‑feng, REN Xi, et al. Development opportunities and approaches of pyrotechnic integration technology [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(3): 205-207. [百度学术]
叶迎华.火工品技术[M].北京:北京理工大学出版社,2013. [百度学术]
YE Ying‑hua. Pyrotechnic technology[M]. Beijing: Beijing Institute of Technology Press, 2013. [百度学术]
PETRANTONI M, ROSSI C, SALVAGNAC L, et al. Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro[J]. Journal of Applied Physics, 2010, 108(8):084323. [百度学术]
ZHANG D, LI X, QIN B, et al. Electrophoretic deposition and characterization of nano‑Al/Fe2O3 thermites[J]. Materials Letters, 2014, 120: 224-227. [百度学术]
朱自强, 陈瑾, 谯志强, 等. CL‑20基直写炸药油墨的制备与表征[J].含能材料, 2013, 21(2): 235-238. [百度学术]
ZHU Zi‑qiang, CHEN Jin, QIAO Zhi‑qiang, et al. Preparation and characterization of CL‑20‑based direct writing explosive ink[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2013, 21(2): 235-238. [百度学术]
WANG D, ZHENG B, GUO C, et al. Formulation and performance of functional sub‑micro CL‑20‑based energetic polymer composite ink for direct‑write assembly[J]. RSC Advances, 2016, 6(113): 112325-112331. [百度学术]
姚艺龙, 吴立志, 唐乐,等. 纳米CL‑20炸药含能墨水的直写规律[J].火炸药学报, 2016, 39(1): 39-42. [百度学术]
YAO Yi‑long, WU Li‑zhi, TANG Le, et al. Direct writing rule of energetic ink for nano CL‑20 explosive[J]. Chinese Journal of Explosives & Propellants, 2016, 39(1): 39-42. [百度学术]
DUNJU W, CHANGPING G, RUIHAO W, et al. Additive manufacturing and combustion performance of CL‑20 composites[J]. Journal of Materials Science, 2019, 55(7): 2836-2845. [百度学术]
黄瑨. CL‑20、TATB基复合装药结构的3D打印成型及安全性研究[D]. 绵阳:中国工程物理研究院, 2019. [百度学术]
HUANG Jin. 3D printing and safety research of CL‑20 and TATB‑based composite charge structures[D]. Mianyang: China Academy of Engineering Physics, 2019. [百度学术]
李千兵, 安崇伟, 徐传豪, 等. Viton/PVA粘结剂乳液的设计及其在炸药油墨中的应用[J]. 含能材料, 2019, 27(1): 60-67. [百度学术]
LI Qian‑bing, AN Chong‑wei,XU Chuan‑hao, et al. Design of Viton/PVA binder emulsion and its application in explosive inks[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2019, 27(1): 60-67. [百度学术]
徐传豪. 微纳结构含能复合物的喷墨打印成型及应用基础研究[D]. 太原:中北大学, 2019. [百度学术]
XU Chuan‑hao. Basic Research on Inkjet Printing and Application of Micro‑Nano‑Structured Energetic Composites[D]. Taiyuan: North University of China, 2019. [百度学术]
郭浩. CL‑20基光固化炸药油墨设计与3D直写成型技术研究[D]. 太原:中北大学, 2020. [百度学术]
GUO Hao. CL‑20‑based light‑curing explosive ink design and 3D direct writing technology research[D]. Taiyuan: North University of China, 2020. [百度学术]
孔胜, 安崇伟, 徐传豪, 等. CL‑20基含能薄膜的微双喷直写成型与性能[J]. 含能材料, 2020, 28(11): 1048-1053. [百度学术]
KONG Sheng, AN Chong‑wei, XU Chuan‑hao, et al. Micro‑double jet direct writing and properties of CL‑20‑based energetic films[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2020, 28(11): 1048-1053. [百度学术]
朱国豪, 叶宝云, 安崇伟, 等. CL‑20基爆炸网络装药的UV光辅助直写成型及性能[J]. 含能材料, 2021, 29(4): 293-299. [百度学术]
ZHU Guo‑hao, YE Bao‑yun, AN Chong‑wei, et al. UV light‑assisted direct writing and properties of CL‑20‑based explosive network charge[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2021, 29(4): 293-299. [百度学术]
IHNEN A C, PETROCK A M, CHOU T, et al. Crystal morphology variation in inkjet‑printed organic materials[J]. Applied surface science, 2011, 258(2): 827-833. [百度学术]
IHNEN A C, PETROCK A M, CHOU T, et al. Organic nanocomposite structure tailored by controlling droplet coalescence during inkjet printing[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4691-4699. [百度学术]
胡焕性, 张志忠, 赵凤起, 等. 高能量密度材料3,4‑二硝基呋咱基氧化呋咱性能及应用研究[J]. 兵工学报, 2004, 25(2):155-158. [百度学术]
HU Huan‑xing, ZHANG Zhi‑zhong, ZHAO Feng‑qi, et al. Properties and applications of 3,4‑dinitrofurazan oxidized furozan, a high energy density material[J]. Journal of Military Engineering, 2004, 25(2):155-158. [百度学术]
LI Y, YUAN J M, ZHAO W, et al. Application and development of 3,4‑Bis(3‑nitrofurazan‑4‑yl)furoxan (DNTF)[J]. Russian Journal of General Chemistry, 2021, 91(3): 445-455. [百度学术]
HE Y, GUO X, LONG Y, et al. Inkjet printing of GAP/NC/DNTF based microscale booster with high strength for pyroMEMS[J]. Micromachines (Basel), 2020, 11(4). [百度学术]
XU C, AN C, LONG Y, et al. Inkjet printing of energetic composites with high density[J]. RSC Advances, 2018, 8(63): 35863-35869. [百度学术]
ELBEIH A, ZEMAN S, JUNGOVA M, et al. Effect of different polymeric matrices on the sensitivity and performance of interesting cyclic nitramines [J]. Central European Journal of Energetic Materials, 2012, 9(2): 17. [百度学术]
ELBEIH A, ZEMAN S, JUNGOVA M, et al. Effect of different polymeric matrices on some properties of plastic bonded explosives[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(6): 676-684. [百度学术]
BURCH A C, KAY L M, YEAGER J D, et al. The effect of hardness on polymer‑bonded pentaerythritol tetranitrate (PETN) explosive impact sensitivity[J]. Journal of Applied Physics, 2022, 131(1). [百度学术]
GRUHNE M S, LOMMEL M, WURZENBERGER M, et al. Back Cover: OZM Ball drop impact tester (BIT2) vs. BAM standard method‑a comparative investigation[J]. Propellants Explosives Pyrotechnics, 2020, 45(1):160-160. [百度学术]
KIM E Y, HONG D Y, HAN M, et al. Desensitization of high explosives by encapsulation in metal‑organic frameworks[J]. Chemical Engineering Journal, 2021, 407:127882. [百度学术]
YE B‑Y, SONG C‑K, HUANG H, et al. Direct ink writing of 3D‑Honeycombed CL‑20 structures with low critical size[J]. Defence Technology, 2020, 16(3): 588-595. [百度学术]
DERBY B. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution [J]. Annual Review of Materials Research, 2010, 40(1): 395-414. [百度学术]
FROMM J E. Numerical calculation of the fluid dynamics of drop‑on‑demand jets[J]. Ibm Journal of Research & Development, 2010, 28(3): 322-333. [百度学术]
REIS N, DERBY B. Ink Jet Deposition of ceramic suspensions: modeling and experiments of droplet formation[J]. MRS Proceedings, 2011, 625. [百度学术]
JANG D, KIM D, MOON J. Influence of fluid physical properties on ink‑jet printability[J]. Langmuir, 2009, 25(5): 2629-2635. [百度学术]