摘要
采用分子动力学方法探究了一系列空位缺陷浓度(0%,1.56%,6.25%和12.5%)对1,1'‑二羟基‑5,5'‑联四唑二羟胺盐(TKX‑50)感度、力学性能和爆轰性能的影响。首先建立TKX‑50完美晶体模型和空位缺陷模型,并验证研究所采用的Dreiding力场的正确性和有效性。然后对模型进行几何优化和分子动力学模拟,研究发现,空位缺陷导致TKX‑50的内聚能密度减小、总氢键数目减少,表明含空位缺陷的TKX‑50感度增加,安全性降低;并且随着空位缺陷的增多,羟胺阳离子间的氢键数目几乎不变,联四唑阴离子上以氧原子为氢键受体的氢键数目与其他氢键相比明显减少。另外,空位缺陷使得TKX‑50的体积模量(K)、拉伸模量(E)和剪切模量(G)分别降低了1.530~4.122 GPa、3.066~10.652 GPa、1.216~4.202 GPa,表明随空位缺陷浓度的增加,TKX‑50晶体的刚度下降。所有模型的柯西压(C12‑C44)为正,表明所有模型均表现出延展性,且K/G值与泊松比(γ)随空位缺陷浓度的增加而增加,表明空位缺陷的增多使得TKX‑50的韧性和塑性都得到增强。此外,空位缺陷还使得TKX‑50的爆速和爆压分别降低了93~317 m∙
图文摘要
A perfect crystal model (Model 1 with defect concentration of 0%) and a series of vacancy defect models (Models 2‑4 with defect concentration of 1.56%, 6.25% and 12.5%, respectively) of TKX‑50 were established, and the effects of vacancy defects on the sensitivity, mechanical properties, and detonation properties of TKX‑50 were researched. The cohesion energy density, hydrogen bond number, radial distribution function, mechanical properties, and detonation parameters of different models were got and compared.
含能材料在整个生命周期中,需要通过许多严格的标准来评估其各项性
1,1'‑二羟基‑5,5'‑联四唑二羟胺盐(TKX‑50)是2012年由德国慕尼黑大学的Klapötke
为探讨空位缺陷对TKX‑50性能影响,本研究构建了TKX‑50完美晶体模型和一系列空位缺陷模型(缺陷浓度0%,1.56%,6.25%和12.5%),确定适用于TKX‑50模拟的力场,采用分子动力学方法探究了缺陷对TKX‑50各项性能的影响,其中通过研究内聚能密度、氢键数目和径向分布函数的变化分析空位缺陷对TKX‑50感度的影响,并研究了空位缺陷对TKX‑50力学性能和爆轰性能的影响,为缺陷TKX‑50的实际应用提供理论指导。
从CCDC数据库中获得TKX‑50的晶体结构,如图

图1 TKX‑50在298 K下的晶体结构。(a)和(b)分别为(001)和(100)平面上的投影。(碳为灰色;氮为蓝色;氧为红色;氢这白色;晶胞单元由灰线表示)
Fig.1 The crystal structure of TKX‑50 at 298 K. (a) and (b) are projections on the (001) and (100) planes, respectively.(Carbon‑gray; nitrogen‑blue; oxygen‑red; hydrogen‑white. The cell unit is represented by a gray box)
空位缺陷模型常采用删除模型中分子的方式来构

图2 TKX‑50完美模型(Model 1)及空位缺陷模型(Models 2~4)。(a)为(100)平面上的投影,(b)为(001)平面上的投影。黄色部分是删除的TKX‑50结构单元。
Fig.2 The perfect model (Model 1) and vacancy defect models (Models 2-4) of TKX‑50. (a) the projection on the (100) plane, and (b) the projection on the (001) plane(The yellow section is the TKX‑50 structural unit that needs to be removed)
采用分子动力学方法对建立的一系列含空位缺陷的TKX‑50晶体模型进行了研究,探究了空位缺陷对TKX‑50感度、力学性能和爆轰性能的影响。力场对于获得可靠的分子动力学模拟结果起着非常重要的作用。为验证力场的正确性和有效性,对比了不同力场(Dreiding、COMPASS和pcff)对TKX‑50晶胞结构的影响,将几何优化后晶体参数和密度与实验结果进行比较,结果见
force field | a / Å | b / Å | c / Å | β / (°) | ρ / g∙c | |||||
---|---|---|---|---|---|---|---|---|---|---|
Dreiding | 5.57 | (2.31%) | 11.67 | (-0.66%) | 6.30 | (-3.97%) | 94.36 | (-0.75%) | 1.92 | (2.34%) |
COMPASS | 4.88 | (-10.32%) | 10.98 | (-6.58%) | 7.42 | (13.08%) | 80.18 | (-15.67%) | 2.00 | (6.70%) |
pcff | 3.95 | (-27.34%) | 14.62 | (24.38%) | 6.43 | (-2.04%) | 93.52 | (-1.63%) | 2.12 | (12.71%) |
experimental dat | 5.44 | 11.75 | 6.56 | 95.07 | 1.88 |
Note: a, b, c and β are lattice parameters; ρ is the density. The data in brackets are relative errors to the experimental data.
为了准确预测不同晶体模型的特性,采用Forcite模块中的Dreiding力场对完美晶体模型Model 1和空位缺陷晶体模型Model 2、Model 3、Model 4进行优化,精度设置为Fine。然后在等温等压系综(NPT)下对优化后的晶胞模型进行分子动力学模拟,压力设置为0.0001 GPa,温度为298 K,采用Andersen 控温方法和Berendsen控压方法。范德华力和静电力分别通过基于Atom和Ewald求和方法计算。时间步长为1 fs,总模拟步数为2×1
在提取计算结果时,需要让体系达到热力学平衡状态。通常认为当温度与能量波动范围为5%~10%时,体系已经达到平衡状

a. temperature

b. potential energy

c. non‑bond energy change
图3 TKX‑50完美模型(Model 1)及空位缺陷模型(Models 2~4)的温度、势能和非键能随时间的变化曲线
Fig.3 Temperature, potential energy, and non‑bond energy change curves over time for the perfect model (Model 1) and vacancy defect models (Models 2-4) of TKX‑50
感度是炸药在外界作用下发生爆炸反应的难易程
(1) |
式中,是内聚能,kJ·mo
Models 1~4的内聚能密度如

图4 Models 1~4的内聚能密度
Fig.4 Cohesive energy density of Models 1-4
TKX‑50中的氢键对其感度具有非常重要的作
我们计算了H(2)─O(2)、H(5)─O(2)、H(2)─O(1)和H(5)─O(1)的径向分布函数(RDF),如

a. H(2)─O(2)

b. H(5)─O(2)

c. H(2)─O(1)

d. H(5)─O(1)
图5 H(2)─O(2)、H(5)─O(2)、H(2)─O(1)和H(5)─O(1)的径向分布函数,虚线对应于氢键计算的3 Å截止值
Fig.5 The radial distribution function of H(2)─O(2), H(5)─O(2), H(2)─O(1), and H(5)─O(1), the dotted line corresponds to the 3 Å cut‑off value calculated by the hydrogen bond
因此,研究设定3 Å为氢原子与受体原子间距离的截止值,并以软件默认的供体‑氢‑受体的最小截止角度90°作为角度限制。统计了TKX‑50晶体中羟胺阳离子间的氢键N(5)─H(5)…O(2)和O(2)─H(2)…O(2),以及联四唑阴离子上以氧原子为氢键受体的氢键O(2)─H(2)…O(1)和N(5)─H(5)…O(1)(H(5)包含H(5A)、H(5B)、H(5C)),用以反映空位缺陷对TKX‑50的氢键网络的影响。除上述氢键外,TKX‑50还存在联四唑阴离子上以氮原子为氢键受体的氢键O(2)─H(2)…N`和N(5)─H(5)…N`(N`包含N(2)、N(3)、N(4)

图6 (a)Model 1最后一帧轨迹,(b)TKX‑50晶体中的氢键网络(氢键用蓝色虚线表示)
Fig.6 (a) The trajectory of the last frame of Model 1. (b) The hydrogen bond network in the TKX‑50 crystal (Hydrogen bonds are indicated by blue dashed lines)
hydrogen bond | Model 1 | Model 2 | Model 3 | Model 4 | |||
---|---|---|---|---|---|---|---|
all | 1903 | 1810 | (-4.89%) | 1743 | (-8.41%) | 1569 | (-17.55%) |
O(2)─H(2)…O(2) | 42 | 41 | (-1.30%) | 43 | (2.38%) | 41 | (-2.38%) |
N(5)─H(5)…O(2) | 133 | 130 | (-2.26%) | 128 | (-3.76%) | 126 | (-5.26%) |
O(2)─H(2)…O(1) | 146 | 124 | (-15.27%) | 112 | (-23.29%) | 94 | (-35.62%) |
N(5)─H(5)…O(1) | 444 | 413 | (-6.98%) | 392 | (-11.71%) | 336 | (-24.32%) |
O(2)─H(2)…N` | 322 | 309 | (-4.04%) | 296 | (-8.07%) | 248 | (-22.98%) |
N(5)─H(5)…N` | 816 | 793 | (-2.82%) | 772 | (-5.39%) | 724 | (-11.27%) |
Note: 1) H(5) contains three types of hydrogen atoms H(5A), H(5B), and H(5C); 2) N` contains three types of nitrogen atoms N(2), N(3), and N(4); 3) Data in brackets are the change amplitude of the average hydrogen bonds number of Models 2‑4 relative to Model 1.
如
含能材料的力学性能对含能材料的制备、加工和使用具有显著影响。根据Reuss理论和Voigt理
Voigt理论:
(2) |
(3) |
Reuss理论:
(4) |
(5) |
式中,Cij(i,j=1,2,……,6)表示弹性系数矩阵;Sij表示柔量系数矩阵,为Cij的逆矩阵。
Hill理论证明Reuss理论和Voigt理论得到的模量分别是实际有效模量的下限和上
(6) |
(7) |
由K和G可以得到拉伸模量E和泊松比γ:
(8) |
(9) |
根据上述公式,得到Models 1~4的体积模量K、剪切模量G、拉伸模量E、柯西压(C12‑C44)、K/G、泊松比γ的具体数值和变化情况如
Model | K / GPa | E / GPa | C12‑C44 / GPa | G / GPa | K / G | γ |
---|---|---|---|---|---|---|
1 | 27.127 | 26.981 | 18.574 | 10.111 | 2.683 | 0.334 |
2 | 25.597 | 23.915 | 18.086 | 8.895 | 2.878 | 0.344 |
3 | 23.921 | 17.462 | 16.764 | 6.334 | 3.776 | 0.378 |
4 | 23.005 | 16.329 | 15.669 | 5.909 | 3.893 | 0.382 |
Note: K, Bulk module; E, Tensile Modulus; C12‑C44, Cauchy pressure; G, Shear module; γ, Poisson’s ratio.

图7 Models 1~4的力学性能变化曲线
Fig.7 Mechanical performance curves of Models 1-4
体积模量K,拉伸模量E,剪切模量G与材料的刚度有关,其值越大,表明体系的刚度越
爆轰性能主要体现含能材料的威力和能量密度。主要的爆轰参数包括爆速(D)和爆压(p)。目前,很多研究采用修正氮当量
(10) |
(11) |
(12) |
式中,D为炸药的爆速,m·
为验证修正氮当量法对TKX‑50的适用性,对不同密度的TKX‑50进行了计算,并与文献值进行了对比,见
ρ / g·c | D / m· | p / GPa | ||
---|---|---|---|---|
Ref | calculated | Ref | calculated | |
1.7 |
890 | 8670(-2.63%) | - | - |
1.8 |
903 | 8893(-1.59%) | - | - |
1.8 |
964 | 9179(-4.80%) |
37. | 39.1 (5.65%) |
Note: Date in the brackets are the relative error between the calculated value and the literature value
Model | ρ /g·c | D / m· | p / GPa |
---|---|---|---|
1 | 1.847 | 9067 | 37.8 |
2 | 1.822 | 8974 | 36.8 |
3 | 1.806 | 8916 | 36.1 |
4 | 1.762 | 8750 | 34.3 |
从
在缺陷晶体中,空位的出现导致相同体积下TKX‑50数目的减少,因此缺陷晶体的密度与爆轰参数均呈现出逐渐减小的变化趋势,且空位缺陷浓度越高,密度、爆速和爆压越小,表明TKX‑50的威力减小,能量密度降低,因此晶体缺陷会对TKX‑50的爆轰性能产生不利影响。
建立了不同空位缺陷浓度的TKX‑50模型,并通过分子动力学模拟研究了不同模型的感度、力学性能和爆轰性能。主要结果和结论如下:
(1)随着空位缺陷浓度的增加,内聚能密度和氢键总数逐渐降低,预示着TKX‑50感度增加和安全性降低。对六类氢键的数目进行统计,发现羟胺阳离子间的氢键数目几乎不变,其他类型的氢键数目均减少,其中O(2)─H(2)…O(1)和N(5)─H(5)…O(1)对总氢键数目的减少做出最大贡献。
(2)与完美的TKX‑50(Model 1)相比,空位缺陷模型的拉伸模量、体积模量和剪切模量随着空位缺陷浓度的增加而有所下降,表明含空位缺陷的TKX‑50的刚度有所下降。所有模型的柯西压(C12‑C44)均为正,表明所有模型均表现出延展性。K/G值与γ随空位缺陷浓度的增加而增加,表明含空位缺陷的TKX‑50的韧性和塑性更强。
(3)完美的TKX‑50(Model 1)有最大密度、爆速和爆压,随着空位缺陷浓度的增加,空位缺陷模型的密度、爆速和爆压逐渐降低,表明TKX‑50的能量密度降低,晶体缺陷会对TKX‑50的爆轰性能产生不利影响。
致谢
感谢国家自然科学基金联合项目‑“叶企孙”科学基金(U2141202)、国家自然科学基金青年项目(21905023、21805139)、基础加强计划重点基础研究项目的资助。
参考文献
LI Gang, ZHANG Chao‑yang. Review of the molecular and crystal correlations on sensitivities of energetic materials [J]. J Hazard Mater, 2020, 398(12): 122910-122924. [百度学术]
KUKLJA M M, KUNZ A B. Simulation of defects in energetic materials. 3. the structure and properties of RDX crystals with vacancy complexes[J]. J Phys Chem B, 1999, 103(40): 8427-8431. [百度学术]
KUKLJA M M, KUNZ A B. Ab initio simulation of defects in energetic materials. Part I. Molecular vacancy structure in RDX crystal[J]. J Phys Chem Solids, 2000, 61(1): 35-44. [百度学术]
HANG Gui‑yun, YU Wen‑li, WANG Tao, et al. Theoretical investigations into effects of adulteration crystal defect on properties of HMX by molecular dynamics method[J]. Theoretical Chemistry Accounts, 2019, 138(33): 2-10. [百度学术]
QI C B, WANG T, MIAO S, et al. Molecular dynamics research on effect of doping defects on properties of PETN[J]. J Mol Model, 2019, 25(9): 287-296. [百度学术]
ARMSTRONG R W. DISLOCATION MECHANICS ASPECTS OF ENERGETIC MATERIAL COMPOSITES; proceedings of the Proceedings of 8th International Seminar: New Trends in Research of Energetic Materials, F, 2005[C]//Central European Journal of Energetic Materials. [百度学术]
TAN Kai‑yuan, LIU Ru‑qin, CHUAN Deng, et al. Impacts of defect distribution on the ignition of crystalline explosives: An insight from the overlapping effect[J]. Energetic Materials Frontiers, 2022, 3(2): 53-60. [百度学术]
BLUM‐SORENSEN C J, DUARTE C A, DRAKE J D, et al. Phase contrast X‐Ray imaging of the collapse of an engineered void in single‐crystal HMX[J]. Propellants, Explosives, Pyrotechnics, 2022, e202100297: 1-9. [百度学术]
CHRISTOPHER C, DANIEL O, CHRISTOPHER M, et al. Effect of void positioning on the detonation sensitivity of a heterogeneous energetic material[J]. Journal of Applied Physics, 2022, 131(6): 5101-5115. [百度学术]
JI J, ZHU W. Structural stability and initial decomposition mechanisms of BTF crystals induced by vacancy defects: a computational study[J]. Crystengcomm, 2022, 24(22): 4030-4040. [百度学术]
ZHONG K, BU R, JIAO F, et al. Toward the defect engineering of energetic materials: A review of the effect of crystal defects on the sensitivity[J]. Chemical Engineering Journal, 2022, 429: 132310-132322. [百度学术]
FISCHER N, FISCHER D, KLAPöTKE T M, et al. Pushing the limits of energetic materials‑the synthesis and characterization of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. Journal of Materials Chemistry, 2012, 22(38): 20418-20422. [百度学术]
KLAPöTKE T M, CUDZIŁO S, TRZCIŃSKI W A. An Answer to the Question about the Energetic Performance of TKX‐50 [J]. Propellants, Explosives, Pyrotechnics, 2022, 47(6): 1-9. [百度学术]
熊晓雪, 薛向贵, 杨海君, 等. 1,1′‑二羟基‑5,5′‑联四唑二羟胺盐(TKX‑50)研究进展[J]. 含能材料, 2020, 28(8): 810-816. [百度学术]
XIONG Xiao‑xue, XUE Xiang‑gui, YANG Hai‑jun, et al. Research progress of 1,1'‑dihydroxy‑5,5'‑binetrazole dihydroxylamine salt (TKX‑50)[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2020, 28(8): 810-816. [百度学术]
LI M, CHEN H, XIAO X, et al. Computational study of transition states for reaction path of energetic material TKX‑50[J]. J Energ Mater, 2019, 37(2): 240-250. [百度学术]
YANG Xue, GAN Yun‑dan, LIU Fu‑sheng, et al. First‑principles investigation of the structural stability of TKX‑50 under high pressure[J]. Physica B: Condensed Matter, 2021, 619(15): 413229-413235. [百度学术]
MOSES A B. High pressure structural behaviour of 5,5'‑bitetrazole‑1,1'‑diolate based energetic materials: A comparative study from first principles calculations [J]. Rsc Adv, 2020, 10(42): 24867-24876. [百度学术]
GUO H, WANG J. Effect of vacancy defects on the vibration frequency of graphene nanoribbons[J]. Nanomaterials (Basel), 2022, 12(5): 764-774. [百度学术]
PARK H, PARK C B, SUNG B J. The effects of vacancies and their mobility on the dynamic heterogeneity in 1,3‑dimethylimidazolium hexafluorophosphate organic ionic plastic crystals[J]. Phys Chem Chem Phys, 2021, 23(20): 11980-11989. [百度学术]
TIDEY J P, ZHUROV V V, GIANOPOULOS C G, et al. Experimental charge‑density study of the intra‑ and intermolecular bonding in TKX‑50[J]. J Phys Chem A, 2017, 121(46): 8962-8972. [百度学术]
TAO Jun, WANG Xiao‑feng, ZHANG Kun, et al. Theoretical calculation and experimental study on the interaction mechanism between TKX‑50 and AP[J]. Def Technol, 2020, 16(4): 825-833. [百度学术]
MA S, LI Y, LI Y, et al. Research on structures, mechanical properties, and mechanical responses of TKX‑50 and TKX‑50 based PBX with molecular dynamics[J]. J Mol Model, 2016, 22(2): 43. [百度学术]
LIU Y, AN C, LIU N, et al. Noncovalent Interactions and Crystal Structure Prediction of Energetic Materials [J]. Molecules, 2022, 27(12): 3755-3770. [百度学术]
杨犁, 余庚泽, 余晨, 等. 基于TKX‑50的PBXs含能材料力学性能计算模拟实验技术与管理[J]. 实验技术与管理, 2021, 38(3): 61-68. [百度学术]
YANG Li, YU Geng‑ze, YU Chen, et al. Experimental technology and management of calculation and simulation of mechanical properties of PBXs energy‑containing materials based on TKX‑50[J]. Experimental technology and management, 2021, 38(3): 61-68. [百度学术]
黄寅生. 炸药理论[M]. 北京: 北京理工大学出版社, 2016. [百度学术]
YAN P, ZHAO X, RUI J, et al. Molecular dynamics simulation of the influence of RDX internal defects on sensitivity[J]. Crystals, 2021, 11(4): 329-339. [百度学术]
苗爽, 王涛, 王玉玲, 等. 晶体缺陷对HMX基PBX性能影响的理论计算 [J]. 含能材料, 2019, 27(8): 636-643. [百度学术]
MIAO Shuang, WANG Tao, WANG Yu‑ling, et al. Theoretical calculation of the influence of crystal defects on the performance of HMX‑based PBX[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2019, 27(8): 636-643. [百度学术]
安智珠. 聚合物分子设计原理[M]. 湖南: 湖南科学技术出版社, 1985. [百度学术]
孟李娅. 典型含能离子盐中的氢键及其对结构与性能影响的理论研究[D]. 绵阳: 西南科技大学, 2017. [百度学术]
DREGER Z A, STASH A I, YU Zhi‑gang, et al. High‑pressure structural response of an insensitive energetic crystal: Dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate (TKX‑50) [J]. The Journal of Physical Chemistry C, 2017, 121(10): 5761-5767. [百度学术]
MENG L, LU Z, WEI X, et al. Two‑sided effects of strong hydrogen bonding on the stability of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate(TKX‑50)[J]. Crystengcomm, 2016, 18(13): 2258-2267. [百度学术]
马宇. 炸药中氢键与氢转移及其对感度影响的理论模拟研究 [D]. 绵阳: 中国工程物理研究院, 2015. [百度学术]
CHEN J, WANG J, ZHANG Q, et al. A comparative study of trypsin specificity based on QM/MM molecular dynamics simulation and QM/MM GBSA calculation[J]. J Biomol Struct Dyn, 2015, 33(12): 2606-2618. [百度学术]
ZAHN S, WENDLER K, DELLE SITE L, et al. Depolarization of water in protic ionic liquids[J]. Phys Chem Chem Phys, 2011, 13(33): 15083-15093. [百度学术]
URIBE L, GóMEZ S, GIOVANNINI T, et al. An efficient and robust procedure to calculate absorption spectra of aqueous charged species applied to NO
GRABOWSKI S J. Hydrogen Bond ‑ Definitions, Criteria of Existence and Various Types[M]. Understanding Hydrogen Bonds. The Royal Society of Chemistry. 2020: 1-40. [百度学术]
HILL R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349-354. [百度学术]
CHEN Q, GAO F, CSANáDI T, et al. Investigation of anisotropic mechanical properties of textured KSr2Nb5O15 ceramics via ab‑initio calculation and nanoindentation[J]. Journal of the American Ceramic Society, 2018, 101(11): 5138-5150. [百度学术]
何平笙. 高聚物的力学性能[M]. 合肥: 中国科学技术大学出版社, 2008. [百度学术]
郭昕, 南海, 齐晓飞, 等. RDX和HMX晶体力学性能的分子动力学模拟及其撞击加载响应[J]. 含能材料, 2013, 21(4): 485-489. [百度学术]
GUO Xin, NAN hai, QI Xiao‑fei, et al. Molecular dynamics simulation of the mechanical properties of RDX and HMX crystals and their impact loading response[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2013, 21(4): 485-489. [百度学术]
SENKOV O N, MIRACLE D B. Generalization of intrinsic ductile‑to‑brittle criteria by Pugh and Pettifor for materials with a cubic crystal structure[J]. Sci Rep, 2021, 11(1): 4531. [百度学术]
YANG J, ZHANG X, GAO P, et al. Molecular dynamics and dissipative particle dynamics simulations of the miscibility and mechanical properties of GAP/DIANP blending systems[J]. RSC Adv, 2014, 4(79): 41934-41941. [百度学术]
张厚生. 用氮当量公式及修正氮当量公式计算炸药爆轰压力[J]. 爆炸与冲击, 1983, 4(2): 79-82. [百度学术]
ZHANG Hou‑sheng. Use the nitrogen equivalent formula and the corrected nitrogen equivalent formula to calculate the detonation pressure of explosives[J]. Explosion and impact, 1983, 4(2): 79-82. [百度学术]
国迂贤, 张厚生. 炸药爆轰性质计算的氮当量公式及修正氮当量公式:炸药爆速的计算[J]. 爆炸与冲击, 1983, 3(3): 56-66. [百度学术]
GUO Zhi‑xian, ZHANG Hou‑sheng. Nitrogen equivalent formula for the calculation of explosive detonation properties and modified nitrogen equivalent formula: Calculation of explosive detonation velocity[J]. Explosion and impact, 1983, 3(3): 56-66. [百度学术]
苗爽, 王涛, 王玉玲. 孔洞缺陷对B炸药性能影响的理论计算[J]. 原子与分子物理学报, 2019, 36(4): 675-681. [百度学术]
MIAO Shuang, WANG Tao, WANG Yu‑ling. Theoretical calculation of the effect of hole defects on the performance of B explosives[J]. Journal of Atomic and Molecular Physics, 2019, 36(4): 675-681. [百度学术]
杭贵云, 余文力, 王涛, 等. 奥克托今/3‑硝基‑1,2,4‑三唑‑5‑酮共晶炸药晶体缺陷的分子动力学研究[J]. 兵工学报, 2019, 40(1): 49-57. [百度学术]
HANG Gui‑yun, YU Wen‑li, WANG Tao, et al. Molecular dynamics study of crystal defects of Octopine /3‑nitro‑1,2,4‑triazole‑5‑ketone eutectic explosives[J]. Journal of Ordnance, 2019, 40(1): 49-57. [百度学术]
XING X, ZHAO S, WANG X, et al. The Detonation Properties Research on TKX‐50 in High Explosives[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(4): 408-412. [百度学术]
SINDITSKII V P, SERUSHKIN V V, KOLESOV V I. On the Question of the Energetic Performance of TKX‐50[J]. Propellants, Explosives, Pyrotechnics, 2021, 46(10): 1504-1508. [百度学术]