摘要
为深入了解激光与黑火药的相互作用机理,研究采用基于Michelson干涉的相位调制超快光声探测方法,对纳秒脉冲激光作用于硝酸钾、硫磺、石墨以及黑火药表面激发的光声信号进行了检测,分析讨论了光声信号中的物理和化学反应过程信息,建立了光致黑火药反应的速率模型。结果表明:在纳秒激光辐照下,黑火药未发生显著的热化学反应,但是存在其他形式的反应,并且该反应增强了光声信号;黑火药的光声信号强度与激光脉冲能量呈近似线性关系;黑火药的反应速率与激光脉冲能量呈近似正相关,在激光脉冲能量较强时呈下降趋势,当激光脉冲能量为10 mJ左右反应速率达到最大值为20 mmol·
图文摘要
Using an optical fiber‑based Michelson interferometer, photoacoustic signals induced by focusing Nd:YAG laser (1064 nm, 10 ns duration) on black powder and its components were studied at various pulse energies. Detected signal was explained utilizing linear acoustic theory. Acoustic wave energy was estimated based on the detected signal. A primary model was proposed to estimate the reaction rate of black powder under laser radiation.
关键词
含能材料的激光点火一直以来备受研究者的关注,但激光点火机理的研究目前还不甚完
1880年,Bel
传统的光声学研究通常只关注系统的稳态性
为此,本研究将基于超快声信号非接触干涉测量方法,以黑火药为被测物,检测纳秒脉冲激光引发的反应性光声信号,检验线性声学理论在反应性光声信号分析领域的适用性,分析光致黑火药反应的机制。
试剂:石墨粉、升华硫、硝酸钾(化学纯,国药集团化学试剂有限公司)。
仪器:1064 nm脉冲激光器(定制,哈工大);1550 nm连续激光器(N7711A型,Keysight公司,美国);光电探测器(DET08CFC/M型,Thorlabs公司,美国);激光能量计(PE25BF‑C型,Ophir Photonics公司,以色列);示波器(MDO4054C型,Tektronix公司,美国);探头(定制,OZ Optics公司,加拿大);2×2光纤耦合器(定制,OZ Optics公司,加拿大);相位调制器(LN65S/FC型,Thorlabs公司,美国);信号发生器(33512B型,Keysight公司,美国)。
样品为黑火药及其各组分单质KNO3、S、C。黑火药各组分质量比为经典比
实验原理如

图1 实验原理示意图
Fig.1 Scheme of the experimental principle
实验装置示意图如

图2 实验装置图解
Fig.2 Illustration of the experimental setup
1—1064 nm脉冲激光,2—1号光电探测器,3—衰减片, 4—激光能量计,5—1:1分光镜,6—聚焦透镜,7—被测样品,8—刚性平面,9—探头,10—FC/PC接头,11—相位调制器,12—信号发生器,13—2×2 光纤耦合器,14—2号光电探测器,15—示波器, 16—1550 nm连续激光,17—计算机
1—1064 nm pulsed laser, 2—photoelectric detector No. 1, 3—attenuator, 4—laser energy meter, 5—1:1 beam splitter, 6—convex lens, 7—measured sample, 8—rigid plane, 9—sensor head, 10—FC/PC, 11—phase modulator, 12—signal generator, 13—2×2 fiber coupler, 14—photoelectric detector No. 2, 15—oscilloscope, 16—1550 nm continuous laser, 17—computer
实验所用的干涉仪是基于Dandridg
光纤式Michelson干涉仪的原理与传统的Michelson干涉仪基本相同,二者的主要区别在于,光纤式干涉仪的光路几乎全部位于单模光纤内部,因此光纤式干涉仪相较于传统干涉仪,配置更为灵活,更不容易受到环境干扰。
1550 nm连续激光经由2×2光纤耦合器分束后,50%的激光被相位调制器调制,在FC/PC端面处反射;剩余50%的激光自探头处射入自由空间,在刚性平面处反射,经由探头返回光纤。实验所用的探头是经过了抗反射处理的特制聚焦镜。自探头射出的连续激光束直径极小,故可近似认为连续激光束垂直于刚性平面。两束反射激光再度通过2×2光纤耦合器,最终被2号光电探测器检出。被检激光的光强I满足
(1) |
式中,A和B为与连续激光初始光强和刚性平面反射率相关的常数,V;φ为未引入相位调制时两束反射光的相位差,rad;Dsin(ωt)为相位调制器引入的相位差;t为时刻,s;D为调制深度,rad;ω为角频率,rad·
利用雅克比‑安格尔恒等式,
(2) |
式中,J为第一类贝塞尔函数。
不同频率的光强分量,使用锁相放大器即可一一分离。将分离所得的系数记作,记作,则φ值可由
(3) |
Thurne
实验时的环境温度为10 ℃。
本节将基于回归分析验证既有理论的适用性,确定实验检得的干涉信号的物理意义。
(4) |
式中,为相对压强在z方向的积分;为径向速度在z方向上的积分;为单位阶跃函数;和均为参数,刻画了初始扰动的强度。z与r分别是柱坐标系的径向与轴向坐标,具体含义如

图3 模型初始状态示意图
Fig.3 Scheme of the model for the initial state
1—聚焦点, 2—检测点, 3—检测光束,4—刚性平面, 5—样品
1—source spot, 2—detection spot, 3—detection beam, 4—rigid plane, 5—sample
声扰动的传播服从线性声学理
(5) |
式中,为声速,m·
根据Che
(6) |
式中,为相对压强在z方向的积分,;为相位变化,。
Chen的模型是由非反应性材料的实验数据总结而来的,对于反应性材料,其适用性未知。为了验证Chen的模型是否适用于描述黑火药及其各组分单质的光声信号,基于

a. typical fitting result

b. 3D histogram for coefficient of determination
图4 基于线性声学理论的拟合结果分析
Fig.4 Fitting analysis based on the linear acoustic theory
由
综上所述,研究测得的光声信号可以使用
为了确定黑火药光声信号是否因化学反应发生了增强,本研究对光声信号的特征作定量分析。黑火药及其各组分单质在10 mJ激光脉冲能量下的典型光声信号如

图5 10 mJ激光脉冲能量下各样品的典型信号
Fig.5 Typical signals under the irradiation of laser pulse with 10 mJ energy
为进一步定量分析所得信号,引入相位变化对时间的积分Φ作为分析对象。Φ的具体定义如
(7) |
式中,为信号由正转负的时刻,s。正比于[

图6 Φ与激光脉冲能量的关系(直线为线性回归结果)
Fig.6 Relationship between Φ and laser pulse energy(the lines are obtained based on linear regression)
由
(8) |
式中,Φ代表相位变化对时间的积分,rad·μs;E代表激光脉冲能量,mJ。由
如果在激光辐照下,黑火药各组分间不存在相互作用,则黑火药的光声信号理应表现为各组分单质光声信号的加权平均:
(9) |
式中,、、的具体取值未知,但是均为非负数,并且。满足上述限制的加权平均数不会大于原始数据,因此由
实验测得的与基于
根据Che
(10) |
当=25.7 Pa·m,r0=6 mm时,σ=6.82×1
根据线性声学理
(11) |
式中,是静止大气的密度,量纲为长
当不太小时,处的可以使用出射边界条
(12) |
约去
(13) |
基于能流的声波能量
(14) |
将
(15) |
受Arrhenius方程启发,以计算所得的为纵坐标,相应的为横坐标,使用

图7 声波能量与激光脉冲能量的关系,曲线为非线性回归结果
Fig.7 Relationship between wave energy and laser energy, the curves are obtained based on nonlinear regression
(16) |
由
(17) |
式中,为声波能量,mJ;E为激光脉冲能量,mJ。
对
基于
(a) 黑火药的化学反应发生并且仅发生在激光脉冲辐照药面的时间内。
(b) 黑火药化学反应的能量完全转化成了大气中声波的能量。
(c) 黑火药在激光辐照下发生的化学反应可由以下反应
(d)Ewave,black powder满足Ewave,black powder=Ereaction+Ecomponents,式中是黑火药化学反应产生的能量,Ecomponents是黑火药样品中未参与反应的各单质组分对声波能量的贡献。
(e)Ecomponents满足Ecomponent+pSEwave,S+pCEwave,C,式中,,依次是KNO3,S,C在黑火药中的体积分数。
(f) KNO3,S,C在黑火药样品中的压药密度与各单质样品压药密度相同。
由假设(a)(b)(c)可推出光致黑火药分解的平均反应速率为:
(18) |
其中,可由假设(d)(e)以及

图8 黑火药反应速率与激光脉冲能量的关系
Fig.8 Relationship between reaction rate of black powder and laser pulse energy
为了加深对含能材料与激光的相互作用过程的认识,研究采用干涉测量方法,对黑火药在纳秒脉冲激光幅照下产生的光声信号进行了检测与分析,得到以下结论:
(1)纳秒级脉冲激光激发的黑火药及其单质组分的光声信号可以使用线性声学理论描述。
(2)黑火药在纳秒级脉冲激光辐照下的反应机理与其热分解机理没有明确关联。
(3)光声信号强度与激光脉冲能量近似呈线性关系。
(4)黑火药信号并非单质组分信号的加权平均,其中存在各组分之间化学反应的贡献。
(5)光致黑火药反应中的激光脉冲能量与黑火药热分解反应中的温度变化地位类似;基于测得的光声信号,可以估算黑火药反应速率,计算所得的反应速率与激光脉冲能量近似正相关,当激光脉冲能量较高时,黑火药的化学反应与各单质组分的反应出现了竞争。当激光能量为10 mJ左右时,反应速率达最大值,约为20 mmol·
参考文献
ALUKER E D, KRECHETOV A G, MITROFANOV A Y, et al. Understanding limits of the thermal mechanism of laser initiation of energetic materials[J]. The Journal of Physical Chemistry C, 2012, 116(46): 24482-24486. [百度学术]
ALUKER E D, KRECHETOV A G, MITROFANOV A Y, et al. Topography of photochemical initiation in molecular materials[J]. Molecules, 2013, 18(11): 14148-14160. [百度学术]
JOAS M, KLAPÖTKE T M. Laser initiation of tris(carbohydrazide)metal(ii) perchlorates and bis(carbohydrazide)diperchlorato‑copper(ii)[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 246-252. [百度学术]
WANG Y, XU S, LI H, et al. Laser ignition of energetic complexes: impact of metal ion on laser initiation ability[J]. New Journal of Chemistry, 2021, 45(28): 12705-12710. [百度学术]
BRISH A A, GALEEV I A, ZAITSEV B N, et al. Mechanism of initiation of condensed explosives by laser radiation[J]. Combustion, Explosion and Shock Waves, 1969, 5(4): 326-328. [百度学术]
王惠娥, 沈瑞琪, 叶迎华, 等. 石墨/硝酸钾配比对其反应性光声特性的影响[J]. 激光技术, 2013, 37(2): 274-276. [百度学术]
WANG Hui‑e, SHEN Rui‑qi, YE Ying‑hua, et al. Effect of reagent ratio of graphite to potassium nitrate on reactive photoacoustic characteristics[J]. Laser technology, 2013, 37(2): 274-276. [百度学术]
叶迎华, 沈瑞琪, 戴实之. 酚醛树脂对B/KNO3点火药的激光点火特性的影响. 中国激光, 1999, A26(11): 1007-1010. [百度学术]
YE Ying‑hua, SHEN Rui‑qi, DAI Shi‑zhi. Effect of phenolic resin on laser ignition of B/KNO3. Chinese Journal of Lasers, 1999, A26(11): 1007-1010. [百度学术]
PIAZZON N, ROSENTHAL M, BONDAR A, et al. Characterization of explosives traces by the Nanocalorimetry[J]. Journal of Physics and Chemistry of Solids, 2010, 71(2): 114-118. [百度学术]
PIEKIEL N W,CAVICCHI R E,ZACHARIAH M R. Rapid‑heating of energetic materials using a micro‑differential scanning calorimeter[J]. Thermochimica Acta, 2011, 521(1): 125-129. [百度学术]
ZARKO V E, KNYAZEVA A G. Determination of kinetic parameters of exothermic condensed phase reaction using the energetic material ignition delay data[J]. Combustion and Flame, 2020, 221: 453-461. [百度学术]
BELL A G. On the production and reproduction of sound by light[J]. American Journal of Science, 1880, s3‑20(118): 305-324. [百度学术]
MANOHAR S,RAZANSKY D.Photoacoustics:A historical review[J].Advances in Optics and Photonics,2016,8(4): 586-617. [百度学术]
TAM A C. Applications of photoacoustic sensing techniques[J]. Reviews of Modern Physics, 1986, 58(2): 381-431. [百度学术]
SIGRIST M W. Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary)[J]. Review of Scientific Instruments, 2003, 74(1): 486-490. [百度学术]
BIALKOWSKI S E, ASTRATH N G C, PROSKURNIN M A. Photothermal spectroscopy methods[M]. 2nd edition. Hoboken, NJ: Wiley, 2019: 35-36. [百度学术]
SPAGNOLO V, KOSTEREV A A, DONG L, et al. NO trace gas sensor based on quartz‑enhanced photoacoustic spectroscopy and external cavity quantum cascade laser[J]. Applied Physics B, 2010, 100(1): 125-130. [百度学术]
MÉNDEZ‑GONZÁLEZ M M, CRUZ‑OREA A, MENDEZ‑GONZALEZ G, et al. Thermal characterization of calcium phosphates for biomedical use[J]. International Journal of Thermophysics, 2010, 31(2): 374-377. [百度学术]
PRASAD R L, PRASAD R, BHAR G C, et al. Photoacoustic spectra and modes of vibration of TNT and RDX at CO2 laser wavelengths[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2002, 58(14): 3093-3102. [百度学术]
SAUSA R C, CABALO J B. The detection of energetic materials by laser photoacoustic overtone spectroscopy[J]. Applied Spectroscopy. 2012, 66(9): 993-998. [百度学术]
叶迎华, 沈瑞琪, 胡艳. B/KNO3点火药激光点火过程中二次燃烧现象的实验和光声模拟[J]. 火炸药学报, 2008, 31(6): 60-64. [百度学术]
YE Ying‑hua, SHEN Rui‑qi, HU Yan. Experiment and photoacoustic simulation of secondary combustion phenomenon of B/KNO3 mixture ignited by laser[J]. Chinese Journal of Explosives & Propellants, 31(6): 60-64. [百度学术]
叶迎华, 沈瑞琪, 戴实之. 凝聚态化学反应的声诊断‑反应性光声光谱技术[J]. 火工品, 1996, 4: 34-37. [百度学术]
YE Ying‑hua, SHEN Rui‑qi, DAI Shi‑zhi. Acoustic diagnosis of chemical reaction of condensed phase ‑ reactivity photoacoustic spectrum technology[J]. Initators and Pyrotechnics, 1996, 4: 34-37. [百度学术]
沈瑞琪, 孙同举, 戴实之. 固体化学反应的光声模型[J]. 中国激光, 1994, A21(10): 821-826. [百度学术]
SHEN Rui‑qi, SUN Tong‑ju, DAI Shi‑zhi. Photoacoustic model of solid chemical reaction[J]. Chinese Journal of Lasers, 1994, A21(10): 821-826. [百度学术]
沈瑞琪, 戴实之, 叶迎华. N
SHEN Rui‑qi, DAI Shi‑zhi, YE Ying‑hua. Chemical reaction process of initiated lead styphnate by N
沈瑞琪, 叶迎华, 戴实之. 光声检测叠氮化铅分解的化学反应过程[J]. 应用激光, 1993, 13 (6): 264-266. [百度学术]
SHEN Rui‑qi, YE Ying‑hua, DAI Shi‑zhi. Photoacoustic detection for chemical reaction process of lead azide decomposition[J]. Applied Laser, 1997, 13(6):264-266. [百度学术]
沈瑞琪, 叶迎华, 戴实之. 激光对固体推进剂点火形成的二次燃烧现象[J]. 应用激光, 1995, 15(5): 207-208. [百度学术]
SHEN Rui‑qi, YE Ying‑hua, DAI Shi‑zhi. Secondary combustion phenomenon solid propellant ignited by laser[J]. Applied Laser, 1995, 15(5): 207-208. [百度学术]
叶迎华, 沈瑞琪, 戴实之. 石墨掺杂对B/KNO3点火药的激光点火特性的影响[J]. 应用激光, 1998, 18(3): 99-100. [百度学术]
YE Ying‑hua, SHEN Rui‑qi, DAI Shi‑zhi. Laser ignition characteristics influenced by graphite doping into B/KNO3[J]. Applied Laser. 1998, 18(3): 99-100. [百度学术]
沈瑞琪, 戴实之, 叶迎华. 激光对均质固体推进剂热损伤的光声频谱特征[J]. 火工品, 1995, 2: 5-7. [百度学术]
SHEN Rui‑qi, DAI Shi‑zhi, YE Ying‑hua. Frequency spectrum characteristic of photoacoustic wave of thermal damage of homogeneous solid propellant[J]. Initiators and Pyrotechnics, 1995, 2: 5-7. [百度学术]
王惠娥, 沈瑞琪, 叶迎华, 等. 基于光声技术研究硝酸钾/石墨的反应性光声谱[J]. 激光杂志, 2012, 33(6): 16-17. [百度学术]
WANG Hui‑e, SHEN Rui‑qi, YE Ying‑hua, et al. Study on the reactivity photoacoustic spectrum of potassium nitrate/graphite powder based on the photoacoustic detection technology[J]. Laser technology, 2012, 33(6): 16-17. [百度学术]
YULDASHEV P, KARZOVA M, KHOKHLOVA V, et al. Mach‑Zehnder interferometry method for acoustic shock wave measurements in air and broadband calibration of microphones[J]. The Journal of the Acoustical Society of America, 2015, 137(6): 3314-3324. [百度学术]
RAPHAËL V, DONATIENNE L, OLIVIER D, et al. Multicomponent reduced scale seismic modelling: upgrade of the MUSC laboratory with application to polarization observations[J]. Geophysical Journal International, 2015, 202(3): 1993-2024. [百度学术]
DEWHURST R J, SHAN Q. Optical remote measurement of ultrasound[J]. Measurement Science and Technology, 1999, 10(11): R139. [百度学术]
CHEN Y, SHEN R, WU L. Acoustic wave generated by focused nanosecond laser pulse at air‑solid interface: Experiment and modeling[J]. AIP Advances, American Institute of Physics, 2021, 11(12): 125108. [百度学术]
RUSSELL M S. The chemistry of fireworks[M]. RSC Pub, 2009: xvi‑41. [百度学术]
JENOT F, OUAFTOUH M, DUQUENNOY M, et al. Interferometric detection of acoustic waves at air‑solid interface applications to non‑destructive testing[J]. Journal of Applied Physics, 2005, 97(9): 094905. [百度学术]
DANDRIDGE A, TVETEN A, GIALLORENZI T. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier[J]. IEEE Journal of Quantum Electronics, 1982, 18(10): 1647-1653. [百度学术]
JIA P G, WANG D H. Self‑calibrated non‑contact fibre‑optic Fabry‑Perot interferometric vibration displacement sensor system using laser emission frequency modulated phase generated carrier demodulation scheme[J]. Measurement Science and Technology, 2012, 23(11): 115201. [百度学术]
THURNER K, BRAUN P‑F, KARRAI K. Fabry‑Pérot interferometry for long range displacement sensing[J]. Review of Scientific Instruments, 2013, 84(9): 095005. [百度学术]
THURNER K, QUACQUARELLI F P, BRAUN P‑F, et al. Fiber‑based distance sensing interferometry[J]. Applied Optics, 2015, 54(10): 3051-3063. [百度学术]
崔庆忠, 焦清介, 任慧. 无木炭型黑火药研究[J]. 含能材料, 2005, 13(6): 389-392. [百度学术]
CUI Qing‑zhong, JIAO Qing‑jie, REN Hui. Study on charcoal‑free black powder[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(6):389-392. [百度学术]
任慧, 崔庆忠, 焦清介. 黑火药的热分解过程与反应动力学参数研究[J]. 含能材料, 2011, 15(1): 29-32. [百度学术]
REN Hui, CUI Qing‑zhong, JIAO Qing‑jie. Thermal decomposition and kinetic parameters of black powder reaction[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007, 15(1):29-32. [百度学术]
俞进阳, 陈利平, 姜夕博, 等. 无硫黑火药的热分解动力学研究[J]. 含能材料, 2011, 19(6): 646-649. [百度学术]
YU Jin‑yang, CHEN Li‑ping, JIANG Xi‑bo, et al. Thermal kinetics of sulphur‑free black powder[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2011, 19(6):646-649. [百度学术]
王惠娥, 沈瑞琪, 叶迎华, 等. 石墨/硝酸钾的热行为及分解反应动力学研究[J]. 含能材料, 2012, 20(6): 731-734. [百度学术]
WANG Hui‑e, SHEN Rui‑qi, YE Ying‑hua, et al. Thermal behaviour and decomposition reaction kinetics of graphite/potassium nitrate[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2012, 20(6): 731-734. [百度学术]
SCHATZ E A. Reflectance of compacted powder mixtures[J]. Journal of the Optical Society of America, 1967, 57(7): 941. [百度学术]
RIENSTRA S W, HIRSCHBERG A. An introduction to acoustics[M]. Eindhoven University of Technology, 2004: 25-29. [百度学术]
ENGQUIST B, MAJDA A. Absorbing boundary conditions for numerical simulation of waves[J]. Proceedings of the National Academy of Sciences, 1977, 74(5): 1765-1766. [百度学术]