摘要
为了促进光敏炸药乙炔银‑硝酸银配合物(Ag2C2·AgNO3)的稳定生产和应用,采用X射线粉末衍射仪、傅里叶红外光谱仪、扫描电镜、差示扫描量热仪和热重‑质谱‑红外三联用技术等对其结构形貌和热分解特性进行了研究。结果表明,制备的Ag2C2·AgNO3呈纳米球状,粒径在400~500 nm之间;Ag2C2·AgNO3只有1个放热分解过程,10.0 ℃·mi
图文摘要
On the basis of successfully preparation of spherical particles of Ag2C2·AgNO3, the thermal decomposition characteristics of Ag2C2·AgNO3 were systematically studied from the perspectives of thermal decomposition temperature, heat release, apparent activation energy, mass loss and thermal decomposition gaseous products.
乙炔银‑硝酸银(Ag2C2·AgNO3)是乙炔银和硝酸银形成的共晶配合物,不溶于水、乙醇、乙醚、丙酮等溶
本课题组之前对其制备方法、安全特性以及光起爆特性等进行了相应研
试剂:硝酸银、丙酮、乙腈,分析纯,天津市科密欧化学试剂有限公司;乙炔气体,纯度>99.5%,西安市越峰天易气体有限公司。
仪器:X射线粉末衍射仪(XRD:日本理学);傅里叶红外光谱仪(FT‑IR:日本岛津);场发射扫描电镜(SEM:德国卡尔蔡司);热重分析仪(TG:美国TA);热重‑质谱‑红外联用仪(TG‑MS‑FT‑IR:德国耐驰STA449F3、德国耐驰QMS403C和德国布鲁克70vFT‑IR)。
对所制备的Ag2C2·AgNO3样品进行XRD和FT‑IR表征,结果如C炔键的典型吸收峰,1385 c

a. XRD

b. FT‑IR
图1 Ag2C2·AgNO3的XRD图和FT‑IR图
Fig.1 XRD and FT‑IR pattern of Ag2C2·AgNO3

a. 3 k

b. 10 k

c. 20 k
图2 Ag2C2·AgNO3在不同放大倍数下的SEM图
Fig.2 SEM images of Ag2C2·AgNO3 at different magnifications
热分解行为是研究、评价含能材料的一个重要参

a. DSC curve

b. TG‑DTG curves
图3 Ag2C2·AgNO3的DSC和TG‑DTG曲线图
Fig.3 DSC and TG‑DTG curves of Ag2C2·AgNO3
采用DSC进一步对Ag2C2·AgNO3进行分析,得到Ag2C2·AgNO3在不同升温速率(5.0、7.5、10.0 ℃·mi

图4 不同升温速率下Ag2C2·AgNO3的DSC曲线
Fig.4 DSC curves of Ag2C2·AgNO3 at different heating rates
由Ozawa法计算得到不同升温速率下的Ag2C2·AgNO3的反应分数α和与之相对应的温度Ti、表观活化能Eo,结果如
(1) |

图5 Ag2C2·AgNO3在不同升温速率下的T~α曲线和Eo~α曲线
Fig.5 T‑α curves of Ag2C2·AgNO3 at different heating rates and the Eo‑α curve
Note: Ti is the temperature corresponding to different α,Eo is the apparent activation energy calculated by Ozawa method.
Note: E is the apparent activation energy,A is the pre‑index factor,r is the linear correlation coefficient.
利用TG‑MS‑FTIR联用技术分析了Ag2C2·AgNO3样品的气相分解产物。

图6 Ag2C2·AgNO3热分解气相产物的三维红外光谱图
Fig.6 3D FT‑IR spectra of the gaseous products of the thermal decomposition of Ag2C2·AgNO3

a. Ion current intensities

b. FTIR spectra
图7 气相产物离子流强度随温度变化和不同加热温度下气相产物的红外光谱图.
Fig.7 Ion current intensities and FTIR spectra of gaseous products at different heating temperatures
自加速分解温度(TSADT)与热临界爆炸温度(Tb)是含能材料在热危险性能评估中2个重要的指标,对含能材料的储存、使用等过程有着重要指导意义。2个参数可以通过式(
(2) |
(3) |
式中,n和m为系数;Te0指升温速率无限趋近于零时的外推起始温度,℃;Eo是通过Ozawa法计算得到的表观活化能,kJ·mo
通过式(
(4) |
(5) |
(6) |
式中,T=Tpo,A=AK,E=EK,kb是玻尔兹曼常数(1.38066×1
本研究对新工艺制备的纳米球状Ag2C2·AgNO3产品进行了系统的热分解特性研究,得到以下结论:
(1)在10.0 ℃·mi
(2)Ag2C2·AgNO3的热稳定性良好,计算得到的TSADT和Tb分别为202.1 ℃和205.7 ℃,Δ
(3)Ag2C2·AgNO3的热分解比较彻底,气相分解产物以CO2为主,包含少量的NO和极微量的NO2,尽管该化合物负氧平衡,但没有CO及N2生成。
参考文献
徐海斌, 裴明敬, 张德志, 等. 乙炔银‑硝酸银合成工艺优化及其性能测试[J]. 火炸药学报, 2018, 41(6):573-577. [百度学术]
XU Hai‑bin, PEI Ming‑jing, ZHANG De‑zhi, et al. Synthesis process optimization and property test of silver acetylene and silver nitrate[J]. Chinese Journal of Explosives and Explosives, 2018, 41(6): 573-577. [百度学术]
裴明敬, 徐海斌, 王等旺, 等. 酸性乙炔银的光起爆特性[J]. 高压物理学报,2017, 31(6): 813-819. [百度学术]
PEI Ming‑jing, XU Hai‑bin, WANG Deng‑wang, et al. Detonation characteristics of light‑initiated explosive silver acidic silver acetylene[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 813-819. [百度学术]
徐海斌, 裴明敬,张德志,等.酸性乙炔银制备方法及其表征[J]. 火工品,2019, (4): 40-43. [百度学术]
XU Hai‑bin, PEI Ming‑jing, ZHANG De‑zhi, et al. Preparation and characterization of acidic silver acetylene[J]. Initilators&Pyrotechnics, 2019, (4): 40-43. [百度学术]
张陆,王霆威,王晓军,等. 激光敏感型含能配合物类起爆药研究进展[J].含能材料, 2022, 30(4): 385-395. [百度学术]
ZHANG Lu, WANG Ting‑wei, WANG Xiao‑jun,et al. Review on laser sensitive energetic complex primary explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2022, 30(4): 385-395. [百度学术]
谢兴兵,朱顺官,陈鹏源,等. 二水偶氮四唑四氨合铜(Ⅱ)的合成及性能[J]. 火炸药学报,2014,37(6): 31-34. [百度学术]
XIE Xing‑bing, ZHU Shun‑guan, CHEN Peng‑yuan, et al. Synthesis and performance of tetraamminecopper(Ⅱ) azo tetrazolate dihydrate[J]. Chinese Journal of Explosives & Propellants, 2014, 37(6): 31-34. [百度学术]
潘鹏阳,王可欣,易镇鑫,等.起爆药研究最新进展[J].含能材料, 2021, 29(6): 557-566. [百度学术]
PAN Peng‑yang, WANG Ke‑xin, YI Zhen‑xin, et al. Recent Advances in Primary Explosives[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2021, 29(6): 557-566. [百度学术]
NEVILL G, HOESE F. Impulsive loading using sprayed silver acetylide‑silver nitrate[J]. Experimental Mechanics, 1965, 5(9): 294-298. [百度学术]
BENHAM R, MATHEWS F, HIGGINS P, et al. Application of light‑initiated explosive for simulating X‑ray blowoff im‑pulse effects on a full scale reentry vehicle,SAND76‑9019[R]. Albuquerque: Sandia Laboratory, 1976. [百度学术]
BENHAM R. An initiation and gas expansion model for the light‑initiated explosive silver acetylide‑silver nitrate,SAND79‑1829[R]. Albuquerque: Sandia Laboratory, 1979. [百度学术]
BENHAM R. Preliminary experiments using light‑initiated high explosive for driving thin flyer plates, SAND79‑1847[R]. Albuquerque: Sandia Laboratory, 1980. [百度学术]
BENHAM R. Pressure loading of aluminum and quart‑ zusing spary deposited light‑initiated high explosive,SAND80‑0344[R]. Albuquerque: Sandia Laboratory, 1980. [百度学术]
BENHAM R, MATHEWS F. X‑ray simulation with light‑ initiated explosive[J]. The Shock and Vibration Bulletin, 1975, 45: 87-91. [百度学术]
COVERT T,TIMOTHY T.Staubli TX‑90XL robot qualification at the light initiated high explosive facility.SAND2010‑7222[R]. Albuquerque: Sandia National Laboratory, 2010. [百度学术]
HOESE F, LANGNER C, BAKER W, et al. Simultaneous initiation over large areas of a spray‑deposited explosive[J]. Experimental Mechanics, 1968, 8(9): 392-397. [百度学术]
WANG J, LIAN X, CHEN S, et al. Effect of Bi2WO6/g‑C3N4 composite on the combustion and catalytic decomposition of energetic materials:An efficient catalyst with g‑C3N4 carrier[J]. Journal of Colloid and Interface Science,2022, 610: 842-853. [百度学术]
WAN C, LI J, CHEN S, et al. In situ synthesis and catalytic decomposition mechanism of CuFe2O4/g‑C3N4 nanocomposite on AP and RDX[J]. Journal of Analytical and Applied Pyrolysis, 2021, 160: 105372. [百度学术]
张婷,石墨烯‑铁基金属氧化物的制备及对含能组分的催化分解与铝热性能研究[D]. 西安: 西北大学, 2021. [百度学术]
ZHANG Ting. Preparation of graphene/trom‑based metal oxides and catalytic decomposition for energetic components and the thermite performance[D]. Xi′an: Northwest University, 2021. [百度学术]
WU X, LIU Z, ZHU W, et al. Coupling effect of high temperature and pressure on the decomposition mechanism of crystalline HMX[J].Energetic Materials Frontiers,2020,1(2): 90-94. [百度学术]
WANG J, LIAN X, YAN Q, et al. Unusual Cu-Co/GO Composite with special high organic content synthesized by an in situ self‑assembly approach: Pyrolysis and catalytic decomposition on energetic materials[J]. ACS Applied Materials & Interfaces. 2020, 12: 28496-28509. [百度学术]
蒲彦利, 盛涤伦, 朱雅红, 等.新型起爆药5‑硝基四唑亚铜工艺优化及性能研究[J]. 含能材料, 2010, 18(6): 654-659. [百度学术]
PU Yan‑li, SHENG Di‑lun, ZHU Ya‑hong, et al. Synthesis process and property of new primary explosive copper (I) nitrotetrazolate[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2010, 18(6): 654-659. [百度学术]
YAN Q, ZHAO F, KUO, K, et al. Catalytic effects of nano additives on decomposition and combustion of RDX‑, HMX‑, and AP‑based energetic compositions. Progress in Energy and Combustion Science, 2016, 57: 75-136. [百度学术]
ZHANG M, ZHAO F, YANG Y, et al. Catalytic activity of ferrates (NiFe2O4, ZnFe2O4 and CoFe2O4) on the thermal decomposition of ammonium perchlorate[J]. Propellants Explosives Pyrotechnics, 2019, 45: 463-471. [百度学术]
王燕兰, 张方, 张蕾, 等. 两种不同结构纳米叠氮化铜的含能特性研究[J]. 火工品, 2018, 1: 32-35. [百度学术]
WANG Yan‑lan, ZHANG Fang, ZHANG Lei, et al. Study on detonation properties of two different nano‑structure copper azide[J]. Initilators&Pyrotechnics, 2018, 1: 32-35. [百度学术]
张蕊, 冯长根, 姚朴, 等. 钝感起爆药 BNCP 的热安全性[J]. 火炸药学报, 2003, 26(2):66-69. [百度学术]
ZHANG Rui, FENG Chang‑gen, YAO Pu, et al. The thermal safety of a new kind of initiating explosives BNCP[J]. Chinese Journal of Explosives and Explosives, 2003, 26(2): 66-69. [百度学术]
胡荣祖, 高胜利, 赵凤起, 等. 热分析动力学(第二版)[M]. 北京:科学出版社,2008. [百度学术]
HU Rong‑Zu, GAO Sheng‑li, ZHAO Feng‑qi, et al. Thermal Analysis Kinetics (
MA H, YAN B, LI Z, et al. Synthesis, molecular structure, non‑isothermal decomposition kinetics and adiabatic time to explosion of 3,3‑dinitroazetidinium 3,5‑dinitrosalicylate[J]. Journal of Thermal Analysis and Calorimetry, 2009, 95(2): 437-444. [百度学术]
XU K, SONG J., ZHAO F, et al. Non‑isothermal decomposition kinetics, specific heat capacity and adiabatic time‑to‑explosion of a novel high energy material: 1‑amino‑1‑methylamino‑2,2‑dinitroethylene (AMFOX‑7)[J]. Journal of the Chinese Chemical Society, 2013, 56(3): 524-531. [百度学术]