摘要
氧化呋咱是蕴含“潜硝基”片段的富氮芳环结构,其骨架致密性与突出的生成焓水平使其成为含能材料等领域的重要分子骨架。特殊的氮氧原子排布显著提升了氧化呋咱互变异构的倾向,而互变异构体的存在降低了氧化呋咱骨架的稳定性同时增加了其合成的难度。本文综述了基于不同策略的氧化呋咱的合成方法研究,以氧化呋咱骨架本身的制备反应机理为重点,分析比较了不同合成方法的优势与不足,并进一步总结了以氧化呋咱合成策略为基础的含能化合物研发进展。鉴于氧化呋咱本身的高致密性、高氧平衡、高生成焓特点,以氧化呋咱结构为基础的含能结构仍将是高能量密度材料研发的重点方向。
图文摘要
Focusing on the synthetic mechanism of furoxan framework itself, the advantages and disadvantages of different synthetic methodologies are analyzed and compared in this account. Moreover, the progress of energetic materials based on the strategy developed for the synthesis of furoxan is also summarized.
含能材料的主要研究目标之一是提升含能化合物能量与密
高性能氮杂骨架构建的重要途径是在氮杂骨架中引入N‑氧化物单元,该方法不仅有利于形成密集的晶体堆积结构、提升骨架密度,同时骨架生成焓因氧含量的增加而得以提
从合成角度上看,氧化呋咱合成的最大难点在于设计具有较强环化倾向的合成前体,令其在指定的条件下自发转化为蕴含氧‑氮‑氧‑氮排布的氧化呋咱环系。这类转化往往需要较强的热力学驱动力,因而氧化呋咱一般通过缩合反应或氧化反应等实现,在形成骨架环系的同时释放高度稳定的小分子结构,如氮气、水、氯化氢等。迄今氧化呋咱合成方法主要包
硝基与叠氮基是使用最广泛的致爆基

Scheme 1 Denitrogenation condensation of o‑nitroazide structure and the mechanis
1,2‑二肟氧化缩合法是氧化呋咱合成的常用方法,该方法由于先需要形成相邻的二肟结构,因此多基于易于获得1,2‑二醛或1,2‑二酮的底物。从总反应效果来看,1,2‑二肟氧化缩合形成为氧化呋咱的过程共涉及2个电子和2个质子的转移,可选择的氧化剂种类很多,例如卤素、次卤酸盐、铁氰化物、高价铈离子、硝酸和氮氧化物、二氧化锰、四乙酸铅、N‑碘代琥珀酰亚胺和苯基碘(Ⅲ)双三氟乙酸盐等,甚至直接以电化学氧化实

Scheme 2 Oxidative condensation of 1,2‑dioxime structure and the mechanis
邻硝基氨基结构大量存在于含能化合物的结构当中,因此,邻硝基氨基氧化缩合法制备氧化呋咱结构具有非常广阔的应用前景,但迄今为止该方法在制备含氧化呋咱结构的含能材料中应用较为有限。次卤酸盐、碘代苯二乙酸酯(IBD)等均是邻硝基氨基缩合过程中常用的氧化剂,不同的氧化剂与氨基中孤对电子相互作用后通过环化形成氧化呋咱结构,但环化反应的转化机理存在差异:酸性条件下次卤酸盐为氧化剂时,氨基形成N‑氧化结构,在硝基氧原子进攻下通过脱水反应形成氧化呋

Scheme 3 Oxidative condensation of o‑nitroamino structure and the mechanis
1,3‑偶极子环加成反应(Huisgen环加成反应)是制备五元杂环体系最高效的手段之一,具有反应清洁,转化率高等优
氯肟碱性缩合法机理是基于以氯肟转化所得氧化腈的1,3‑偶极子环加成反应,即以两分子羟肟酰氯与弱碱(如碱金属碳酸盐)作用获取两分子氧化腈,这是一个原位反应获得1,3‑偶极子过程,一分子氧化氰作为1,3‑偶极子,另一分子氧化氰作为亲偶极体,通过氧化氰二聚反应完成环化获得氧化呋咱结构。在含能材料领域,制备氯肟最常用的策略是基于氰基的羟胺加成及氯代反

Scheme 4 Condensation of chloro‑oxime under alkaline conditions and the mechanis
与氯肟结构相似,硝基肟结构也是氧化腈的1,3‑偶极子结构的有效前体。肟在四氧化二氮作用下可以转化为硝基肟结构,而硝基肟加热可以原位产生氧化腈的1,3‑偶极子结构,进而发生1,3‑偶极子环加成反应,获得氧化呋

Scheme 5 Condensation through nitro‑oxime and the mechanis
偕二硝甲基缩合法是制备氧化呋咱的一类特殊方法,可通过脱除硝酸实现氧化腈的构建并基于其1,3‑偶极子环加成反应获得氧化呋咱产物,可能的机理如

Scheme 6 Dinitromethyl condensation strategy and the mechanis
烯烃加成转化法是基于烯烃与氮氧化物的加成反应,烯烃在亚硝化试剂作用下可以发生串联反应进而最终转化成为氧化呋咱结构。典型的一些转化包括:(a)以等当量吡啶的碱性条件下,四氟硼酸亚硝鎓与二取代苯乙烯反应形成相应氧化呋咱结构及其互变异构体结

Scheme 7 Other conversion methods and mechanisms based on olefins, chloro‑oximes and oxime
具有富氮稠环骨架的含能材料普遍具有较低的冲击波感度和机械感度,以及更高的爆轰性能。邻硝基叠氮基脱氮缩合法是当前含氧化呋咱结构的富氮稠环含能材料合成中应用最多的方法。苯并三氧化呋咱(BTF)是重要的无氢炸药,能量密度水平和起爆性能突出,具有与奥克托今(HMX)相当的安全性、热安定性、爆轰特性,而其冲击起爆感度、熄爆直径与太安相当,作为起爆药被应用于导爆索装药和改善B炸药的装药性能。经典的BTF合成方法是基于酸性溶剂中三叠氮基三硝基苯加热至其熔点(131 ℃)的反应,该反应中相邻的硝基与叠氮基脱除氮气分子后形成环化产

Scheme 8 Synthesis of furoxan and BTF by denitrogenation condensation of o‑nitroazide structur
氨基‑硝基交替结构能够有效降低含能材料的机械感度,是设计钝感含能材料的重要途径。5,7‑二氨基‑4,6‑二硝基苯并氧化呋咱(DADNB,CL‑14)具有类似TATB的氨基‑硝基交替结构单元,作为重要的钝感炸药,其理论密度达到1.91 g·c

Scheme 9 Synthesis of CL‑14 and ANBDF by denitrogenation condensation of o‑nitroazide structure and VNS reactio
总体而言,当前围绕氧化呋咱环系本身的构建方法研究以缩合反应和环加成反应为主,转化效率较高,且转化前体较为固定。发展更加多样的氧化呋咱环系构建方法目前仍是含能材料合成研究的重要方向。
Muralidharan

Scheme 10 Synthesis of nitrogen‑rich fused aromatic energetic compounds by denitrogenation condensation of o‑nitroazide structur
Klapötke

Scheme 11 Synthesis of 4,4′‑diamino‑3,3′‑bisfuroxan through oxidative condensation of 1,2‑dioxime structur
当前基于一般性缩合反应的方法的含氧化呋咱含能材料合成方法以双肟缩合法、邻硝基叠氮基缩合法为主,其他方法应用有限。这一方面源于相关前体制备的限制,另一方面是相关反应条件需要进一步根据底物结构进行筛选。例如,Rakitin

Scheme 12 4,7‑Dichloro[1,2,5]oxadiazolo[3,4‑d]pyridazine 1‑oxide obtained by oxidation of o‑nitroamino moiet
氯肟碱性缩合法是构建基于氧化呋咱结构的对称型含能材料最重要的途径,与其他方法相比,该方法的反应条件更加温和、转化率高,反应过程对其他含能结构的兼容性好,因而广泛的应用于对称型骨架的设计合成。氯肟碱性缩合法所获得的代表性骨架为基于碳碳单键所串联的呋咱‑氧化呋咱‑呋咱的三环结构,其中3,4‑二硝基呋咱基氧化呋咱(DNTF)是典型的三代含能材料,具有较高的能量密度水

Scheme 13 Tandem furazan‑furoxan‑furazan skeleton based energetic compounds obtained by different condensation reaction

Scheme 14 Tandem tri‑furoxan skeleton energetic compounds obtained by condensation of chloro‑oxim
熔铸炸药是指熔化后可作为液相载体加入固相高能主炸药的一类炸药,其熔铸过程后期进一步再固化成型形成混合炸药,是军用混合炸药中极其重要的组

Scheme 15 Tandem Bis‑(1,2,4‑oxadiazolyl) furoxan skeleton energetic compounds obtained by condensation of chloro‑oxim
将氧化呋咱引入含能化合物体系对于提升整体能量密度水平具有重要意义。迄今为止,基于氧化呋咱的含能化合物种类仍较为有限,如何将氧化呋咱环系与其他富氮环系进行高效偶合以及如何将高性能致爆基团链接在氧化呋咱环上,应是下阶段该领域的重点内容。
氧化呋咱是重要的含能结构单元,具有高致密性、高氧平衡的特性,生成焓水平突出,是含能材料设计与研究的理想单元。本文总结了七类氧化呋咱的主要合成策略,涵盖了邻硝基叠氮基脱氮缩合法、1,2‑二肟氧化缩合法、邻硝基氨基氧化缩合法、1,3‑偶极子环加成法及其它合成方法,重点讨论了氧化呋咱构建的反应机理,并归纳了氧化呋咱典型构建方法在含能材料合成的研究进展。主要结论如下:
(1)邻硝基叠氮基芳香体系,反应条件温和,收率较高,是较为理想的氧化呋咱片段构建方法。但叠氮基硝基中间体感度普遍较高,危险性较大,而原位叠氮基取代并缩合过程可以避免了操作过程中的风险,具有更广阔的应用前景。
(2)双肟缩合、氯肟缩合、硝基肟缩合以及偕二硝基缩合等反应均属于1,3‑偶极缩合反应过程,其反应机理类似,需根据具体的反应前体进行设计,但各自的底物适用性有一定差异。
(3)其它类型的氧化呋咱的制备方法具有一定的底物适用性限制,且反应条件具有各自的特点,虽然转化效率很高,但不属于通用型方法,需要依据具体的结构特征进行设计合成。
(4)氧化呋咱的热稳定性通常低于同类型的呋咱结构,在一定程度上影响了基于氧化呋咱骨架含能化合物的应用。
参考文献
KLAPÖTKE T M. Chemistry of High‑Energy Materials. 3rd Edition[M]. De Gruyter, 2015. [百度学术]
SHUKLA M K, BODDU V M, STEEVENS J A, et al. Energetic Materials: From Cradle to Grave[M]. Springer International Publishing, 2017. [百度学术]
PANG W Q, DeLuca L T, Gromov A A, et al. Innovative Energetic Materials: Properties, Combustion Performance and Application[M]. Springer Singapore, 2020. [百度学术]
SHEREMETEV A B. Energetic materials derived from heterocycles[J]. Chemistry of Heterocyclic Compounds, 2017, 53: 629. [百度学术]
GAO H X, ZHANG Q H, Shreeve J M. Fused heterocycle‑based energetic materials (2012-2019)[J]. Journal of Materials Chemistry A, 2020, 8 (8): 4193-4216. [百度学术]
HU L, YIN P, Imler G H, et al. Fused rings with N‑oxide and ─NH2: Good combination for high density and low sensitivity energetic materials[J]. Chemical Communications, 2019, 55(61): 8979-8982. [百度学术]
PIERCEY D G, CHAVEZ D E, SCOTT B L, et al. An energetic triazolo‑1,2,4‑triazine and its N‑Oxide[J]. Angewandte Chemie International Edition, 2016, 55(49): 15315-15318. [百度学术]
TANG Y X, HE C L, Imler G H, et al. Energetic 1,2,5‑oxadiazolo‑pyridazine and its N‑Oxide[J]. Chemistry-A European Journal, 2017, 23(60): 15022-15025. [百度学术]
LARIN A A, SHAFEROV A V, EPISHINA M A, et al. Pushing the energy‑sensitivity balance with high‑performance bifuroxans[J]. ACS Applied Energy Materials, 2020, 3(8): 7764-7771. [百度学术]
FERSHTAT L L, OVCHINNIKOV I V, EPISHINA M A, et al. Assembly of nitrofurazan and nitrofuroxan frameworks for high‑performance energetic materials[J]. ChemPlusChem, 2017, 82(11): 1315-1319. [百度学术]
LI Y, YUAN J M, ZHAO W, et al. Application and Development of 3,4‑Bis(3‑nitrofurazan‑4‑yl)furoxan (DNTF)[J]. Russian Journal of General Chemistry, 2021, 91: 445-455. [百度学术]
GUO T, LIU M, HUANG X C, et al. Efficient preparation and comprehensive properties of thermal decomposition and detonation for 4,4′‑dinitro‑3,3′‑azofuroxan[J]. Journal of Analytical and Applied Pyrolysis, 2017, 128: 451-458. [百度学术]
ZHANG J L, ZHOU J, BI F Q, et al. Energetic materials based on poly furazan and furoxan structures[J]. Chinese Chemical Letters, 2020, 31(9): 2375-2394. [百度学术]
POLITZER P, MURRAY J S. Nitro Groups vs. N‑Oxide linkages: effects upon some key determinants of detonation performance[J]. Central European Journal of Energetic Materials, 2017, 14(1): 3-25. [百度学术]
DENG M, CHEN F, SONG S, et al. From the sensitive primary explosive ICM‑103 to insensitive heat‑resistant energetic materials through a local azide‑to‑amino structural modification strategy[J]. Chemical Engineering Journal, 2021, 429(11): 132172. [百度学术]
HUGO C, MERCEDES G. Benzofuroxan and furoxan[J]. Chemistry and Biology, Topics in Heterocyclic Chemistry, 2007, 10: 265-308. [百度学术]
GUNTRAM R, FRANK E. A computational study on the mechanism and kinetics of the pyrolysis of 2‑nitrophenyl azide[J]. The Journal of Physical Chemistry A, 1999, 103(45): 9086-9092. [百度学术]
TERUFUMI T, MASAKI K, HIDEHIRO U, et al. Crystalline‑state photoreaction of 1‑Azido‑2‑nitrobenzene‑dir‑ ect observation of heterocycle formation by X‑Ray crystallography[J]. Helvetica Chimica Acta, 2003, 86(5): 1352-1358. [百度学术]
SHEREMETEV A B, ALEKSANDROVA N S, IGNAT′EV N V, et al. Straightforward one‑pot synthesis of benzofuroxans from o‑halonitrobenzenes in ionic liquids[J]. Mendeleev Communications, 2012, 22(2): 95-97. [百度学术]
RAHMAN B, YOUNES V, MARTA O, et al. Mechanistic studies on the in‑situ generation of furoxan ring during the formation of Cu(Ⅱ) coordination compound from dioxime ligand: Theoretical and experimental study[J]. Inorganica Chimica Acta, 2020, 510(24): 119756. [百度学术]
ARMANI V, DELL′ERBA C, NOVI M, et al. Synthetic exploitation of the ring‑opening of 3,4‑dinitrothiophene. Part 7. Access to disubstituted 1,2,5‑oxadiazole‑2‑oxides and 2‑phenyl‑2H‑1,2,3‑triazole‑1‑oxides[J]. Tetrahedron, 1997, 53(5):1751-1758. [百度学术]
BOHN H,BRENDEL J,MARTORANA PA,et al. Cardiovascular actions of the furoxan CAS 1609,a novel nitric oxide donor[J]. British Journal of Pharmacology, 1995, 114(8):1605-1612. [百度学术]
NIYAZYMBETOV M E, UL'YANOVA V, PETROSYAN V A. Electrochemical oxidation of vicinal dioximes[J]. Russian Chemical Bulletin, 1990, 39: 551-554. [百度学术]
OINDRILA D, TAPAN K P. Mechanistic studies of copper(II)‑mediated oxidation of vic‑dioxime to furoxan[J]. Journal of Chemical Sciences, 2012, 124(6): 1269-1273. [百度学术]
CASTILLOHINOJOSA A R, SOUZA S P, VINICIUSALVES T, et al. Shining rings: The effect of the rigid core and benzazole heterocycles on the properties of luminescent calamitic liquid crystals[J]. Journal of Molecular Liquids, 2021, 338(15): 116614. [百度学术]
CHMOVZH T N, KONSTANTINOVA L S, STRUCHKOVA M I, et al. A short and safe method for the synthesis of [1,2,5]oxadiazolo[3,4‑c] pyridine[J]. Chemistry of Heterocyclic Compounds, 2015, 51(2): 203-204. [百度学术]
CHMOVZH T, KNYAZEVA E, POPOV V, et al. 4,7‑Dichloro[1,2,5]oxadiazolo[3,4‑d]pyridazine 1‑oxide[J]. Molbank, 2018: M982. [百度学术]
SAKO M, ODA S, OHARA S, et al. Facile synthesis and NO‑generating property of 4H‑[1,2,5]Oxadiazolo[3,4‑d]pyrimidine‑5,7‑dione 1‑Oxides[J]. Journal of Organic Chemistry, 1998, 63(20): 6947-6951. [百度学术]
SUN T, HAO A, SHEN J, et al. Simple and practical procedure for the preparation of benzofurazan‑N‑oxides in the presence of cyclodextrin in neutral condition[J]. Synthetic Communications, 2009, 39(23): 4309-4314. [百度学术]
BREUGST M, REISSIG H U. The huisgen reaction: milestones of the 1,3‑dipolar cycloaddition[J]. Angewandte Chemie International Edition, 2020, 59(30): 12293-12307. [百度学术]
PASINSZKI T, WESTWOOD N P C. Synthesis, spectroscopy, and applications of small nitrile oxides[J]. Current Organic Chemistry, 2011, 15(11): 1720-1733. [百度学术]
WANG L L, ZHAI L J, SHE W Q, et al. Synthetic strategies toward nitrogen‑rich energetic compounds via the reaction characteristics of cyanofurazan/furoxan[J]. Frontiers in Chemistry, 10: 871684. [百度学术]
LI Y N, ZHANG Z Z, GE Z X, et al. Study of furoxan derivatives for energetic applications[J]. Chinese Journal of Chemistry, 2013, 31(4): 520-524. [百度学术]
GASCO A M, CENA C, STILO A D, et al. Synthesis and structural characterization of the trimeric furoxan (=furazan 2‑Oxide) system, a new potent vasodilating moiety[J]. Helvetica Chimica Acta, 1996, 79(7): 1803-1817. [百度学术]
SIZOVA E V, ROMANOVA T V, MEL'NIKOVA S F, et al. Reactions of furoxandicarbaldehyde dioxime with dehydrating agents[J]. Russian Journal of Organic Chemistry, 2005, 41: 1802-1805. [百度学术]
MAKHOVA N N, OVCHINNIKOV I V, DUBONOS V G, et al. New methods of preparation of nitrile oxides and the corresponding disubstituted furoxans by interaction of N2O4 with salts of substituted dinitromethanes[J]. Russian Chemical Bulletin, 1993, 42(1): 131-136. [百度学术]
翟连杰, 常佩, 许诚, 等. 3,4‑二(3‑氰基氧化呋咱基)氧化呋咱合成、晶体结构与性能[J]. 含能材料, 2021,29(8): 694-699. [百度学术]
ZHAI Lian‑jie, CHANG Pei, XU Cheng, et al. Synthesis, crystal structure and properties of 3,4‑bis(3‑cyanofuroxan‑4‑yl)furoxan[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2021, 29(8):694-699. [百度学术]
JOHNSON E C, BUKOWSKI E J, SAUSA R C, et al. Safer and convenient synthesis of 3,4‑dicyanofuroxan[J]. Organic Process Research & Development, 2019, 23(6): 1275-1279. [百度学术]
PARKER C O, EMMONS W D, ROLEWICZ H A, et al. Chemistry of dinitroacetonitrile—I: Preparation and properties of dinitroacetonitrile and its salts[J]. Tetrahedron, 1962, 17(1-2): 79-87. [百度学术]
MATSUBARA R, SAEKI Y, Li J, et al. Synthesis of furoxans from styrenes under basic or neutral conditions[J]. Synthesis, 2013, 45(11): 1524-1528. [百度学术]
MATSUBARA R, ANDO A, SAEKI Y, et al. Synthesis of furoxans (1,2,5‑oxadiazole 2‑oxides) from styrenes and nitrosonium tetrafluoroborate in non‑acidic media and mechanistic study[J]. Journal of Heterocyclic Chemistry, 2016, 53(4): 1094-1105. [百度学术]
MATSUBARA R, EGUCHI S, ANDO A, et al. Synthesis of alkynyl furoxans. Rare carbon‑carbon bond‑forming reaction on a furoxan ring[J]. Organic & Biomolecular Chemistry, 2017, 15(9): 1965-1969. [百度学术]
FERSHTAT L L, STRUCHKOVA M I, GOVOVESHKIN A S, et al. Dinitrogen trioxide–mediated domino process for the regioselective construction of 4‑nitrofuroxans from acrylic acids[J]. Heteroatom Chemistry, 2014, 25(4): 226-237. [百度学术]
FERSHTAT L L, LARIN A A, EPISHINA M A, et al. Regioselective synthesis of bifuroxanyl systems with the 3‑nitrobifuroxanyl core via a one‑pot acylation/nitrosation/cyclization cascade[J]. Tetrahedron Letters, 2016, 57(38): 4268-4272. [百度学术]
ZHAO J Q, ZHOU M Q, ZUO J, et al. Synthesis of furoxan derivatives: DABCO‑mediated cascade sulfonylation/cyclization reaction of α‑nitro‑ketoximes[J]. Tetrahedron, 2015, 71(10): 1560-1565. [百度学术]
WANG N X, CHEN B R, OU Y X. Review on benzofuroxan system compounds[J]. Propellants, Explosives, Pyrotechnics. 1994, 19(3): 145-148. [百度学术]
CHUGUNOVA E A, TIMASHEVA R E, GIBADULLINA E M, et al. First synthesis of benzotrifuroxan at low temperature: Unexpected behavior of 5,7‑dichloro‑4,6‑dinitrobenzofuroxan with sodium azide[J]. Propellants, Explosives, Pyrotechnics, 2010, 35(4): 1-3. [百度学术]
SHEREMETEV A B, ALEKSANDROVA N S, IGNAT'EV N V, et al. Straightforward one‑pot synthesis of benzofuroxans from o‑halonitrobenzenes in ionic liquids[J]. Mendeleev Communications, 2012, 22(2): 95-97. [百度学术]
MEHILALl, SIKDER A K, SINHA R K, GANDHE B R. Cost‑effective synthesis of 5,7‑diamino‑4,6‑dinitrobenzofuroxan (CL‑14) and its evaluation in plastic bonded explosives[J]. Journal of Hazardous Materials, 2003, 102: 137-145. [百度学术]
FU X L, FAN X Z, WANG B Z, et al. Thermal behavior, decomposition mechanism and thermal safety of 5,7‑diamino‑4,6‑dinitrobenzenfuroxan (CL‑14)[J]. Journal of Thermal Analysis and Calorimetry. 2016, 124: 993-1001. [百度学术]
王伯周, 霍欢, 李吉祯, 等. 4,6‑二硝基‑5,7‑二氨基苯并氧化呋咱(CL‑14)的合成与表征[J]. 有机化学,2011,31(1): 132-135. [百度学术]
WANG Bo‑zhou, HUO Huan, LI Ji‑zhen, et al. Synthesis and characterization of 4,6‑dinitro‑5,7‑diamino benzen‑furoxan (CL‑14)[J]. Chinese Journal of Organic Chemistry, 2011, 31(1): 132-135. [百度学术]
霍欢,王伯周,周诚,等.7‑氨基‑6‑硝基苯并二氧化噁二唑(呋咱)的合成、结构表征与性能研究[J].有机化学,2011,31(5): 701-707. [百度学术]
HUO Huan, WANG Bo‑zhou, ZHOU Cheng, et al. Synthesis, characterization and performances of 7‑Amino‑6‑nitrobenzodifuroxans[J]. Chinese Journal of Organic Chemistry, 2011, 31(5): 701-707. [百度学术]
SRINIVAS D, GHULE V D, TEWARI S P. Synthesis of amino, azido, nitro, and nitrogen‑rich azole‑substituted derivatives of 1h‑benzotriazole for high‑energy materials applications[J]. Chemistry-A European Journal. 2012, 18(47): 15031-15037. [百度学术]
SMIRNOV O Y, TYURIN A Y, CHURAKOV A M. Annulated benzotetrazine 1,3‑dioxides 1. [1,2,5]Oxadiazolo[3,4‑f][1,2,3,4]benzotetrazine 2,4,7‑ and 2,4,9‑trioxides[J]. Russian Chemical Bulletin International Edition,2006,55(1):137-140. [百度学术]
KOROLEV V L, TOPOROV V V, MERKULOVA N L, et al. Synthesis of imidazo[4,5‑e]benzo[1,2‑c;3,4‑c´]difuroxanes[J]. Russian Chemical Bulletin International Edition, 2017, 66(7): 1250-1255. [百度学术]
HUYNH M H V, HISKEY M A, CHAVEZ D E, et al. Preparation, characterization, and properties of 7‑Nitrotetrazolo[1,5‑f]furazano[4,5‑b]pyridine 1‑Oxide[J]. Journal of Energetic Materials, 2005, 23(2): 99-106. [百度学术]
KLAPÖTKE T M, PIERCEY D G, STIERSTORFER J. The facile synthesis and energetic properties of an energetic furoxan lacking traditional “explosophore” moieties: (E,E)‑3,4‑bis(oximomethyl)furoxan (DPX1)[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(2): 160-167. [百度学术]
CHMOVZH T, KNYAZEVA E, POPOV V, et al. 4,7‑dichloro[1,2,5]oxadiazolo[3,4‑d]pyridazine 1‑oxide[J]. Molbank, 2018: M982. [百度学术]
LI Y, YUAN J M, ZHAO W, et al. Application and development of 3,4‑bis(3‑nitrofurazan‑4‑yl)furoxan (DNTF)[J]. Russian Journal of General Chemistry, 2021, 91: 445-455. [百度学术]
YU Q, Chinnam A K, YIN P. Finding furoxan rings[J]. Journal of Materials Chemistry A, 2020, 8(12): 5859-5864. [百度学术]
LUK'YANOV O A, SALAMONOV Y B, SSTRUCHKOVv Y T, et al. Aryl‑NNO‑azoxy‑α‑nitro‑ and ‑α,α‑dinitro‑alkanes[J]. Mendeleev Communications, 1992, 2: 52-53. [百度学术]
LUK'YANOV O A, POKHVISNEVA G V, TERNIKOVA T V, et al. Bis(nitro‑ and polynitromethyl‑ONN‑azoxy)azoxyfurazans and some of their derivatives[J]. Russian Chemical Bulletin, 2012, 61(9): 1783-1786. [百度学术]
LUK'YANOV O A, POKHVISNEVA G V, TERNIKOVA T V, et al. 3,4‑Bis(α‑nitroalkyl‑ONN‑azoxy)furazans and some of their derivatives[J]. Russian Chemical Bulletin, 2012, 61(2): 360-365. [百度学术]
ZHAI L J, BI F Q, LUO Y F, et al. New strategy for enhancing energetic properties by regulating trifuroxan configuration: 3,4‑Bis(3‑nitrofuroxan‑4‑yl)furoxan[J]. Scientific Reports, 2019, 9: 1-8. [百度学术]
HE C L, GAO H X, Imler G H, et al. Boosting energetic performance by trimerizing furoxan[J]. Journal of Materials Chemistry A, 2018,(6): 9391-9396. [百度学术]
ZHAI L J, BI F Q, LUO Y F, et al. Exploring the highly dense energetic materials via regiochemical modulation: A comparative study of two fluorodinitromethyl‑functionalized herringbone trifuroxans[J]. Chemical Engineering Journal, 2020, 391: 123573. [百度学术]
RAVI P, BADGUJAR D M, GORE G M. Review on melt cast explosives[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(5): 393-403. [百度学术]
KLAPÖTKE T M, Penger A, Pflüger C. Melt‑cast materials: combining the advantages of highly nitrated azoles and open‑chain nitramines[J]. New Journal of Chemistry, 2016, 40(7): 6059-6069. [百度学术]
YANG X,ZHOU J,XING X L,et al.A promising TNT alternative, 3′‑bi(1,2,4‑oxadiazole)‑5,5′‑diylbis(methylene) dinitrate(BOM): Thermal behaviors and eutectic characteristics[J]. RSC Advances, 2020,10(44): 26425-26432. [百度学术]
XUE Q, BI F Q, LUO Y F. Methyl nitrate energetic compounds based on bicyclic scaffolds of furazan‑isofurazan (isoxazole): Syntheses, crystal structures and detonation performances[J]. RSC Advances, 2022,12(13): 7712-7719. [百度学术]
JOHNSON E C, BUKOWSKI E J, SABATINI J J. Bis(1,2,4‑oxadiazolyl) furoxan: A promising melt‑castable eutectic material of low sensitivity[J]. ChemPlusChem,2019,84(4): 319-322. [百度学术]
YAN C, WANG K C, LIU T L, et al. Exploiting the energetic potential of 1,2,4‑oxadiazole derivatives: Combining the benefits of a 1,2,4‑oxadiazole framework with various energetic functionalities[J]. Dalton Transactions,2017,46(41):14210-14218. [百度学术]