摘要
以间苯三酚和1,3‑二氟苯为原料,经硝化、成环等三步反应得到化合物
图文摘要
Calixarene is a kind of macrocyclic compounds with special ring cavity structure bridged by oxygen atoms, nitrogen atoms or other atoms. Since the discovery of calixarene by Adolph Von Baeyer in 1872, the research of calixarene compounds has developed rapidly. However, the research of energetic compounds based on calixarene is only in recent years. In this study, a new calix[4]arene (compound ZXC‑51) was obtained from m‑difluorobenzene by three‑step reactions for the first time, and a large energetic group NO2 was also introduced into the cavity of calix[4]arene firstly. ZXC‑51 has good detonation performance and sensitivity, and has been proved to be an energetic compound with good performance
含能材料是现代武器实现发射和毁伤的能量来源,其能量水平的提升可极大地提高武器的性
近年来,含能离子盐因具有较好的热稳定性,较高的正生成焓,以及较大的产气量等特点,日益成为含能材料领域研究的热点,如5,5'‑联四唑‑1,1'‑二氧二羟铵盐(TKX‑50)由Klaplötke
为了探索新型高能钝感、环境友好型的含能离子盐,本研究以1,3,5‑间苯三酚和1,3‑二氟苯为原料,通过硝化、成环等三步反应得到酸性化合物ZXC‑51,并以此为基础制备出系列杯[4]芳烃的含能离子盐,得到了这些化合物的单晶结构,并对ZXC‑51的爆轰性能进行了表征。ZXC‑51及其含能离子盐是一类在空腔内引入较大含能基团‑NO2的杯[4]芳烃类化合物。
试剂:1,3,5‑间苯三酚、1,3‑二氟苯、氨基胍盐酸盐、二氨基胍盐酸盐、碳酸胍和三乙胺,北京偶合科技有限公司;乙腈和甲醇,探索平台;硫酸和硝酸钾,国药集团,以上试剂均为分析纯。
仪器:核磁(JNM‑ECZ600R/S3 600 MHz),X‑单晶衍射仪(Bruker D8 Venture),综合热分析仪(TA Q600 TA Q2000),超高效液相高分辨质谱联用仪(Xevo G2‑XS Qtof),元素分析仪(PE2400Ⅱ)。
研究首先用硝‑硫混酸将间二氟苯进行硝化,得到化合物1,5‑二氟‑2,4‑二硝基苯(1);再以三乙胺作为缚酸剂,以化合物1与1,3,5‑间苯三酚为原料,通过成环反应得到化合物

Scheme 1 Synthesis of ZXC‑51, ZXC‑52, ZXC‑53 and ZXC‑54

Scheme 2 Reaction of ZXC‑51 and NH3·H2O, Ammonia, NH2OH, and H2NNH2

Scheme 3 Synthesis of the double salt containing both an aminoguanidine cation and a 1,3‑diaminoguanidine cation
在冰水浴和磁力搅拌下,向1 L三颈烧瓶中依次添加225 mL硫酸和225 mL发烟硝酸,在此温度下,向混合溶液中慢慢滴加1,3‑二氟苯(114 g,1.0 mol)。待1,3‑二氟苯滴加完后,继续搅拌混合物2 h,然后将体系温度缓慢升至室温并搅拌过夜。反应完成后,将混合物缓慢倒入冰水中,有大量沉淀析出,过滤,收集固体,并用水反复洗涤,干燥后得米黄色固体,经表征为目标化合物1(189.723 g,93 %)
将1,3,5‑三羟基苯(2)(12.60 g,100 mmol)溶解于150 mL无水乙腈中,在室温下依次添加三乙胺(83.47 mL,60.60 g,6.0 eq)和1,5‑二氟‑2,4‑二硝基苯(20.4 g,100 mmol,1.0 eq),将混合物回流并搅拌30 h后,冷却至室温后在减压下将混合物浓缩至原体积的四分之一,磁力搅拌下向剩余液体中慢慢滴加甲醇(约200 mL)至没有新的沉淀产生,过滤,固体部分用甲醇洗涤3次。将所得黄色固体添加到300 mL稀盐酸[3M]中,搅拌5 h后过滤、干燥得黄色固体,经表征为化合物3 (23.44 g,76 %)
冰水浴磁力搅拌下,将化合物3(8.7 g,15.0 mmol)慢慢加到发烟硝酸(30 mL)中,加完后将体系缓慢升温至55 ℃后持续搅拌27 h。反应完全后将混合物在室温下静置过夜。过滤,干燥后得黄色粉末,经表征为化合物ZXC‑51(9.75 g,产率为76.47%)。DSC(5 ℃·mi
在室温磁力搅拌下,将ZXC‑51(850.0 mg,1 mmol)加入到在30 mL无水甲醇中,随后加入盐酸胍(191.0 mg,2 mmol)。待盐酸胍加完后,继续搅拌12 h,有大量沉淀产生。将混合物浓缩至10 mL后,过滤、干燥后得黄色粉末,经表征为化合物ZXC‑52(679.0 mg,产率为70.11%)。DSC(5 ℃·mi
室温磁力搅拌下,向30 mL无水甲醇中依次加入ZXC‑51(850.0 mg,1 mmol)和3,5‑二胺基‑1,2,4‑三唑(198.0 mg,2 mmol),加完后,继续反应12 h,有大量沉淀析出。将混合物浓缩至10 mL后过滤,固体干燥后得黄色粉末,经表征为化合物ZXC‑53(710.0 mg,收率为67.75 %)。DSC(5 ℃·mi
室温磁力搅拌下,向30 mL无水甲醇中依次加入ZXC‑51(850.0 mg,1 mmol)和氨基胍盐酸盐(148.0 mg,2 mmol)。加完后,继续反应10 h,有大量沉淀产生。将混合物浓缩至10 mL后过滤和干燥后得黄色粉末,经表征为化合物ZXC‑54(783.0 mg,产率为78.41%)。DSC(5 ℃·mi
室温磁力搅拌下,向30 mL无水甲醇中依次加入ZXC‑54(998.0 mg,1 mmol)和二氨基胍(198.0 mg,2 mmol),加完后继续搅拌22 h,搅拌过程中有大量沉淀产生,过滤并干燥后得黄色粉末,经表征为ZXC‑55(547.0 mg,产率为54.00%)。DSC(5 ℃·mi
在296 K下,化合物ZXC‑51~ZXC‑55的晶体结构见

图1 化合物ZXC‑51~ZXC‑55的单晶结构图
Fig.1 Molecule structures of ZXC‑53-ZXC‑55
每个ZXC‑51分子带有4个水分子(
分别对化合物ZXC‑51~ZXC‑55的晶体结构中C1和C2,C3和C4,C5和C6以及C7和C8位上碳原子间距离进行了测量,测量结果见
Note:
ZXC‑51~ZXC‑55的TG和DSC曲线如

a. ZXC‑51

b. ZXC‑52
图2 化合物ZXC‑51和ZXC‑52的TG‑DSC曲线
Fig.2 TG‑DSC curves of ZXC‑51 and ZXC‑52

a. ZXC‑53

b. ZXC‑54
图3 化合物ZXC‑53和ZXC‑54的TG‑DSC曲线
Fig.3 TG‑DSC curves of ZXC‑53 and ZXC‑54

a. ZXC‑55

b. ZXC‑54 and ZXC‑55
图4 化合物ZXC‑55的TG‑DSC曲线及ZXC‑54和ZXC‑55的DSC曲线
Fig.4 TG‑DSC curve of ZXC‑55 and DSC curves of ZXC‑54 and ZXC‑55
ZXC‑53在192.22~235.15 ℃区间发生分解,质量损失67.23%,峰值温度为212.95 ℃,是化合物ZXC‑53固相分解过程,在发生分解前无明显的吸热峰,无熔化现象发生(
ZXC‑54在200.87 ℃开始分解,温度达到234.63 ℃后分解完全,质量损失为43.96%,峰值温度为217.34 ℃(
基于密度泛函理论(DFT)的B3LYP方
Note: 1
使用摩擦感度测试仪和标准BAM落锤方法(2003)对化合物ZXC‑51的摩擦感度(FS)和撞击感度(IS)进行了测试(
(1)首次以1,3,5‑间苯三酚和1,3‑二氟苯为原料,通过硝化、成环等三步反应得到酸性化合物ZXC‑51,总收率较高(为53.72%),制备方法简单,同时在杯[4]芳烃的空腔内引入了体积较大的含能基团(─NO2)。
(2)在羟胺、氨水和水合肼等作用下,ZXC‑51会发生开环反应;ZXC‑51与盐酸胍等有机碱反应时得到相应的含能盐。此外,ZXC‑54还可以与1,3‑二氨基胍发生部分交换反应生成复盐ZXC‑55。
(3)晶体结构表明无论是中性体ZXC‑51还是其生成的盐均属于三斜晶系,除化合物ZXC‑54为‑C1空间群外,其余化合物的空间群均为P‑1。
(4)ZXC‑51的热分解温度、爆压、爆速和撞击感度分别为265.8 ℃,31.18 GPa,8193 m·
参考文献
田均均, 张庆华, 李金山. 含能分子合成最新进展[J]. 含能材料, 2016, 24(1): 1-9. [百度学术]
TIAN Jun‑jun, ZHANG Qing‑hua, LI Jin‑shan. Recent advances in energetic molecule synthesis[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2016, 24(1):1-9. [百度学术]
曾贵玉,齐秀芳,刘晓波. 含能材料领域的几类颠覆性技术进展[J]. 含能材料, 2020, 28(12): 1211-1220. [百度学术]
ZENG Gui‑yu,QI Xiu‑fang,LIU Xiao‑bo. Progress on several disruptive technologies of energetic materials field[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2020, 28(12): 1211-1220. [百度学术]
李枫盛,钱亚东,尹平,等. 偶氮桥连富氮杂环含能化合物的合成及性能研究进展[J].含能材料, 2021, 29(8): 739-758. [百度学术]
LI Feng‑sheng, QIAN Ya‑dong, YIN Ping, et al. progress in the synthesis and properties of azo‑bridged nitrogen‑rich energetic heterocyclic compounds[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2021, 29(8): 739-758. [百度学术]
翟连杰,常佩,许诚,等. 3,4‑二(3‑氰基氧化呋咱基)氧化呋咱合成、晶体结构与性能[J].含能材料, 2021, 29(8): 694-699. [百度学术]
ZHAI Lian‑jie, CHANG Pei, XU Cheng, et al. Synthesis, Crystal structure and properties of 3,4‑bis(3‑cyanofuroxan‑4‑yl)furoxan[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2021, 29(8): 694-699. [百度学术]
WILBRAND J. Notiz über trinitrotoluol[J]. European Journal of Organic Chemistry, 2010, 128(2):178-179. [百度学术]
ZHANG X, FU M, ZOU F, et al. 1, 3‑Bis(3,4,5‑trifluoro‑2,6‑dinitrophenyl) urea(ZXC‑19): A multifluorine substituted propellant with superior detonation performance[J]. New Journal of Chemistry, 2019, 43(24): 9623-9627. [百度学术]
ZHANG X C, XIONG H L, YANG H W, et al. The synthesis of energetic compound on 4,4′‐((2,4,6‐trinitro‐1,3‐phenylene) bis (oxy)) bis(1,3‐dinitrobenzene)(ZXC‐5): Thermally stable explosive with outstanding properties[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(10): 1203-1207 [百度学术]
ZHANG Z, MA J, ZHOU Q, et al. 2‐Fluoro‐1,3‐diamino‐4,6‐dinitrobenzene (ZXC‐7) and 2‐fluoro‐1,3,5‐triamino‐4,6‐dinitrobenzene (ZXC‐8): Thermally stable explosives with outstanding properties[J]. Chem Plus Chem, 2019, 84(1): 119-122. [百度学术]
KLAPÖTKE T M, PREIMESSER A, STIERSTORFER J. Synthesis and energetic properties of 4‑diazo‑2,6‑dinitrophenol and 6‑diazo‑3‑hydroxy‑2,4‑dinitrophenol[J]. European Journal of Organic Chemistry, 2015, 2015: 4311-4315. [百度学术]
STEEVENS J A, DUKE B M, LOTUFO G R, et al. Toxicity of the explosives 2,4,6‐trinitrotoluene, hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine, and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine in sediments to chironomus tentans and hyalella azteca: Low‐dose hormesis and high‐dose mortality[J]. Environmental Toxicology and Chemistry: An International Journal, 2002, 21(7): 1475-1482. [百度学术]
JACKSON C L, WING J F. On tribromtrinitrobenzol[C]//Proceedings of the American Academy of Arts and Sciences. American Academy of Arts & Sciences, 1887, 23(1): 138-148. [百度学术]
CADY H H, LARSON A C. The crystal structure of 1,3,5‑triamino‑2,4,6‑trinitrobenzene[J]. Acta Crystallographica, 1965, 18(3): 485-496. [百度学术]
刘洋,申程,陆明.TKX‑55 合成工艺优化及性能[J]. 含能材料,2019,27(3): 220-224. [百度学术]
LIU Yang,SHEN Cheng,LU Ming. Synthesis optimization and properties of TKX⁃55[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2020, 28(3):198-202. [百度学术]
CHAYKOVSKY M, ADOLPH H G. Synthesis and properties of some trisubstituted trinitrobenzenes. TATB analogs[J]. Journal of energetic materials, 1990, 8(5): 392-414. [百度学术]
KAYE S M, HERMAN H L, Encyclopedia of explosives and related items[M]. U. S. Army Armament Research and Development Command, Large Caliber Weapon Systems Laboratory, 1978, Vol. 9. [百度学术]
SRINIVAS D, GHULE V D, MURALIDHARAN K. Energetic salts prepared from phenolate derivatives[J]. New Journal of Chemistry, 2014, 38(8): 3699-3707. [百度学术]
张行程, 邹芳芳, 高畅, 等.耐热炸药ZXC⁃20的合成与性能[J]. 含能材料, 2020, 28(3): 198-202. [百度学术]
ZHANG Xing‑cheng,ZOU Fang‑fang,GAO Chang,et al. Synthesis and properties of heat‑resistant explosive ZXC‑20[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2020, 28(3):198-202. [百度学术]
ZHANG X, XIONG H, YANG H, et al. Synthesis and characterization of new calixarenes containing explosives with high temperature stabilities[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 942-946. [百度学术]
ZHANG X, ZOU F, YANG P, et al. Synthesis and investigation of 2,4,6‐trinitropyridin‐3‐ol and its salts[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(12): 1853-1858. [百度学术]
YIN P, DAMON A P, SHREEVE J M. Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: Ternary hydrogen‑ bond Induced high energy density materials[J]. Journal of the American Chemical Society, 2015, 137: 4778-4786. [百度学术]
GUTOWSKI Ł, CUDZIŁO S. Synthesis and properties of novel nitro‑based thermally stable energetic compounds[J]. Defence Technology, 2021, 17(3): 775-784. [百度学术]
ZHANG X C, XIONG H L, YANG H W, et al.
ZHANG X, XIONG H, YANG H, et al. Synthesis and detonation properties of 5‐amino‐2,4,6‐trinitro‐1,3‐dihydroxy‐benzene [J]. Chemistry Open, 2017, 6(3): 447. [百度学术]
JENKINS H D B, TUDELA D, GLASSER L. Lattice potential energy estimation for complex ionic salts from density measurements[J]. Inorganic Chemistry,2002,41(9): 2364-2367; [百度学术]
KLAPÖTKE T M, WITKOWSKI T G. 5,5'‑Bis(2,4,6‑trinitrophenyl)‑2,2'‑bi(1,3,4‑oxadiazole)(TKX‑55): Thermally stable explosive with outstanding properties[J]. Chem Plus Chem, 2016, 81(4): 357. [百度学术]
SRINIVAS D, GHULE V D, MURALIDHARAN K. Energetic salts prepared from phenolate derivatives[J]. New Journal of Chemistry, 2014, 38(8): 3699-3707. [百度学术]
UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria (5th rev. ed.)[S]. United Nations Publication: New York, 2009. [百度学术]