摘要
以含能化合物3,4‑二氨基‑5‑(3,4‑二氨基‑1,2,4‑三唑‑5‑基)‑1,2,4‑三唑(化合物1)为有机碱,分别与高氯酸和硝酸进行中和反应,合成了两种具有高热稳定性的含能离子盐:3,4‑二氨基‑5‑(3,4‑二氨基‑1,2,4‑三唑‑5‑基)‑1,2,4‑三唑高氯酸盐(化合物2),3,4‑二氨基‑5‑(3,4‑二氨基‑1,2,4‑三唑‑5‑基)‑1,2,4‑三唑硝酸盐(化合物3)。首次培养了化合物2和3的单晶,并采用单晶X射线衍射进行晶体结构解析;化合物2的晶体结构中,每个阳离子和12个相邻的高氯酸根通过氢键作用相互连接,阳离子形成层状堆积,高氯酸根阴离子镶嵌在层与层之间;化合物3的晶体结构中,每个阳离子和10个相邻的硝酸根通过氢键作用相互连接,从而构筑化合物3的层状堆积结构。采用差示扫描量热仪(DSC)和热重分析仪(TG)研究了化合物2和3的热稳定性,化合物2和3具有超高的热稳定性,其热分解温度分别为338.3 ℃和289.8 ℃。此外,化合物2的理论爆速和比冲分别为8308 m·
图文摘要
关键词
新型含能材料的设计与合成一直是含能材料基础研究的重要方
近年来,国内外各科研机构围绕新型含能离子盐进行了大量研究工作,并取得了一系列重要进展。其中, Klapötke‑课题
将具有高氮含量的有机阳离子和富氧阴离子进行合理搭配,是实现目标含能离子盐性能调控的有效策
在前期的研究工
试剂:无水草酸、1,3‑二氨基胍盐酸盐、多聚磷酸、氢氧化钠等均为分析纯,麦克林试剂公司。
仪器:德国Bruker D8 Venture X‑射线单晶衍射仪;德国Bruker AVANCE 400 MHz 核磁共振波谱仪;德国Elementar Vario EL Cube元素分析仪;德国Bruker Alpha傅里叶变换红外光谱仪;德国耐驰公司STA449热分析仪(TG‑DSC)。
测试方法:在170.0 K条件下,对化合物2和3进行单晶X射线衍射测试,采用直接法解析化合物2和3的晶体结构,采用全矩阵最小二乘法对非氢原子坐标和各项异性热温度因子进行修
采用

Scheme 1 Synthesis of 1 , 2 and 3
取多聚磷酸7.5 g加入至100 mL的茄形反应瓶中,加热至120 ℃;将草酸(0.5 g,0.055 mol)和二氨基胍盐酸盐(1.8 g,0.014 mol)在研钵中研磨均匀后,少量多次加入反应瓶中,加料过程中会有大量气体产生;待原料全部加入后,保持120 ℃反应,直至反应液中无气泡产生,停止加热。待反应液降至室温后,倒入100 mL冷水中,搅拌并用浓氢氧化钠溶液(pH=14)调节反应液的pH值至8左右,产生灰色沉淀。过滤留滤渣,并用冷水洗涤数次,于50 ℃烘箱中干燥12 h得到纯净的化合物1(0.5 g),基于草酸产率46%
取化合物1(0.5 g,0.0025 mol)加入10 mL 1 mol·
取化合物1(0.5 g,0.0025 mol)加入10 mL 1 mol·
化合物2和3的晶体学数据如

a. asymmetric structural unit

b. the link between perchlorate and adjacent cation

c. the link between cations and adjacent perchlorate

d. the layered structure contained in the crystal structure

e. three‑dimensional supramolecules structure diagram
图1 化合物2的晶体结构图
Fig.1 The crystal structure of 2

a. asymmetric structural

b. the linkage between nitrate and adjacent cation

c. the linkage between cation and adjacent nitrates

d. the layered structure contained in the structure

e. three‑dimensional supramolecules structure diagram
图2 化合物3的晶体结构图
Fig.2 The crystal structure of compound 3
化合物2(CCDC:2098132)属于三斜晶系,P‑1空间群,晶胞参数为a=10.4025(6) Å,b=10.4186(7) Å,c = 13.1574(8) Å,α = 84.038(2)˚,β = 84.746(2)°,γ = 86.685(2)°,V = 1410.64(15)
化合物3(CCDC:2098133)属于三斜晶系,P‑1空间群,晶胞参数为a=6.7059(2) Å,b=6.9706(2) Å,c = 7.0651(3) Å,α = 72.618(3)°,β =89.527(3)°,γ = 75.998(3)°,V = 305.07(1)
为了进一步研究化合物2和3晶体中各组分之间的相互作用,本研究采用Crystal Explorer 13.

a. Hirshfeld surface and 2D fingerprint spectrum of compound 2

b. Hirshfeld surface and 2D fingerprint spectrum of compound 3

c. the ratio of different interaction to the total interaction in the crystals of compounds 2 and 3
图3 化合物2和化合物3的Hirshfeld表面及二维指纹谱及其晶体结构中不同相互作用力占总作用力的比例
Fig 3 Hirshfeld surface and 2D fingerprint spectrum of 2 and 3, the ratio of different interaction to the total interaction in the crystals of 2 and 3
密度、热分解温度、生成焓和感度是含能材料重要的物理化学性能参数,化合物2、3以及三硝基甲苯(TNT)、黑索今(RDX)的性能对比见
Note: 1) Td : thermal decomposition temperature (‑peak) under nitrogen gas (DTA, 10 ℃·mi

a. TG‑DSC curves of compound 2

b. TG‑DSC curves of compound 3
图4 化合物2和化合物3的TG‑DSC曲线
Fig.4 TG‑DSC curves of 2 and 3
本研究采用Gaussian 09 (D.01)软
含能材料的能量特征与其生成焓具有直接的关系。本研究采用EXPLO5 v6.0

图5 化合物2和化合物3的理论模拟燃烧产物及其分布图
Fig.5 The simulated combustion products and their contents of 2 and 3
以廉价的草酸和1,3‑二氨基胍盐酸盐为起始原料,在多聚磷酸中通过环化反应,制备了具有高氮含量的含能化合物3,4‑二氨基‑5‑(3,4‑二氨基‑1,2,4‑三唑‑5‑基)‑1,2,4‑三唑。将该化合物分别和高氯酸、硝酸作用,制备了具有高热稳定性的含能离子盐2和3。化合物2和3不仅具有高密度,还具有高爆轰性能,以及优异的机械感度,具体为:
(1) 化合物2和3的热分解温度分别为338.3和289.8 ℃。
(2) 化合物2和3具有高密度特征,其晶体密度分别为1.87 g·c
(3) 化合物2和3还具有较好的爆轰性能,化合物2的理论爆速和爆压分别为8308 m·
(4) 化合物3具有比TNT更优异的感度性能,其撞击感度和摩擦感度分别大于20 J和360 N。
(5) 化合物2和3优异的热稳定性,进一步验证了通过阴阳离子之间的合理搭配,可以实现对目标含能化合物性能的调控。
参考文献
Chen S, Liu Y, Feng Y, et al. 5,6‑Fused bicyclic tetrazolo‑pyridazine energetic materials[J]. Chemical Communications, 2020, 56(10): 1493-1496. [百度学术]
高晓敏, 魏智勇, 张明. 有应用前景的低感高能炸药研究进展[J]. 高分子通报, 2012, (2): 1-8. [百度学术]
GAO Xiao‑min, WEI Zhi‑yong, ZHANG Ming. Review of prospective explosives with high Eeergy and low sensitivity[J]. Polymer Bulletin, 2012, (2): 1‑8. [百度学术]
Liuzzo L, Simon S, Regoli L. Energetic electron dynamics near Callisto[J]. Planetary and Space Science, 2019, 166: 25-53. [百度学术]
Liu T L, Liao S C, Song S W, et al. Combination of gem‑dinitromethyl functionality and a 5‑amino‑1,3,4‑oxadiazole framework for zwitterionic energetic materials[J]. Chemical Communications, 2020, 56(2): 209-212. [百度学术]
Zhang J H,Srinivas D,Lauren A,et al.Bridged bisnitram‑ ide‑substituted furazan‑based energetic materials[J]. Journal of Materials Chemistry A, 2016, 4(43): 16961-16967. [百度学术]
闫峥峰, 汪营磊, 陆婷婷, 等. 多硝基吡唑并[5,1‑c][1,2,4]三嗪含能化合物合成与表征[J]. 火炸药学报, 2020, 43(6): 614-619. [百度学术]
YAN Zheng‑feng, WANG Ying‑lei, LU Ting‑ting, et al. Synthesis and characterization of energetic compound polynitro pyrazole[5,1‑c][1,2,4]triazine[J]. Chinese Journal of Explosives and Propellants, 2020, 43(6): 614-619. [百度学术]
Qu Y Y, Zeng Q, Wang J, et al. Furazans with azo linkages: stable CHNO energetic materials with high densities, highly energetic performance, and low impact and friction sensitivities[J]. Chemistry‑A European Journal, 2016,22(35): 12527-12532. [百度学术]
Lei C J, Yang H W, Cheng G B. New pyrazole energetic materials and their energetic salts: combining the dinitromethyl group with nitropyrazole[J]. Dalton Transactions, 2020, 49(5): 1660-1667. [百度学术]
董海燕, 龙义强, 周婷婷, 等. CL‑20/1,4‑DNI共晶形成的热力学[J].含能材料,2020,28(9):819-825. [百度学术]
DONG Hai‑yan, LONG Yi‑qiang, ZHOU Ting‑ting, et al. Thermodynamic on the formation of CL‑20/1,4‑DNI cocrystal[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2020, 28(9): 819-825. [百度学术]
Shang Y, Huang R K , Chen S L, et al. Metal‑free molecular perovskite high‑energetic materials[J]. Crystal Growth & Design, 2020, 20(3): 1891-1897. [百度学术]
Celia C B, Felipe G. Metal‑organic frameworks incorporating multiple metal elements[J]. Israel Journal of Chemistry, 2018, 58(9-10): 1036-1043. [百度学术]
Mieko K, Saori G, Kanae M, et al. Crystallographic study of the energetic salt 1,2,4‑triazolium perchlorate[J]. Acta Crystallographica Section C, 2021, 77(2053-2296): 197-201. [百度学术]
Wang Q, Shao Y L, Lu M. Salt formation: Route to improve energetic performance and molecular stability simultaneously[J]. Crystal Growth & Design, 2020, 20(1): 197-205. [百度学术]
Sebastian R Y, Joseph Y, Matthias Z, et al. 1,3,4,5‑Tetraamino‑1,2,4‑triazolium cation: an energetic moiety[J]. Inorganic Chemistry, 2021, 60(13): 9645-9652. [百度学术]
Fischer N, Fischer D, Klapötke T M, et al. Pushing the limits of energetic materials‑the synthesis and characterization of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. Journal of Materials Chemistry A, 2012, 22: 20418-20422. [百度学术]
熊晓雪, 薛向贵, 杨海君, 等. 1,1′‑二羟基‑5,5′‑联四唑二羟胺盐(TKX‑50)研究进展[J]. 含能材料, 2020, 28(8): 810‑816. [百度学术]
XIONG Xiao‑xue, XUE Xiang‑gui, YANG Hai‑jun, et al. Review on dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate (TKX‑50)[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2020, 28(8): 810-816. [百度学术]
Bennion J C, Chowdhury N, Kampf J W, et al. Hydrogen peroxide solvates of 2,4,6,8,10,12‑hexanitro‑2,4,6,8,10,12‑hexaazaisowurtzitane[J]. Angewandte Chemie International Edition, 2016, 55: 13118-13121. [百度学术]
Cheng Y F, Chen X, Yang N, et al. Sandwich‑like low‑sensitive nitroamine explosives stabilized by hydrogen bonds and π‑π stacking interactions[J]. Crystal Growth & Design, 2021, 23, 1953-1960. [百度学术]
Hu L, He C, Zhao G, et al. Selecting suitable substituents for energetic materials based on a fused triazolo‑[1,2,4,5]tetrazine ring[J]. Energy Materials, 2020, 3(6): 5510-5516. [百度学术]
Dharavath S, Shreeve J M. A safer synthesis of 3,5‑bis(dinitromethyl)‑1,2,4‑triazole (BDT) and its mono and di salts: high‑performance insensitive energetic materials[J]. Propellants Explosive Pyrotechnics, 2018, 43(1): 48-53. [百度学术]
Yadav N, Srivastava PK, Varma M. Recent advances in catalytic combustion of AP‑based composite solid propellants[J]. Defence Technology, 2021, 17(3): 1013-1031. [百度学术]
Klapötke T M, Philipp C S, Simon S, et al. 3,6,7‑Triamino‑[1,2,4]triazolo[4,3‑b][1,2,4]triazole:A non‑toxic, high‑performance energetic building block with excellent stability[J]. Chemistry‑A European Journal, 2015, 21(25): 9219-9228. [百度学术]
Jia Y, Ma Q, Zhang Z Q, et al. Energetic 1H‑imidazo[4,5‑d]pyridazine‑2,4,7‑triamine: a novel nitrogen‑rich fused heterocyclic cation with high density[J]. Crystal Growth & Design, 2020, 20(5): 3406-3412. [百度学术]
Zheng Y, Qi X, Chen S, et al. Self‑assembly of nitrogen‑rich heterocyclic compounds with oxidants for the development of high‑energy materials [J]. ACS Appllied Materials & Interfaces, 2021, 13(24): 28390-28397. [百度学术]
Sheldrick G M. SHELXL‑97[CP], Program for the Solution of Crystal Structure, University of Gottingen, Germany, 1997. [百度学术]
Tests were conducted according to the UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria[S], 5th ed., United Nations Publication, New York, 2009. [百度学术]
Spackman M A, Jayatilaka D. Hirshfeld surface analysis[J]. Crystal Growth & Design, 2009, 11: 19-32. [百度学术]
Yin P, Zhang J, Parrish D A, Shreeve J M. Energetic fused triazoles ‑ a promising C─N fused heterocyclic cation[J]. Journal of Materials Chemistry A, 2015, 3(16): 8606-8612. [百度学术]
Xu Y, Zhu Z, Shen C, Lin Q, Lu M. In situ Synthesized energetic salts based on the CN fused tricyclic 3,9‑diamine‑6,7‑dihydro‑bis(triazolo)‑tetrazepine cation: A family of high‑performance energetic materials[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(6): 595-601. [百度学术]
Chan B, Deng J, Radom L. G4(MP2)‑6X: a cost‑effective improvement to G4(MP2)[J]. Journal of Chemical Theory and Computation, 2011, 7(1): 112-120. [百度学术]
Golovina N I, Titkov A N, Raevskii A V, et al. Kinetics and mechanism of phase transitions in the crystals of 2,4,6‑trinitrotoluene and benzotrifuroxane[J]. Journal of Solid State Chemistry, 1994, 113(2): 229-238. [百度学术]
Tang Y, Gao H, Mitchell L A, et al. Synthesis and promising properties of dense energetic 5,5′‑dinitroamino‑3,3′‑azo‑1,2,4‑oxadiazole and its salts [J]. Angewandte Chemie International Edition, 2016, 55(9): 3200-3203. [百度学术]
Sućeska M. EXPLO5 Program[CP], 6.02 ed., Zagreb, Croatia, 2014. [百度学术]
McBride B J, Zehe M J, Gordon S. NASA glenn coefficients for calculating thermodynamic properties of individual species[R]. NASA TP‑2002‑211556,2002. [百度学术]