摘要
如何有效地运用活性金属来提高炸药的爆炸威力和作功能力是设计金属化炸药的关键问题。为探索B/Al复合粉在增爆炸药和温压炸药中的应用,设计并制备了3种HMX基含硼铝炸药。对Φ100 mm×105 mm样品,用空中爆炸试验和水下爆炸试验研究其能量释放特性;用Φ50 mm圆筒试验评价其作功能力,讨论了微米金属粉含量对含硼铝炸药的释能过程和作功能力的影响。结果表明,空爆和水下爆炸中,在HMX的爆轰作用下,铝粉燃烧能够促进硼粉的后燃效应,释放出大量的燃烧热,形成高温高压的膨胀产物,增加空中爆炸火球的持续时间和水下爆炸的总能量。圆筒试验中,在爆轰产物驱动铜管膨胀破裂之前,没有足够的氧和硼反应,未能体现含硼铝炸药中B的燃烧能量优势。当铜管壁膨胀破裂后,空气中的氧可进一步与B/Al复合粉反应释放大量的燃烧热,增强后效作功能力。
图文摘要
Three HMX‑based explosives containing B/Al were designed and prepared. The energy output characteristics of the samples with a dimension Φ100 mm×105 mm was studied by air blast and underwater explosion tests, meanwhile the power abilities were evaluated by a Φ50 mm cylinder test. The effect of the content of micro‑metal on energy output process and power ability of metalized explosives was discussed.
活性金属粉在燃烧过程中会释放大量热,在高能炸药中加入氧化剂、金属粉和黏结剂制成增爆炸药(Enhanced Blast Explosive,EBX)和温压炸药(Thermobaric explosive, TBX)后能显著提升其爆热和爆炸威
复合金属粉的制备以及在含能材料中的应用,国内外已有文献报道。P.Q. Flowe
针对如何提高炸药爆轰产物温度和改善硼的燃烧环境,使液态B2O3的蒸发速度接近生成速度,促进硼的二次反应释放高燃烧热的问
HMX:甘肃白银银光化学材料有限公司,纯度99.9%,D50=6.7 μm;钝化HMX:中物院化材所,颗粒尺寸20~30 μm;Al粉:辽宁鞍钢实业微细铝粉有限公司,纯度99%,颗粒尺寸1~5 μm;B粉:河北保定硼达新材料科技有限公司,纯度99.9%,颗粒尺寸1~5 μm;B/Al复合粉:河北保定硼达新材料科技有限公司,质量比1∶1,颗粒尺寸范围5~20 μm;端羟基聚异丁烯(HTPB):洛阳黎明化工研究院,平均分子量2000,羟值0.76 mmoL·
通过大量试验筛选出三种机械感度满足加工要求的含硼铝炸药,见
Note: I is the impact sensitivity; F is the friction sensitivity; Q is the heat of detonation.
将Ф100 mm×105 mm的样品置于距离地面1.5 m高的支架上,用上端面中心点起爆。空爆试验中,ME‑1、ME‑2和ME‑3样品的药量分别为1.356,1.354 kg和1.339 kg。超压传感器为PCB 137B23B,试验前,通过两次Φ50 mm×50 mm TNT药柱的空爆试验进行标定。超压传感器布置在距离起爆点3,4,5 m和6 m的直线位置处,高度1.3 m,两列超压传感器成45°角。用PCB冲击波超压传感器和数据采集仪测试冲击波超

图1 空爆试验布置图
Fig.1 Sketch of air blast test
水下爆炸试验中,样品尺寸Ф100 mm×105 mm,ME‑1、ME‑2和ME‑3样品的药量分别为1.368,1.344 kg和1.339 kg。用网袋和绳索将样品放入水下10 m,两侧布置压力传感器。水池上端面直径48 m,底部直径32 m,水深23 m,水下爆炸试验布置情况见

图2 水下爆炸试验布置图
Fig.2 Sketch of underwater explosion test
Φ50 mm圆筒试验中,ME‑1、ME‑2和ME‑3样品的密度分别为1.708,1.689 g·c

图3 Ф50 mm圆筒试验装置
Fig.3 Experimental setup of Ф50 mm cylinder test
含硼铝炸药空爆后,爆轰产物具有极高的压力,迅速向四周膨胀并推挤周围的空气,形成空气冲击波。B/Al复合粉具有后燃效应,所以在爆炸后期仍具有较大的冲击波超压。通过超压测试系统实测获得三种样品的冲击波超压衰减趋势。同时,采用Henrych公
(1) |
式中,为比例距离;R为测试点距离爆心距离,m;me为等效TNT质量,kg;m为样品质量,kg;QTNT为TNT爆热,4.070 kJ·
对比实测超压与Henrych公式计算的超压,获得含硼铝炸药空爆冲击波超压随距离衰减趋势见

图4 冲击波超压实测值与Henrych经验公式计算值的对比
Fig.4 Comparison between the measured shock wave overpressures and the calculated values
从
上述分析表明,实测的冲击波超压值与Henrych经验公式的计算值,其总体趋势一致,表明三种炸药样品的空爆冲击波超压满足爆炸相似率。实测的冲击波超压值与Henrych经验公式计算值有一定偏差,但最大偏差不超过3.5 kPa。经验公式是根据等效TNT装药量计算的,其近距离处计算超压值较高。
采用高速摄影拍摄三种样品爆炸过程中火球形貌及演变历程,对比三种含硼铝炸药在不同时刻的爆炸和燃烧图像见

a. ME‑1

b. ME‑2

c. ME‑3
图5 3种含硼铝炸药空中爆炸高速照片对比
Fig.5 Comparison of high speed photographs of air blast for three explosives containing B/Al
样品起爆后,HMX在极短时间内发生爆轰反应,形成爆炸火球。从0.1 ms开始,爆炸火球尺寸逐渐增大。Al粉比B粉更易与HMX爆轰产物和空气中氧气发生燃烧反应。经过23.2 ms,含铝炸药ME‑1燃烧火焰为黄色;含硼铝炸药ME‑2和ME‑3爆炸火球中心附近颜色为黄色,而四周有微弱的蓝绿色火焰,样品中有少量B粉开始参与反应。随后蓝绿色火焰从边缘扩散到整个火球表面,火球四周的蓝绿色火焰更加明显,表明在Al粉燃烧带动下,B粉正剧烈发生燃烧反
含硼铝炸药水下爆炸后,爆轰产物具有极高的压力,迅速向四周膨胀,在爆轰产物和水界面处形成初始冲击波并在水中传播,其能量在传播过程中部分转化为热耗散
(2) |
式中,Es为距离装药中心R处的冲击波能,MJ·k
从
气泡脉动周期Tb是第一次气泡脉动压力峰值对应时间与冲击波到达时间的差值,由气泡脉动压力周期曲线得到。气泡能Eb用公式组(3)计
(3) |
式中,Tb为气泡脉动周期,ms;Tf为第一次气泡脉动压力峰值对应时间,ms;Ts为冲击波到达时间,ms;Eb为每公斤样品的气泡能,MJ·k
从
从
Ф50 mm圆筒试验是测量金属化炸药爆速和评价作功能力的有效方法之
(4) |
式中,t为圆筒壁膨胀的时间,μs;a1、a2、a3、a4为待定系数;R为圆筒外壁距圆筒中心轴线的距离,mm;R0为圆筒外壁距圆筒中心轴线的初始距离,mm;U为圆筒壁的速度,mm·μ

图6 铜管壁速随爆轰产物相对体积的变化
Fig.6 Variation of the copper wall velocity with the relative volume of detonation products

图7 格尼能随爆轰产物相对体积的变化
Fig.7 Variation of Gurney energy with the relative volume of detonation products
从
(1)空爆试验中,在HMX的爆轰作用下由Al粉燃烧带动B粉燃烧,释放出大量的燃烧热。在相同测量位置,含硼铝炸药(ME‑2和ME‑3)空中爆炸的冲击波超压大于含铝炸药(ME‑1),且爆炸火球的持续时间更长。特别是,含20%硼铝复合粉的ME‑3爆炸火球持续时间最长。这表明B粉比Al粉具有更强的燃烧强度和更大的能量释放。B/Al复合粉的燃烧延长了含硼铝炸药二次反应的高温高压持续时间,增强了后效作功能力。
(2)水下爆炸中,炸药爆轰的能量表现为冲击波能和气泡能。3种炸药样品中,水下爆炸总能量从大到小的次序依次为ME‑3、ME‑2和ME‑1,含硼铝炸药(ME‑2和ME‑3)的水下爆炸总能量比含铝炸药(ME‑1)大。这表明HMX基含硼铝炸药中,使用B/A复合粉时,HMX的爆热能提高爆轰产物的温度和改善金属粉的燃烧环境,B/A复合粉的二次反应释放出大量的反应热,通过气泡脉动提高气泡能,从而提高水下爆炸的总能量。
(3)Φ50 mm圆筒试验用壁速和格尼能评价含硼铝炸药的作功能力,只能表征铜管壁未破裂前状态,初始爆轰产物与空气互相隔离,时间尺度仅几十微秒。膨胀距离R‑R0=70 mm(相对体积14.44)时,ME‑2的比动能2.780 kJ·
参考文献
李兴隆,刘清杰,高大元,等. 用弹簧探针法测试含硼铝炸药的爆轰性能[J]. 火炸药学报,2017, 40(12): 59-65. [百度学术]
LI Xing‑long, LIU Qing‑jie, GAO Da‑yuan, et al. Detonation property measurement of explosive containing B/Al by spring electric pin method[J].Chinese Journal of Explosives & Propellants, 2017, 40(12): 59-65. [百度学术]
蒋秋黎,罗一鸣,吕玺,等. DNTF基含铝炸药的爆轰能量和安全性[J].含能材料,2021,待发表. [百度学术]
JIANG Qiu‑li, Luo Yi‑ming, LV Xi, et al. Detonation energy and safety of DNTF based aluminized explosive [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2021, To be published. [百度学术]
牛磊,曹少庭,金大勇,等. 含α‑AlH3的HMX基凝聚相炸药的安全性和爆轰性能[J]. 含能材料,2021,10.11943/CJEM2021079. [百度学术]
NIU Lei, CAO Shao‑ting, JIN Da‑yong, et al. Safety and detonation performance of HMX based condensed phase explosives containing α‑AlH3[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2021,10.11943/CJEM2021079. [百度学术]
Song Qingguan, Gao Dayuan, Zheng Baohui, et al. Preparation and characterization of metalized explosive containing B and Al powder [J]. Chinese Journal of Energetic Materiats (Hanneng Cailiao), 2017, 25(5), 384-390. [百度学术]
GAO Da‑yuan, SONG Qing‑guan, et al. Study on sensitivity and detonation property of explosive containing B/Al[C]// The 21st Seminar on NTREM, Pardubice, the Czech Republic, April 18‑20, 2018: 125-133. [百度学术]
王德海,林国忠,高大元,等. 硼铝复合粉在含能材料中的应用[J]. 兵器装备工程学报,2018,39(8):157-163. [百度学术]
WANG De‑hai, LIN Guo‑zhong, GAO Da‑yuan, et al. Application of B/Al compound powde in energetic materials[J]. Journal of Ordnance Equipment Engineering, 2018, 39(8):157-163. [百度学术]
C. Badiola, R.J. Gill, E.L. Dreizin. Combustion characteristics of micron‑sized aluminum particles in oxygenated environments[J]. Combustion and Flame, 2011,158(10): 2064-2070. [百度学术]
Young G, Sullivan K, Zachariah M R, et al. Combustion characteristics of boron nanoparticles[J]. Combustion and Flame, 2009, 156(2): 322-333. [百度学术]
Flower P Q, Steward P A. Improving the efficiency of metalized explosives[C]//Symposium on Energetic Materials and Insensitive Munitions, USA, 2006. [百度学术]
Joslph R. Explosive composition containing a light metal sensitizer [P]. USP 936042, 1909. [百度学术]
Lotsvangen C S Y, Ravasgatan S H V. Method for increasing the effect of high‑energy explosives mixtures, and explosives mixtures produced in accordance with this method[P]. USP 0487 472A1, 1991. [百度学术]
Xu S,Chen Y,Chen X,et al. Combustion heat of the Al/B powder and its application in metalized explosives in underwater explosions[J]. Combustion, Explosion, and Shock Waves,2016,52(3): 342-349. [百度学术]
Cao W,Song Q,Gao D,et al. Detonation characteristics of an aluminized explosive added with boron and magnesium hydride[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(11): 1393-1399. [百度学术]
Cao W,Guo W,Ding T,et al. Laser ablation of aluminized RDX with added ammonium perchlorate or ammonium perchlorate boron magnesium hydride[J]. Combustion and Flame,2020, 221: 194-200. [百度学术]
Li X,Cao W,Song Q,et al. Study on energy output characteristics of explosives containing B/Al in the air blast[J]. Combustion, explosion, and shock waves,2019, 55(6): 723-731. [百度学术]
Yang Y, Duan Z P, Zhang L S. et al. Measurements of reaction zone and determination of the equation of state parameters of DNAN‑based melt‑cast aluminized explosive[J]. Journal of Energetic Materials,2020, 38(2): 240-251. [百度学术]
S.A. Formby, R.K. Wharton. Blast characteristics and TNT equivalence values for some commercial explosives detonated at ground level[J]. J. Hazard. Mater, 1996, 50(2-3): 183-198. [百度学术]
N. H. Yen, L. Y. Wang. Reactive metals in explosives[J]. Propellants,Explosives,Pyrotechnics, 2012, 37(2): 143-155. [百度学术]
封雪松, 赵省向, 刁小强, 等. 含硼金属炸药水下能量的实验研究[J].火炸药学报, 2009, 32(5): 21-24. [百度学术]
FENG Xue‑song, ZHAO Sheng‑xiang, DIAO Xiao‑qiang, et al. Experimental research of underwater energy of explosive containing boron/metal [J]. Chinese Journal of Explosives & Propellants, 2009, 32(5): 21-24. [百度学术]
陈愿,陈相,蒋伟,等. 硼含量对含铝炸药水下爆炸能量的影响[J]. 爆破材料,2015, 44(6): 1-4. [百度学术]
CHEN Yuan, CHEN Xiang, JIANG Wei, et al. Influence of boron content on underwater explosion energy of aluminized explosive [J]. Explosive Materials, 2015, 44(6): 1-4. [百度学术]
韩勇,黄辉,黄毅民,等. 含铝炸药圆筒试验与数值模拟[J].火炸药学报,2009, 32(4): 14-17. [百度学术]
HAN Yong, HUANG Hui, HUANG Yi‑min, et al. Cylinder test of aluminized explosives and its numerical simulation[J]. Chinese Journal of Explosives & Propellants, 2009, 32(4): 14-17. [百度学术]
卢校军,王蓉,黄毅民,等. 两种含铝炸药作功能力与JWL状态方程研究[J].含能材料,2005, 13(3): 144-147. [百度学术]
LU Xiao‑jun, WANG Rong, HUANG Yi‑min, et al. Study on work ability and JWL equation of state of two aluminized explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(3): 144-147. [百度学术]
J Henrych, R Major. The dynamics of explosion and its use [M]. Elsevier, New York, 1979. [百度学术]
GJB 6390.3‑2008. 面杀伤导弹战斗部静爆威力试验方法 第3部分:冲击波超压测试[S]. 中华人民共和国国家军用标准,2008. [百度学术]
GJB 6390.3‑2008. Static power method for anti‑surface missile warhead―Part 3: measurement of blast wave overpressure [S]. The military standard of the People's Republic of China, 2008. [百度学术]
D. Liang, R. Xiao, Y. Wang. Ignition and heterogeneous combustion of aluminum boride and boron‑aluminum blend[J]. Aerospace Science and Technology, 2019, 84: 1081-1091. [百度学术]
P. Liu, L. Liu, G. He. Effect of solid oxidizers on the thermal oxidation and combustion performance of amorphous boron [J] Journal of Thermal Analysis and Calorimetry, 2016,124(3): 1587-1593. [百度学术]
Y.Zhou, J. Liu, J. Wang, et al. Experimental study on dynamic combustion characteristics of aluminum particles[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 1-12. [百度学术]
E. L. Baker, W. Balas, C. Capellos, et al. Combined effects aluminized explosives[R]. 2010, AD‑E403 299. [百度学术]
Da‑yuan Gao,Wei Cao, et al. Energy output characteristics of explosives containing B‑Al in air blast and underwater explosion[C]//The 32nd International Symposium on shock waves, Singapore, July 15‑19, 2019. [百度学术]
GJB 7692-2012. 炸药爆炸相对能量评估方法—水中爆炸法 [S]. 中华人民共和国国家军用标准,2012. [百度学术]
GJB 7692-2012. Evaluation method of relative explosive energy—underwater explosion test[S]. The military standard of the People's Republic of China, 2012. [百度学术]
Selezenev A A, Kreknin D A, Lashkov V N, et al. Comparative analysis of the effects of aluminum and aluminum hydride on the detonation parameters and performance of mixed explosives[C]∥Eleventh Symposium(International) on Detonation, Colorado, Office of Naval Research, 1998: 231-236. [百度学术]
辛春亮, 徐更光, 刘科种, 等. 含铝炸药与理想炸药能量输出结构的数值模拟[J]. 火炸药学报, 2007, 30(4): 6-8. [百度学术]
XIN Chun‑liang, XU Geng‑guang, LIU Ke‑zhong, et al. Numerical simulation of energy output structure for aluminized explosive and idealized explosive in under explosion[J]. Chinese Journal of Explosives & Propellants, 2007, 30(4): 6-8. [百度学术]
于川, 刘文翰, 李良忠, 等. 钝感炸药圆筒试验与爆轰产物JWL 状态方程研究[J]. 高压物理学报, 1997, 11(3): 227-233. [百度学术]
YU Chuan, LIU Wen‑han, LI Liang‑zhong, et al. Studies on cylinder test and JWL equation of state of detonation product for insensitive high explosive[J]. Chinese Journal of High Pressure Physics, 1997, 11(3): 227-233. [百度学术]
Thomas Keicher, Andreas Happ, Alois Kretschmer. Influence of aluminium /ammonium perchlorate on the performance of underwater explosives[J]. Propellants, Explosives, Pyrotechnics, 1999, 24(3): 140-143. [百度学术]
裴明敬, 毛根旺, 吴婉娥,等.含铝温压燃料爆炸抛撒过程中能量释放效率研究[J].中国科学技术大学学报, 2007, 37(3): 276-283. [百度学术]
PEI Ming‑jing, MAO Gen‑wang, WU Wan‑e, et al. On energy releasing efficiency of thermobaric fuel containing aluminum in dispersing with explosion[J]. Journal of University of Science and Technology of China, 2007, 37(3): 276-283. [百度学术]