摘要
笼形含能化合物因能量高、密度大而成为当前含能材料领域的研究热点,阐明其热分解机理对于深入研究其爆轰机理及提高热稳定性均有重要意义。以笼形骨架为线索,介绍了金刚烷衍生物、立方烷衍生物和异伍兹烷衍生物三类笼形含能化合物的热分解研究进展,总结了上述三类笼形化合物热分解规律:金刚烷衍生物热分解始于取代基且具有“桥头C”效应,立方烷衍生物热分解通常始于笼形结构的C‑C键,多硝基异伍兹烷热分解一般始于脱硝基。后续研究应进一步丰富笼形含能化合物的种类,开展笼形化合物热分解的系统性研究,特别是笼状骨架的热分解机理研究。
图文摘要
笼形含能化合物指拥有笼形封闭空间结构的含能化合物,以金刚烷、立方烷和异伍兹烷及其衍生物为代表。此外,还有1,3,5,7‑四硝基‑3,7‑二氮杂二环[3.3.1]壬
系统总结笼形含能化合物的热分解研究进展,有助于明确笼形化合物研究趋势,推动新型笼形含能化合物的研发。本文结合实验研究、理论计算和数值模拟等方面的研究进展,归纳了金刚烷、立方烷和异伍兹烷三类典型笼形含能衍生物的热分解特点,总结了每类笼形含能化合物热分解规律,展望了笼形含能化合物热分解研究方向,以期为新型含能化合物分子设计和含能材料分解机理研究提供参考。
金刚烷最早由Landa

图1 金刚烷及部分金刚烷硝基衍生物的分子结构
Fig.1 Molecular structures of adamantane and some derivatives of adamantane
一般而言,多硝基化合物的热稳定性主要取决于分子内硝基数目。实
基于密度泛函理论,金刚烷衍生物热稳定研究已取得显著进展。许晓娟
分子对称性对金刚烷含能衍生物的热稳定性也有显著影响。近年来罗
金刚烷衍生物笼形骨架的热分解路径研究起步很早。1968年Kazanskii

图2 金刚烷(Ⅰ)与1‑硝基金刚烷(Ⅱ)的热分解路
Fig.2 Thermal decomposition pathways of adamantine (Ⅰ) and 1‑nitroadamantane (Ⅱ
如上所述,目前金刚烷衍生物的热分解研究较深入,尤其是在理论计算领域已取得重大突破。肖鹤鸣
不同于张力很小的金刚烷,立方烷分子内张力相当大,且热稳定性良好,在200 ℃下才开始分解。立方烷合成难度较高,1964年由Eaton

图3 立方烷和部分立方烷衍生物的分子结构图
Fig.3 Molecular structures of cubane and some derivatives of cubane
1984年Eaton
高C─C键张力赋予了立方烷衍生物与众不同的热分解路径。Kılıç

图4 真空中立方烷的热分解路
Fig.4 Thermal decomposition of cubane in vacuu
随着分子结构的复杂化,立方烷衍生物的热分解也变得更加复杂。对甲基立方烷的热分解实
综上所述,立方烷含能衍生物的热分解通常始于骨架C—C键断裂并导致异构化,其中多硝基立方烷热稳定性优良,是理想的潜在高能钝感含能材料。尽管立方烷衍生物合成困难,但得益于近年来迅速发展的理论计算和数值模拟技术,立方烷衍生物热分解研究相对深入,尤其是笼形结构分解路径和中间产物已较明确。
异伍兹烷的笼形结构张力介于金刚烷和立方烷之间,是理想的新一代笼形高能分子骨架结构。当前异伍兹烷含能衍生物研究较多的是CL‑20和二硝基四氧杂二氮杂四环十二烷(4,10‑Dinitro‑2,6,8,12‑ tetraoxa‑4,10‑diazaisowurtzitane, TEX),部分异伍兹烷衍生物分子结构如
20世纪80年代,Nielsen

图5 异伍兹烷及其部分衍生物的分子结
Fig.5 Molecular structures of isowurtzitane and some derivatives of isowurtzitan
早期实验发现,CL‑20的N—NO2键断裂是热分解初始反应和热分解速率控制步
CL‑20热分解的模拟计算有助于揭示其初始化学反应规律。早期的CL‑20分子轨道计

图6 CL‑20热分解的主要初始反应路
Fig.6 Main initial reactions of the pyrolysis of CL‑2
1979年首次合成的4,10‑二硝基‑2,6,8,12‑四氧杂‑4,10‑二氮杂四环十二烷(TEX,
TEX与CL‑20类似,热分解也始于N—NO2键断
分子动力学方法在TEX热分解研究中也已有应用。Xiang
异伍兹烷其他衍生物的热分解报道较少,2020年Luk'yanov
由上述CL‑20和TEX的热分解研究结果推测,多硝基异伍兹烷热分解均始于脱硝基。但目前异伍兹烷衍生物的热分解研究集中于CL‑20与TEX,其他异伍兹烷衍生物的热分解鲜有报道,故该结论还需进一步验证,异伍兹烷衍生物热分解的其它特性也有待深入探究。
得益于笼形骨架结构的高张力能,笼形含能化合物往往能量水平更高、堆积密度更大,其热分解行为也比传统单环化合物更加复杂,是含能材料领域的研究难点。根据已有的笼形化合物热分解研究进展,可得出以下结论:
(1)金刚烷类含能化合物的热分解始于外围活性基团,且基团与骨架的结合位点对其热安定性有重大影响:若活性基团位于桥头C上,可有效提高分子热稳定性;若非桥头C原子上连接有两个活性基团,则会严重削弱分子的热稳定性。
(2)立方烷类含能化合物的热分解通常始于骨架C—C键的断裂,并导致开环。得益于高度对称的分子结构和硝基对体系内电子的强吸引作用,多硝基立方烷的热稳定性优良,尤其是八硝基立方烷最为理想。
(3)典型异伍兹烷含能化合物CL‑20与TEX的热分解均始于C—NO2键断裂,推测多硝基异伍兹烷热分解始于脱硝,且不受硝基数目多寡和骨架杂原子类型(N原子和/或O原子)的影响。
为深入探究笼形含能化合物热分解机理,可从如下几个方面展开后续研究:
(1)进一步丰富笼形含能化合物的种类并开展热分解实验。尽管多硝基六氮杂金刚烷、多硝基氮杂立方
(2)开展笼形化合物热分解系统性研究。目前金刚烷衍生物热分解研究已初步形成体系,但立方烷和异伍兹烷衍生物的热分解研究尚不成系统。此外,对于金刚烷、立方烷、异伍兹烷和其他笼形化合物之间的热分解机理差异,及其所导致的性能差异也缺乏对比研究。
(3)开展笼形化合物笼状骨架的热分解机理研究。目前对金刚烷衍生物的热分解研究集中于硝基等骨架外基团,骨架的热分解路径不够明确,而异伍兹烷衍生物笼形骨架的热分解研究目前集中于CL‑20等少数化合物,导致热分解研究不全面,尚缺乏规律性结论。
参考文献
Cichra D A, Adolph H G. Nitrolysis of dialkyl tert‑butylamines[J]. Journal of Organic Chemistry, 1982, 47(12): 2474-2476. [百度学术]
LI Sheng‑hua, WANG Yuan, QI Cai, et al. 3D energetic metal‑organic frameworks: synthesis and properties of high energy materials[J]. Angewandte Chemie International Edition, 2013, 52(52): 14031-14035. [百度学术]
Chen Shao‑li, Yang Zi‑run, Wang Bin‑jie, et al. Molecular perovskite high‑energetic materials[J]. Science China Materials, 2018, 61(8): 1123-1128. [百度学术]
周静, 张俊林, 丁黎, 等. 笼状骨架含能化合物构建研究进展[J]. 含能材料, 2019, 27(8): 708-716. [百度学术]
ZHOU Jing, ZHANG Jun‑lin, DING Li, et al. Progress in the construction of cage⁃like skeleton energetic compounds[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2019, 27(8): 708-716. [百度学术]
Landa S, Machacek V. Adamantane, a new hydrocarbon extracted from petroleum[J]. Collection of Czechoslovak Chemical Communication, 1933, 5: 1-5. [百度学术]
Prelog V, Seiwerth R. Über die synthese des adamantans[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1941, 74(10): 1644-1648. [百度学术]
Kazanskii B A, Shokova E A, Korosteleva T V. The pyrolysis of adamantane[J]. Bulletin of the Academy of Sciences of the Ussr Division of Chemical Science, 1968, 17(11): 2506-2508. [百度学术]
XU Xiao‑juan, XIAO He‑ming, Ju Xue‑hai, et al. Computational studies on polynitrohexaazaadmantanes as potential high energy density materials[J]. The Journal of Physical Chemistry A, 2006, 110(17): 5929-5933. [百度学术]
XU Xiao‑juan, ZHU Wei‑hua, GONG Xue‑dong, et al. Theoretical studies on new potential high energy density compounds (HEDCs) adamantyl nitrates from gas to solid[J]. Science in China Press, 2008, 51(5): 427-439. [百度学术]
Feinstein A I, Field E K, Ihrig P J, et al. Pyrolysis of 1‑Nitroadamantane[J]. Journal of Organic Chemistry, 1971, 36(7): 996-998. [百度学术]
Sollott G P, Gilbert E E. A facile route to 1,3,5,7‑tetraaminoadamantane. Synthesis of 1,3,5,7‑tetranitroadamantane[J]. Journal of Organic Chemistry, 1980, 45: 5405-5408. [百度学术]
张萍萍, 凌亦飞, 孙露, 等. 2,2,4,4,6,6‑六硝基金刚烷的合成、表征及晶体结构[J]. 含能材料, 2014, 22(5): 646-653. [百度学术]
ZHANG Ping‑ping, LING Yi‑fei, SUN Lu, et al. Synthesis, characterization and crystal structure of 2,2,4,4,6,6‑hexanitroadamantane[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(5): 646-653. [百度学术]
孙露, 凌亦飞, 张萍萍, 等. 2,2,4,4‑四硝基金刚烷的合成与表征[J]. 含能材料, 2014, 22(4): 447-453. [百度学术]
SUN Lu, LING Yi‑fei, ZHANG Ping‑ping, et al. Synthesis and characterization of 2,2,4,4‑tetranitroadamantane[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(4): 447-453. [百度学术]
凌亦飞, 露孙, 军罗. 2,2,6,6‑四硝基金刚烷的合成与表征[J]. 含能材料, 2015, 23(9): 877-881. [百度学术]
LING Yi‑fei, SUN Lu, LUO Jun. Synthesis and characterization of 2,2,6,6‑tetranitroadamantane[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2015,23(9): 877-881. [百度学术]
VanKrevelen D W. 聚合物的性质: 性质的估算及其与化学结构的关系[M]. 北京: 科学技术出版社, 1981. [百度学术]
王飞, 许晓娟, 肖鹤鸣, 等. 多硝基金刚烷生成热和稳定性的理论研究[J]. 化学学报, 2003, 61(12): 1939-1943. [百度学术]
WANG Fei, XU Xiao‑juan, XIAO He‑ming, et al. Theoretical studies on heat of formation and stability for polynitroadamantanes[J]. Acta Chimica Sinica, 2003, 61(12): 1939-1943. [百度学术]
Xu X J, Xiao H M, Gong X D, et al. Theoretical studies on the vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanisms for polynitroadamantanes[J]. The Journal of Physical Chemistry A, 2005, 109(49): 11268-11274. [百度学术]
许晓娟, 肖鹤鸣, 居学海, 等. 多硝基金刚烷红外光谱和热力学性质的理论研究[J]. 含能材料, 2005, 13(1): 40-44. [百度学术]
XU Xiao‑juan, XIAO He‑ming, JU Xue‑hai, et al. Theoretical study on the vibrational spectra, thermodynamic properties for polynitroadamantanes[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(1): 40-44. [百度学术]
许晓娟, 肖鹤鸣, 居学海, 等. 1,3,5,7‑四硝基金刚烷结构和性能的理论研究[J]. 化学学报, 2005, 63(1): 27-32. [百度学术]
XU Xiao‑juan, XIAO He‑ming, JU Xue‑hai, et al. Theoretical study on the structure and properties of 1,3,5,7‑Tetranitroadamantane[J]. Acta Chimica Sinica, 2005, 63(1): 27-32. [百度学术]
侯天骄, 孙露, 罗军. 3,5,7‑三硝基‑1‑氮杂金刚烷的合成工艺[J]. 含能材料, 2018, 26(7): 585-589. [百度学术]
HOU Tian‑jiao, SUN Lu, LUO Jun. Synthesis process of 3,5,7‑trinitro‑1‑azaadamantane[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(7): 585-589. [百度学术]
HOU Tian‑jiao, RUAN Hong‑wei, WANG Gui‑xiang, et al. 2,4,4,8,8‑Pentanitro‑2‑azaadamantane: A high‑density energetic compound[J]. European Journal of Organic Chemistry, 2017, 2017(46): 6957-6960. [百度学术]
ZHANG Jian, HOU Tian‑jiao, ZHANG Lin, et al. 2,4,4,6,8,8‑Hexanitro‑2,6‑diazaadamantane: A high‑energy density compound with high stability[J]. Organic Letters, 2018, 20(22): 7172-7176. [百度学术]
蔡荣斌, 张健, 罗军. 4‑叠氮基‑2,2,6,6‑四硝基金刚烷的合成与热稳定性[J]. 含能材料, 2020, 28(7): 603-608. [百度学术]
CAI Rong‑bin, ZHANG Jian, LUO Jun. Synthesis and thermal stability of 4‑azido‑2,2,6,6‑tetranitroadamantane[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2020,28(7):603-608. [百度学术]
肖鹤鸣, 许晓娟, 邱玲. 高能量密度材料的理论设计[M]. 北京: 科学出版社, 2008: 84-92. [百度学术]
HOU Tian‑jiao, ZHANG Jian, WANG Chen‑jiao, et al. A facile method to construct a 2,4,9‑triazaadamantane skeleton and synthesize nitramine derivatives[J]. Organic Chemistry Frontiers, 2017, 4: 1819-1823. [百度学术]
Eaton P E, Cole T W. Cubane[J]. Journal of the American Chemical Society, 1964, 86: 3157. [百度学术]
Eaton P E, Shankar B K R. Synthesis of 1,4‑dinitrocubane[J]. The Journal of Organic Chemistry, 1984, 49(1): 185-186. [百度学术]
Eaton P E, XIONG Yu‑sheng, Gilardi R. Systematic substitution on the cubane nucleus. Synthesis and properties of 1,3,5‑trinitrocubane and 1,3,5,7‑tetranitrocubane[J]. Journal of the American Chemical Society, 1993, 115(22): 10195-10202. [百度学术]
Lukin K, LI Jian‑chang, Gilardi R, et al. Anions stabilized by β‑nitro groups: The acidity and ortho‑metalation of nitrocubanes‑penta‑ and hexanitrocubanes[J]. Angewandte Chemie‑International Edition, 1996, 35(8): 864-866. [百度学术]
ZHANG Mao‑xi, Eaton P E, Gilardi R. Hepta‑ and octanitrocubane[J]. Angewandte Chemie, 2000, 112(2): 422-426. [百度学术]
Eaton P E, ZHANG Mao‑xi, Gilardi R, et al. Octanitrocubane: A new nitrocarbon[J]. Propellants, Explosives, Pyrotechnics, 2002, 27: 1-6. [百度学术]
Kılıç Ç, Yildirim T, Mehrez H, et al. A first‑principles study of the structure and dynamics of C8H8, Si8H8, and Ge8H8 molecules[J]. The Journal of Physical Chemistry A, 2000, 104(12): 2724-2728. [百度学术]
Maslov M M, Lobanov D A, Podlivaev A I, et al. Thermal stability of cubane C8H8[J]. Physics of the Solid State, 2009, 51(3): 645-648. [百度学术]
Owens F J. Molecular orbital calculation of decomposition pathways of nitrocubanes and nitroazacubanes[J]. Journal of molecular structure. Theochem, 1999, 460(1): 137-140. [百度学术]
ZHANG Ji, XIAO He‑ming. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanism of octanitrocubane[J]. The Journal of Chemical Physics, 2002, 116(24): 10674-10683. [百度学术]
杨镇, 何远航. 八硝基立方烷高温热分解分子动力学模拟[J]. 物理化学学报, 2016, 32(4): 921-928. [百度学术]
YANG Zhen, HE Yuan‑hang. Pyrolysis of octanitrocubane via molecular dynamics simulations[J]. Acta Physico‑Chimica Sinica, 2016, 32 (4), 921-928. [百度学术]
Chaban V V, Prezhdo O V. Energy storage in cubane derivatives and their real‑time decomposition: Computational molecular dynamics and thermodynamics[J]. ACS Energy Letters, 2016, 1(1): 189-194. [百度学术]
LI Zhi, Anderson S L. Pyrolysis chemistry of cubane and methylcubane: The effect of methyl substitution on stability and product branching[J]. The Journal of Physical Chemistry A, 2003, 107(8): 1162-1174. [百度学术]
CHI Wei‑jie, LI Lu‑lin, LI Bu‑tong, et al. Looking for high energy density compounds among polynitraminecubanes[J]. Journal of Molecular Modeling, 2013, 19(2): 571-580. [百度学术]
郑剑. 硝基立方烷及其氮杂衍生物的能量特性计算研究[J]. 固体火箭技术, 1995, 18(1): 45-53. [百度学术]
ZHENG Jian. The computational investigation of energetic performances of nitrocubanes and nitroazacubanes[J]. Journal of Solid Rocket Technology, 1995, 18(1): 45-53. [百度学术]
Prokudin V G, Lagodzinskaya G V, Dubikhin V V, et al. Thermal transformations of cubane derivatives[J]. Kinetics and Catalysis, 2005, 46(6): 800-804. [百度学术]
Rajkumar S,Choudhari R S,Chowdhury A, et al. Synthesis and pyrolysis studies of bis(nitratomethyl)‑1,3‑bishomocubane‑A high‑energy high‑density liquid[J]. Thermochimica Acta, 2013, 563: 38-45. [百度学术]
ZHANG Jian‑ying, GONG Xue‑dong. The effect of nitro groups on the structures and energetic properties of the derivatives composed of TATB and cubane[J]. Structural Chemistry, 2017, 28(3): 645-654. [百度学术]
YANG Zong‑wei, WANG Hao‑jing, ZHANG Ji‑chuan, et al. Rapid cocrystallization by exploiting differential solubility: An efficient and scalable process toward easily fabricating energetic cocrystals[J]. Crystal Growth & Design, 2020, 20(4): 2129-2134. [百度学术]
Gatilov Y V, Rybalova T V, Efimov O A, et al. Molecular and crystal structure of polycyclic nitramines[J]. Journal of Structural Chemistry, 2005, 46(3): 566-571. [百度学术]
Luk'yanov O A, Parakhin V V, Shlykova N I, et al. Energetic N‑azidomethyl derivatives of polynitro hexaazaisowurtzitanes series: CL‑20 analogues having the highest enthalpy[J]. New journal of chemistry, 2020, 44(20): 8357-8365. [百度学术]
Nielsen A T.Polycyclic amine chemistry[M]. Academic Press, San Diego, 1991: 95-124. [百度学术]
欧育湘, 孟征, 刘进全. 高能量密度化合物CL‑20应用研究进展[J]. 化工进展, 2007, 26(12): 1690‑1694. [百度学术]
OU Yu‑xiang, MENG Zheng, LIU Jin‑quan. Review of the development of application technologies of CL‑20[J]. Chemical Industry and Engineering Progress, 2007,26(12): 1690-1694. [百度学术]
徐容, 陈松林, 周建华, 等. 六硝基六氮杂异伍兹烷的热性能研究[J]. 火炸药学报, 2002, 25(4): 25-26. [百度学术]
XU Rong, CHEN Song‑lin, ZHOU Jian‑hua, et al. Study on thermal function of hexanitrohexaazaisowurtzitane[J]. Chinese Journal of Explosives and Propellants, 2002, 25(4): 25-26. [百度学术]
Patil D G, Brill T B. Thermal decomposition of energetic materials 53. Kinetics and mechanism of thermolysis of hexanitrohexazaisowurtzitane[J]. Combustion and Flame, 1991, 87(2): 145-151. [百度学术]
Löbbecke S, Bohn M A, Feil A, et al. Thermal behavior and stability of HNIW(CL-20)[C]//Proceedings of 29th International Conference of ICT. Karlsruhe,1998: 1-15. [百度学术]
Nedelko V V, Chukanov N V, Raevskii A V, et al. Comparative investigation of thermal decomposition of various modifications of hexanitrohexaazaisowurtzitane (CL‑20)[J]. Propellants, Explosives, Pyrotechnics, 2000, 25(5): 255-259. [百度学术]
何少蓉, 张林军, 衡淑云, 等. 量气法研究CL‑20热分解动力学[J]. 含能材料, 2007, 15(5): 515-518. [百度学术]
HE Shao‑rong, ZHANG Lin‑jun, HENG Shu‑yun, et al. Study on thermal decomposition kinetics of hexanitrohexaazaisowurtzitane by gasometric method[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007, 15(5): 515-518. [百度学术]
Naik N H, Gore G M, Gandhe B R, et al. Studies on thermal decomposition mechanism of CL‑20 by pyrolysis gas chromatography‑mass spectrometry(Py‑GC/MS)[J]. Journal of Hazardous Materials, 2008, 159(2-3): 630-635. [百度学术]
许丽娟, 曹雄, 冯翼鲲, 等. 含能材料CL‑20的热安全性测试分析[J]. 安全与环境学报, 2018, 18(1): 74-78. [百度学术]
XU Li‑juan, CAO Xiong, FENG Yi‑kun, et al.Test and analysis for the thermal safety of the energetic material known as CL‑20[J]. Journal of Safety and Environment,2018, 18(1): 74-78. [百度学术]
Bari R, Denton A A, Fondren Z T, et al. Acceleration of decomposition of CL‑20 explosive under nanoconfinement[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(6): 2649-2655. [百度学术]
张骥, 肖鹤鸣, 贡雪东, 等. 六硝基六氮杂异伍兹烷气相热解引发反应的理论研究[J]. 含能材料, 2000, 8(4): 149-154. [百度学术]
ZHANG Ji, XIAO He‑ming, GONG Xue‑dong, et al. Theoretical study on pyrolysis initiation reactions of hexanitrohexaazaisowurtzitane in gas phase[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2000, 8(4): 149-154. [百度学术]
Isayev O, Gorb L, Qasim M, et al. Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL‑20[J]. The Journal of Physical Chemistry B, 2008, 112(35): 11005-11013. [百度学术]
张力, 陈朗, 王晨, 等. CL‑20初始热分解反应机理的分子动力学计算[J]. 火炸药学报, 2012, 35(4): 5-9. [百度学术]
ZHANG Li, CHEN Lang, WANG Chen, et al. Mechanism of the initial thermal decomposition of CL‑20 via molecular dynamics simulation[J]. Chinese Journal of Explosives and Propellants, 2012, 35(4): 5‑9. [百度学术]
张力, 陈朗, 王晨, 等. 水分子对α相CL‑20热分解机理影响的分子动力学研究[J]. 物理化学学报, 2013, 29(6):1145-1153. [百度学术]
ZHANG Li, CHEN Lang, WANG Chen, et al. Mechanism of the initial thermal decomposition of CL‑20 via molecular dynamics simulation[J]. Chinese Journal of Explosives and Propellants, 2012, 35(4): 5-9. [百度学术]
Okovytyy S, Kholod Y, Qasim M, et al. The mechanism of unimolecular decomposition of 2,4,6,8,10,12‑Hexanitro‑2,4,6,8,10,12‑hexaazaisowurtzitane. A computational DFT study[J]. The Journal of Physical Chemistry A, 2005, 109(12): 2964-2970. [百度学术]
Kumar M A, Ashutosh P, Vargeese A A. Decomposition mechanism of hexanitrohexaazaisowurtzitane (CL‑20) by coupled computational and experimental study[J]. The Journal of Physical Chemistry A, 2019, 123(18): 4014-4020. [百度学术]
WANG Fu‑ping, CHEN Lang, GENG De‑shen, et al. Effect of density on thermal decomposition mechanism of ε‑CL‑20: a ReaxFF reactive molecular dynamics simulation study [J]. Physical Chemistry Chemical Physics, 2018, 2018(20): 22600-22609. [百度学术]
WANG Fu‑ping, CHEN Lang, GENG De‑shen, et al. Thermal decomposition mechanism of CL‑20 at different temperatures by ReaxFF reactive molecular dynamics simulations[J]. The Journal of Physical Chemistry A, 2018, 122(16): 3971-3979. [百度学术]
雷永鹏, 徐松林, 阳世清, 等. 高能炸药TEX的研究进展[J]. 含能材料, 2006, 14(6): 467-470. [百度学术]
LEI Yong‑peng, XU Song‑lin, YANG Shi‑qing, et al. Progress in high energetic explosive, TEX[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(6): 467-470. [百度学术]
Koch E C. TEX‑4,10‑Dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazatet‑ racyclo‑dodecane‑ review of a promising high density insensitive energetic material[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(3): 374‑387. [百度学术]
王瑞, 孟子晖, 薛敏, 等. DSC法研究高能炸药TEX与推进剂组分的相容性[J]. 火炸药学报, 2015, 38(2): 66-69. [百度学术]
WANG Rui, MENG Zi‑hui, XU Min, et al. Compatibility of high explosive TEX with components of propellants by DSC method[J]. Chinese Journal of Explosives and Propellants, 2015, 38(2): 66-69. [百度学术]
XIAO Li‑bai, ZHAO Feng‑qi, LUO Yang, et al. Thermal behavior and safety of 4,10‑dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazaisowutrzitane[J]. Journal of Thermal Analysis and Calorimetry, 2015, 121(2): 839-842. [百度学术]
王瑞, 孟子晖, 薛敏, 等. TEX色谱分析条件的建立及热稳定性研究[J]. 火炸药学报, 2015, 38(4): 27-30. [百度学术]
WANG Rui,MENG Zi‑hui,XUE Min,et al.Establishment of chromatographic conditions and study on thermal stability of 4,10‑dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazatetracyclo‑[5.5.0.
左玉芬, 常昆, 陈捷, 等. TEX的热分解特性研究[J]. 含能材料, 2006, 14(5): 385-387. [百度学术]
ZUO Yu‑fen, CHANG Kun, CHEN Jie, et al. Characteristics of thermal decomposition of TEX[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(5): 385-387. [百度学术]
YANG Li‑jun, WU Jun‑ying, GENG De‑shen, et al. Reactive molecular dynamics simulation of the thermal decomposition mechanisms of 4,10‑dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazatetracyclo[5.5.0.
Stepanov R S, Rogozin M V, Kruglyakova L A, et al. Kinetics of 4,10‑dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazatetracy‑clo[5.5.0.0
Gańczyk K, Zygmunt A, Gołofit T. Thermal properties of TEX decomposition or sublimation[J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(2): 967-975. [百度学术]
Vargeese A A. Decomposition kinetics of substituted energetic isowurtzitane cage molecules hexanitrohexaazaisowurtzitane (CL‑20) and TEX: A comparative study[J]. Chemistry Select, 2019, 4(22): 6821-6826. [百度学术]
XIANG Dong, ZHU Wei‑hua. Thermal decomposition of isolated and crystal 4,10‑dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazaisowurtzitane according to ab initio molecular dynamics simulations[J]. RSC Advances, 2017, 7(14): 8347-8356. [百度学术]