摘要
提高传统二元铝热剂的反应性能是近年来含能材料领域的研究热点,引入添加剂组成复合铝热剂是一种有效的方法。本文根据添加剂的作用效果及应用领域,将复合铝热剂分为燃料增强型,产气型以及改性剂添加型,综述了复合铝热剂的研究现状及其在有关工程上的应用,进而提出了复合铝热剂新的研究的方向和思路,包括新型合金燃料及合金氢化物的使用和制备、非叠氮类气体发生剂与铝热剂的复合使用、惰性添加剂的种类与添加量的影响、黏结剂在铝热剂表面的包覆技术等。
图文摘要
According to the application fields and the different effects of additives, the composite thermites were divided into fuel‑enhanced type, gas‑producing type and modified additive type.
铝热剂是由燃料与氧化剂组成的一种混合物,在一定激发条件下发生剧烈的氧化还原反应并释放出大量热
传统铝热剂组分较为单一,其粒径多为微米级,在燃烧中不易激发点火,燃烧温度低,反应物的利用率也低。近年来,纳米技术的应用极大地提高了铝热剂的性
铝热剂的能量密度比三硝基甲苯(TNT)等炸药高,但威力却远小于炸药。这是因为铝热剂依靠两种或多种物质发生化学反应释放能量,而TNT炸药依靠单个分子发生爆轰释放能
工程应用中颗粒的细化,制备工艺的改进都会增加成本。因此,根据工程需要引入添加剂制备复合铝热剂是一种经济高效的方法。本文根据作用效果及应用领域的不同,对添加剂进行分类,综述其性能,主要有(1)燃料增强型添加剂如镁(Mg)粉、硼(B)粉、镍(Ni)粉等增强型添加剂对铝热剂的放热性能,比冲性能以及抗老化性能方面的优化改性效果;(2)产气型添加剂,如火药型气体发生剂、高卤酸盐和烟火型富氮类气体发生剂在复合铝热剂中的产气性能和产气机制;(3)改性添加剂,如氯化盐、新型碳材料和黏结剂等。为未来复合铝热剂的进一步研究提供了思路和参考。
传统铝热剂的燃料主要是Al粉,但Al粉的燃烧性能有时难以满足工程需求。近年来,燃料添加剂开始用于改良铝热剂的性

a. Al、Al/M

b. Al/Fe2O3、Al/10%Ni/Fe2O3、Al/20%Ni/Fe2O3 heat release loss degre
图1 燃料添加剂对铝热剂性能影响
Fig.1 The influence of fuel additives on the thermite performance(RH:75%means storage in an environment with a relative humidity of 75%)
Mg粉热值高,燃烧剧烈且发出耀眼的白光,在烟火药、闪光弹等领域均有应
Mg粉以物理共混的方式添加至铝热剂时,Mg粉和Al粉分别与氧化剂发生氧化还原反应。Sheikhpour
相较于物理共混,AlMg合金作为燃烧的主体时,可有效缩短燃料之间的反应传输距离。目前,AlMg合金主要通过机械球磨法制备,大粒径Al粉与Mg粉在球磨机的作用下高速碰撞、挤压,最终实现合金化。热分析实验表明,AlMg合金拥有比粗Al粉更加优良的热性
Ni粉不同于Mg粉,虽然其理论热值和化学活性均低于Al粉,但Ni粉可提升铝热剂的抗老化性能。反应过程中,纳米Al粉易发生融化、烧结、团聚;储藏中,环境湿度较大时易老化失活。加入Ni粉后,固相的Ni粉在较低的温度下与Al粉发生固‑固反
Nie
B粉属于非金属,但比冲值高于金属粉Al、Mg。因此,近年来B粉应用于富燃料固体推进
方伟
B粉作为主燃料存在燃烧效率低、难以充分反应的问题。燃烧中B粉表面形成低熔点高沸点的氧化硼覆盖层,阻碍进一步燃
综上,金属或非金属燃料作为添加剂引入到铝热剂中,有效提升了放热性能、比冲性能和抗老化性能。发展多元燃料复合铝热剂并优化燃料的配比;优化合金的制备方法,研究多种合金燃料如铝钛(AlTi),铝硼(AlB),铝铜(AlCu)的新型制备工艺;发展储氢合金燃料,拓宽复合铝热剂的应用范围,是其未来的发展方向。
铝热剂在固体推进剂、安全气
硝化纤维(NC)是火药型气体发生剂中的代表,广泛应用于推进剂、烟火
NC添加型复合铝热剂的组装方法有静电纺
高卤酸盐中的高氯酸盐和高碘酸盐氧化性强,ClO
宋佳星
NH4ClO4因其高热量和高产气

a. Pressurization performance of perchlorate aluminothermic agen

b. Burning rate of periodate‑containing thermite
图2 高卤酸盐添加剂对铝热剂性能影响
Fig.2 The influence of perhalate additives on the performance of thermite
产气型复合铝热剂能够满足气体需求型工程。此外,Al/碘酸锰(Mn(IO3)2)在反应过程中产生大量碘(I2)气,可用于杀菌消
复合铝热剂主氧化剂的选择会影响产气量。研究发现,以CuO与Bi2O3为主氧化剂的铝热剂产气性能较为优
烟火型富氮类气体发生剂可分为叠氮类化合物和非叠氮类化合物。叠氮类化合物中NaN3最为安全、经济。非叠氮类化合物包括唑
叠氮类化合物NaN3加热至350 ℃时可分解为N2和Na,因此广泛应用于推进
综上,气体发生剂引入铝热剂后展现出了优良的产气性能。未来可在优化组装工艺,在NC添加型复合铝热剂引入固态或液态黏结剂,高卤酸盐表面喷涂具有产气优势的稳定氧化物层,制备成核壳结构、层状结构的复合铝热剂,提高安全性,非叠氮类气体发生剂与铝热剂复合使用等方向发展。
改性剂添加到铝热剂中,实现某一性能的调变作用,极大的拓展了铝热剂的工程应用范围。本节归纳了氯化盐,碳材料以及黏结剂等几类添加剂的应用。
铝热反应大量放热,常用于冶炼难熔金属或从钢铁废弃物中回收钢
Zhu
氯化盐是惰性添加剂中的一个代表,不参与铝热反应或者能够与铝热剂成分发生吸热反应的物质,都可以用作惰性添加剂来降低铝热反应的强度。在未来,丰富惰性添加剂的类型以及探究其添加量对工程效果的影响具有重要的意义。
碳材料主要包括石墨烯量子点(GQDs),氧化石墨烯(GO),碳纤维氧化物(CFO)以及碳纳米管(CNT)等。其作为添加剂引入铝热剂后起到了良好的改性效
Note: CFO: carbon fiber oxide; GO: graphene oxide; CNT: carbon nanotubes; GQDs: graphene quantum dots.
碳材料的加入有效改善了铝热剂的热性能和燃烧性能。以GQDs为基底组装Al粉和CuO粉得到复合铝热剂,其热性能优于物理混合的Al/CuO铝热
未来含碳材料铝热剂的发展应着重于改进GO、GQDs、CNT等与铝热剂的组装方式,增大热剂各组分间的接触面积;探究碳纳米球,如富勒烯在铝热剂中的应用。
黏结剂增强了铝热剂可塑性,满足工程压制需求的同时最大限度降低了热能的损失。黏结剂的引入改变了复合铝热剂的抗湿性、安全性和燃烧效果。本小节对研究较多的氟聚物以及石蜡进行归纳,并讨论了铝热剂在高能炸药中的应用前景。

图3 黏结剂添加性能改善示意图
Fig.3 Binder addition performance improvement schematic diagram
氟元素是电负性最高的元素,几乎可以与其他所有元素发生反应。氟聚物是一种应用广泛的含能黏结
石蜡化学活性低,性质稳定,疏水性能
石蜡本身具有极强的疏水性,含量越高疏水能力越强。石蜡是石油提取物,能够燃烧,但燃烧强度远低于铝热剂,其含量过高会降低整体的燃烧速率。经潮湿环境的处理后,不含石蜡的铝热剂不能点燃,石蜡过多的铝热剂燃烧强度大幅下降,在含量为10%表现出最优良的燃烧效果。同时,铝热反应的燃烧温度远高于石蜡的气化温度(300~500 ℃),在宏观上就表现为压力的升高。
石蜡引入铝热剂后抗湿性能有所提升,但石蜡也会将铝热剂组分之间隔绝开,阻碍铝热剂的自蔓延。未来制备包覆结构的铝热剂应使黏结剂分布均匀并且降低包覆层厚度,使其抗老化和能量输出性能达到最优。
含Al炸药的发展一直是近年来的热点,金属Al粉的加入提升了高能炸药的爆轰性
Note: P0: TNT detonation overpressure value; P1: TNT/Al detonation overpressure value; P1/P0 represent its ratio;
以复合铝热剂的工程应用为背景,从燃料增强型复合铝热剂、产气型复合铝热剂、改性剂添加型复合铝热剂三个方面进行了详细的阐述。
(1)双燃料复合铝热剂基于物理共混和机械球磨制备合金的方法引入燃料,带来了放热、比冲、耐老化等性能上的跨越式提升,是燃料增强型复合铝热剂的代表。
(2)产气型复合铝热剂将火药型气体发生剂、高卤酸盐、烟火型富氮类气体发生剂等引入铝热剂中,利用铝热剂的高放热、快速放热的性能促进气体发生剂的热分解来提高其产气性能。
(3)改性剂添加型复合铝热剂中采用了氯化盐、碳材料、黏结剂等添加剂。氯化盐作为惰性添加剂能够调节铝热剂反应速度和强度,满足金属冶炼等工程需求;碳材料不同的形态具有不同的性能;添加PVDF等含能黏结剂能够满足压制成型需求,但会影响燃烧速率;在铝热剂中添加石蜡等非含能黏结剂能够提升其抗湿性能,但会影响燃烧强度。
在未来,复合铝热剂的发展仍有大量的工作要做,基于前文的阐述,提出以下几种研究思路:
(1)对于燃料添加剂,发展多元燃料复合铝热剂并优化燃料的配比;探索各类新型合金燃料如铝钛(AlTi),铝硼(AlB),铝铜(AlCu)的制备工艺,并研究其性能;发展储氢合金燃料。
(2)对于火药型气体发生剂, 将引入黏结剂的NC型复合铝热剂压制成型,研究其在推进剂领域中的使用。对于高卤酸盐,利用喷涂技术、包覆技术等将具有产气优势的稳定氧化剂包覆在其外层,提高产气性能和安全性能。对于烟火型富氮类气体发生剂,NaN3等叠氮类气体发生剂有剧毒,非叠氮类气体发生剂呈现出安全环保无毒的特点,工程领域中非叠氮类气体发生剂与铝热剂的复合使用还尚属空白,研究以非叠氮类气体发生剂为添加剂的复合铝热剂颇具发展前景。
(3)对于氯化盐改性剂:丰富惰性添加剂类型并探究其添加量对工程效果的影响;对于碳材料改性剂:探索先进的自组装工艺并将碳纳米球材料引入铝热剂;对于黏结剂:优化包覆喷涂技术,使黏结剂分布均匀并且降低包覆层厚度。
(4)高能炸药中引入铝热剂后爆轰性能得以大幅提升,但高能炸药与铝热剂的混合使用的研究工作尚不充分。在未来,研究高能炸药,如RDX,HMX,CL‑20等与铝热剂复合使用的性能变化,具有一定的现实意义。
参考文献
Sundaram D, Yang V, Yetter R A. Metal‑based nanoenergetic materials: Synthesis, properties, and applications[J]. Prog. Energy Combust. Sci., 2017, 61: 293-365. [百度学术]
Wang L L, Munir Z A, Maximov Y M. Thermite reactions: their utilization in the synthesis and processing of materials[J]. J. Mater. Sci., 1993, 28(14): 3693-3708. [百度学术]
Montgomery Y C, Focke W W, Atanasova M, et al. Mn+Sb2O3 thermite/intermetallic delay compositions[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(5): 919-925. [百度学术]
Knapp S, Weiser V, Kelzenberg S, et al. Modeling ignition and thermal wave progression in binary granular pyrotechnic compositions[J]. Propellants,Explosives, Pyrotechnics, 2014, 39(3): 423-433. [百度学术]
He W, Lyu J Y, Tang D Y, et al. Control the combustion behavior of solid propellants by using core‑shell Al‑based composites[J]. Combust. Flame, 2020, 221: 441-452. [百度学术]
Khasainov B, Comet M, Veyssiere B, et al. Comparison of performance of fast‑reacting nanothermites and primary explosives[J].Propellants,Explosives,Pyrotechnics,2017,42(7):754-772. [百度学术]
A.E.D.M. van der Heijden. Developments and challenges in the manufacturing, characterization and scale‑up of energetic nanomaterials: A review[J]. Chem. Eng. J., 2018, 350(15): 939-948. [百度学术]
Yetter R A, Risha G A, Son S F. Metal particle combustion and nanotechnology[J]. Proc. Combust. Inst., 2008, 32(2): 1819-1838. [百度学术]
Weir C, Pantoya M L, Daniels M A. The role of aluminum particle size in electrostatic ignition sensitivity of composite energetic materials[J]. Combustion & Flame, 2013, 160(10): 2279-2281. [百度学术]
Hosseini S G, Sheikhpour A, Keshavarz M H, et al. The effect of metal oxide particle size on the thermal behavior and ignition kinetic of Mg‑CuO thermite mixture[J]. Thermochimica Acta, 2016, 626: 1-8. [百度学术]
Fried, Laurence, Manaa, et al. Design and synthesis of energetic materials[J]. Annual Review of Materials Research, 2001. [百度学术]
Dreizin E L. Schoenitz M Mechanochemically prepared reactive and energetic materials: A review[J]. J. Mater. Sci., 2017, 52(20): 11789-11809. [百度学术]
Seo H S, Kim J K, Kim J W, et al. Thermal behavior of Al/MoO3 xerogel nanocomposites[J]. Journal of Industrial & Engineering Chemistry, 2014, 20(1): 189-193. [百度学术]
汝承博, 王飞, 许建兵, 等. 静电喷射纳米铝热剂的微推进性能[J]. 含能材料, 2016, 24(12): 1136-1144. [百度学术]
RU Cheng‑bo, WANG Fei, XU Jian‑bing, et al. Micropropulsion characteristics of nanothermites prepared by electrospray[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(12): 1136-1144. [百度学术]
Yan N, Qin L, Hao H, et al. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard[J]. Applied Surface Science, 2017, 408(30): 51-59. [百度学术]
He W, Liu P J, He G Q, et al. Highly reactive metastable intermixed composites (MICs): Preparation and characterization[J]. Adv. Mater., 2018, 30(41): 20. [百度学术]
Qin L, Yan N, Li J, et al. Enhanced energy performance from core‑shell structured Al@Fe2O3 nanothermite fabricated by atomic layer deposition[J]. Rsc Advances, 2017,7: 7188-7197. [百度学术]
Fabrice, Séverac, Pierre ,et al. High‑energy Al/CuO nanocomposites obtained by DNA‑directed assembly[J]. Adv. Funct. Mater., 2012, 22(2): 230-230. [百度学术]
胥会祥, 李兴文, 赵凤起, 等. 纳米金属粉在火炸药中应用进展[J]. 含能材料, 2011, 2: 232-239. [百度学术]
XU Hui‑xaing, LI Xing‑wen, ZHAO Feng‑qi, et al. Review on application of nano‑metal powders in explosive and propellants[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2011, 2: 232-239. [百度学术]
赵凤起, 覃光明, 蔡炳源. 纳米材料在火炸药中的应用研究现状及发展方向[J]. 火炸药学报, 2001, 24(4): 61-65. [百度学术]
ZHAO Feng‑qi, QIN Guang‑ming, CAI Bing‑yuan, et al. Research status and development trends of nanometer materials in the application of propellants and explosives[J]. Chinese Journal of Explosives and Propellants, 2001, 24(4): 61-65. [百度学术]
赵庆华, 王莉莉, 李学军, 等. 复合团聚颗粒的制备及在推进剂中的应用研究进展[J]. 化学推进剂与高分子材料, 2019, 17,102(6): 39-41. [百度学术]
ZHAO Qing‑hua, WANG Li‑li, LI Xue‑jun, et al. Research progress in preparation and application in propellants of composite agglomerated particles[J]. Chemical Propellants & Polymeric Materials, 2019, 17,102(6): 39-41. [百度学术]
Zhu C G, Wang H Z, Min L. Ignition temperature of magnesium powder and pyrotechnic composition[J]. Journal of Energetic Materials, 2014, 32(3): 219-226. [百度学术]
Shen L H, Li G P, Luo Y J, et al. Preparation and characterization of Al/B/Fe2O3 nanothermites[J]. Science China (Chemistry), 2014, 57(6): 797-802. [百度学术]
Nie H Q, Chan H Y, Pisharath S, et al. Combustion characteristic and aging behavior of bimetal thermite powders[J]. Defence Technology, 2020. [百度学术]
Nishiwaki Y, Matsunaga T, Kumasaki M. Stabilization effects of carboxylate on pyrotechnic compositions including Mg powder in water[J]. Journal of Thermal Analysis and Calorimetry, 2019 137:1493-1498. [百度学术]
Sheikhpour A, Hosseini S G, Tavangar S, et al. The influence of magnesium powder on the thermal behavior of Al‑CuO thermite mixture[J]. Journal of Thermal Analysis & Calorimetry, 2017,626: 1-8. [百度学术]
陈伟, 姜炜, 李平云, 等. AlMg/KMnO4高活性铝热剂的点火和燃烧性能[J]. 稀有金属材料与工程, 2013, 42(12): 2458-2461. [百度学术]
CHEN Wei, JIANG Wei, LI Ping‑yun, et al. Ignition and combustion of super‑reactive thermites of AlMg/KMnO4[J]. Rare Metal Materials and Engineering, 2013, 42(12): 2458-2461. [百度学术]
张明. 铝镁合金氢化物的燃烧特性及其在铝热剂中的应用[D], 马鞍山:安徽工业大学, 2019. [百度学术]
ZHANG Ming.Combustion characteristics of aluminum‑ magnsium alloy hydride and its application in thermite[D], Ma'anshan: Anhui University of Technology, 2019. [百度学术]
马浩然, 毛丹, 张宏雷, 等. Al‑Mg合金的制备和燃烧性能研究[J]. 固体火箭技术, 2016, 39(5): 649-654. [百度学术]
MA Hao‑ran, MAO Dan, Zhang Hong‑lei, et al. Preparation and properties of Al‑Mg alloy powders as combustion agent[J]. Journal of Solid Rocket Technology (Guti Huojian Jishu), 2016, 39(5): 649-654. [百度学术]
Swaminathan P, Grapes M D, Woll K, et al. Studying exothermic reactions in the Ni‑Al system at rapid heating rates using a nanocalorimeter[J].Journal of Applied Physics,2013, 113(14). [百度学术]
张先瑞, 王园园, 陈涛, 等. 含硼富燃料推进剂的能量释放特性[J]. 固体火箭技术, 2020, 43(6): 701-706. [百度学术]
ZHANF Xian‑rui, WANG Yuan‑yuan, CHEN Tao, et al. Energy releasing characteristics of boron‑based fuel‑rich propellant[J]. Journal of Solid Rocket Technology, 2020, 43(6): 701-706 [百度学术]
方伟, 赵省向, 陈松, 等. Fe2O3/BAl纳米复合含能材料的制备及性能研究[J]. 火工品, 2012, 02: 18-21. [百度学术]
FANG Wei, ZHAO Sheng‑xiang, et al. Preparation and characterization of Fe2O3/BAl nano‑composite energetic material[J]. Initiators and Pyrotechnics, 2012, 02: 18-21. [百度学术]
王国栋, 刘玉存, 荆苏明, 等. 硼基含能化合物制备方法研究进展[J]. 含能材料, 2020, 28(7): 707‑716. [百度学术]
WANG Guo‑dong, LIU Yu‑cun, JING Su‑ming, et al. Review on preparation of boron‑based energetic compounds[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2020, 28(7): 707-716. [百度学术]
Kim S B, Kim K J, Cho M H, et al. Micro‑ and nanoscale energetic materials as effective heat energy sources for enhanced gas generators[J]. Acs Appl Mater Interfaces, 2016, 8(14): 9405-9412. [百度学术]
Martirosyan K S. Nanoenergetic gas‑generators: principles and applications[J]. Journal of Materials Chemistry, 2011, 21(26): 9400-9405. [百度学术]
韩志跃, 姜琪, 杜志明, 等. 有机富氮类气体发生剂研究进展[J]. 兵器装备工程学报, 2018, 39(5): 172-178. [百度学术]
Han Zhi‑yue, JIANG Qi, DU Zhi‑ming, et al. Research progress of nitrogen‑rich organic gas generating compositions[J].Journal of Ordnance Equipment Engineering, 2018, 39(5): 172-178. [百度学术]
夏敏, 罗运军, 华毅龙. 纳米硝化纤维素的制备及性能表征[J]. 含能材料, 2012, 20(2): 167-171. [百度学术]
XIA Min, LUO Yun‑jun, HUA Yi‑long. Preparation and characterization of nitrocellulose nano‑fibers[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2012,20(2): 167-171. [百度学术]
Yan S, Jian G Q, Zachariah M R. Electrospun nanofiber‑based thermite textiles and their reactive properties[J]. ACS Appl. Mater. Interfaces, 2012, 4(12): 6432-6435. [百度学术]
Li R, Xu H, Hu H, et al. Microstructured Al/Fe2O3/nitrocellulose energetic fibers realized by electrospinning[J]. Journal of Energetic Materials, 2014, 32(1):50-59. [百度学术]
Wang J F, Zhang Y T, Zhang W, et al. Research progress of electrostatic spray technology over the last two decades[J]. Journal of Energy Engineering,2021,147(4): 03121003. [百度学术]
刘勇, 白海军, 甘巧玉, 等 含能铝粉表面改性技术研究进展[J]. 含能材料, 2020, 28(10): 1017-1025. [百度学术]
LIU Yong,BAI Hai‑jun,GAN Qiao‑yu,et al Surface modification technologies of energetic aluminum powders:A Review[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2020, 28(10): 1017-1025. [百度学术]
张云华, 邵自强. 三元体系相分离制备硝化纤维素凝胶及其动态流变性的研究[J]. 火炸药学报, 2015, 38(2): 70-74. [百度学术]
ZHANG Yun‑hua, SHAO Zi‑qiang. Preparation of nitrocellulose gel based on phase separation in ternary system and study on its dynamic rheological characteristics[J]. Huozhayao Xuebao/Chinese Journal of Explosives and Propellants, 2015, 38(2):70-74. [百度学术]
Wu C W, Sullivan K, Chowdhury S, et al. Encapsulation of perchlorate salts within metal oxides for application as nanoenergetic Oxidizers[J]. Adv. Funct. Mater., 2012,22(1): 78-85. [百度学术]
宋佳星, 郭涛, 姚淼, 等. 高氯酸盐对Al‑MnO2纳米铝热剂热性能及燃烧性能的影响[J]. 含能材料, 2020, 28(10): 953-959. [百度学术]
SONG Jia⁃xing,GUO Tao,YAO Miao,et al. Effects of perchlorates on thermal properties and combustion performance of Al⁃MnO2 nanothermite[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2020, 28(10): 953-959. [百度学术]
Gao K, Li G P, Luo Y J, et al. Preparation and characterization of the AP/Al/Fe2O3 ternary nano‑thermites[J]. J. Therm. Anal. Calorim., 2014, 118(1): 43-49. [百度学术]
Cheng A W, Jianbing X, Ji D, et al. Probing the reaction mechanism of Al/CuO nanocomposites doped with ammonium perchlorate[J]. Nanotechnology, 2020, 31(25). [百度学术]
Grobler J M, Focke W W, Derrick N P, et al. Sensitising the micron‑sized aluminium/potassium periodate thermite[J]. Journal of Energetic Materials, 2020, 38(4): 455-466. [百度学术]
Mei X, Zhong G, Cheng Y. Ignition and combustion characteristics of aluminum/manganese iodate/nitrocellulose biocidal nanothermites[J]. J. Therm. Anal. Calorim., 2019, 138(1): 425-432. [百度学术]
Yang F, Kang X L, Luo J S, et al. Preparation of core‑shell structure KClO4@Al/CuO Nanoenergetic material and enhancement of thermal behavior[J]. Sci Rep, 2017, 7(9): 4-131. [百度学术]
葛亚庆. 5‑氨基四唑低温型气体发生剂的设计与研究[D], 南京:南京理工大学, 2014. [百度学术]
GE Ya‑qing. Design and research of 5‑aminotetrazole low‑temperature gas generating agent[D], Nanjing: Nanjing University of Science and Technology, 2014. [百度学术]
Highsmith T, Blau R J, Lund G K. Bitetrazoleamine gas generant compositions: US, US5682014A[P].1997. [百度学术]
徐松林, 阳世清. 偶氮四唑非金属盐类含能材料的合成与性能研究[J]. 含能材料, 2006, 14(5): 377-380. [百度学术]
XU Song‑lin, YANG Shi‑qing. Synthesis and properties of high‑nitrogen energetic compounds based on azotetrazolate nonmetallic salts[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(5):377-380. [百度学术]
卫春强, 盛涤伦, 杨斌, 等. 二羟基乙二肟对硝酸胍/碱式硝酸铜气体发生剂燃烧性能的影响[J]. 火工品, 2014, 05: 13-16. [百度学术]
WEI Chun‑qiang, SHENG Di‑lun, YANG Bin, et al. Effects of dihydroxglyxime on the combustion characteristics of guanidine nitrate/copper nitrate basic gas generating agents[J]. Initiators & Pyrotechnics, 2014, 05: 13-16. [百度学术]
Wang B, Liao X, Wang Z, et al. Effects of particle size and morphology of NQ on thermal and combustion properties of triple‑base propellants[J]. Combust. Flame, 2018, 193: 123-132. [百度学术]
李玉平. 安全气囊用新型气体发生剂的研制[D], 太原:中北大学, 2010. [百度学术]
LI Yu‑ping. Development of new type gas generating agent for airbag[D], Taiyuan: North University of China,2010. [百度学术]
大和洋. 气体发生剂组合物:中国,CN1177584 [P].1998. [百度学术]
DA Heyang. Gas Generating Agent Composition: China, CN1177584[P].1998. [百度学术]
吴宏斌, 马飞, 宋师军, 等. 采用叠氮化钠气体发生剂的高低压腔释放内弹道分析[J]. 兵器装备工程学报, 2018, 39(9): 16-19. [百度学术]
WU Hong‑bin, MA Fei, SONG Shi‑jun, et al. Interior ballistic analysis on high and low pressure chamber releasing model with sodium azide[J]. Journal of Ordnance Equipment Engineering, 2018, 39(9): 16-19. [百度学术]
陈武争, 陈大鹏, 陈力, 等. 汽车安全气囊爆炸威力的确定方法[J]. 振动与冲击, 2020, 39(2): 163-168. [百度学术]
CHEN Wu‑zheng, CHEN Da‑peng, CHEN Li, et al. Method to determine the explosion power of an automobile airbag[J]. Journal of Vibration and Shock, 2020, 39(2): 163-168. [百度学术]
王琼, 李吉祯, 蔚红建, 等. 偶氮四唑非金属盐的研究进展[J]. 含能材料, 2010, 18(5): 592-598. [百度学术]
WANG Qiong, LI Ji‑zhen, WEI Hong‑jian, et al. Review on azotetrazolate nonmetal salts[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2010, 18(5):592-598. [百度学术]
刘影, 冯长根, 杨利. 非叠氮类气体发生剂的研究进展[J]. 科技导报, 2012, 30(22): 73-79. [百度学术]
Liu Ying, FENG Chang‑gen, YANG Li Progress in research of non‑azide gas generating composition[J]. Science & Technology Review, 2012, 30(22):73-79. [百度学术]
明宪权, 葛军, 黎明. 铝热法冶炼低气金属铬提高产品质量的探讨[J]. 铁合金, 2000, 02: 5-9. [百度学术]
MING Xian‑quan, GE Jun, LI Ming. Discussion on improving quality of alumino‑thermic chromium metal with airmaltgrade low aluminium [J]. Ferro‑alloys, 2000, 02: 5-9. [百度学术]
Sapchenko I G, Komarov O N, Zhilin S G, et al. The Influence of alkali metal chlorides on the manufacturing process and steel properties in aluminothermic reduction of iron[J]. Procedia IUTAM, 2017, 23:155-160. [百度学术]
Zhu B, Fan L, Sun Y, et al. The effects of additives on the combustion characteristics of aluminum powder in steam[J]. RSC Advances, 2017, 7(10): 5725-5732. [百度学术]
Silyakov S L, Yukhvid V I. Combustion of iron aluminum thermite with ammonium chloride and sodium hydrogen tarbonate[J]. Combustion, Explosion, and Shock Waves, 2015, 51(6): 656-658. [百度学术]
Laha T, Agarwal A, McKechnie T, et al. Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite[J]. Materials Science & Engineering A, 2004, 381(1): 249-258. [百度学术]
Tao Y, Zhang J, Yang Y, et al. Metastable intermolecular composites of Al and CuO nanoparticles assembled with graphene quantum dots[J]. Rsc Advances, 2017, 7(3): 1718-1723. [百度学术]
Rajagopalan T, Clay S, Jordan M. G, et al. Enhanced combustion characteristics of bismuth trioxide‐aluminum nanocomposites prepared through graphene oxide directed self‑assembly[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 729-734. [百度学术]
Zhenxin Y, Yaqing C, Jianwen Y, et al. Functionalization carbon fibers assemble with Al/Bi2O3: A new strategy for high‑reliability ignition[J]. Chem. Eng. J., 2020,389: 124254. [百度学术]
Sharma M, Sharma V. Effect of carbon nanotube addition on the thermite reaction in the Al/CuO energetic nanocomposite[J]. Philos. Mag., 2017, 97(22): 1921-1938. [百度学术]
Morsi K, Esawi A. Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)‑CNT composite powders[J]. J. Mater. Sci., 2007, 42(13): 4954-4959. [百度学术]
Jeong H Y, So K P, Bae J J, et al. Tailoring oxidation of Al particles morphologically controlled by carbon nanotubes[J]. Energy, 2013, 55: 1143-1151. [百度学术]
DeLisio J B,Hu X L,Wu T,et al.Probing the reaction mechanism of aluminum/poly(vinylidene fluoride) composites[J]. The Journal of Physical Chemistry. B,2016,120(24):5534-5542. [百度学术]
McCollum J, Morey A M, Iacono S T. Morphological and combustion study of interface effects in aluminum‑poly(vinylidene fluoride) composites[J]. Materials & Design, 2017, 134. [百度学术]
Watson K W, Pantoya M L, Levitas V I. Fast reactions with nano‑ and micrometer aluminum: A study on oxidation versus fluorination[J]. Combust. Flame, 2008, 155(4). [百度学术]
Chen J, Jialin C, Tao G, et al. Thermal behavior and combustion performance of Al/MoO3 nanothermites with addition of poly (vinylidene fluorine) using electrospraying[J]. Materials Research Express, 2020, 7(11): 115009. [百度学术]
王政, 杨茗麟, 肖泽芳, 等. 高熔点石蜡处理木材的抗紫外光老化性能[J]. 东北林业大学学报, 2021, 49(4): 85-93. [百度学术]
WANG Zheng, YANG Ming‑lin, XIAO Ze‑fang, et al. The ultraviolet‑light aging properties of wood treated with high‑melting‑point waxes[J]. Journal of Northeast Forestry University, 2021, 49(4): 85-93. [百度学术]
黄凡泰, 张琳, 朱顺官. 纳米Al/Bi2O3制备和性能及长储研究[J]. 兵工学报, 2015, 36(8): 1430-1436. [百度学术]
HUANG Fan‑tai, ZHANG Lin, ZHU Shun‑guan. Preparation, Performance and long‑term Storage of Nano Al/Bi2O3[J]. Acta Armamentarii, 2015, 36(8): 1430-1436. [百度学术]
Kim K J, Cho M H, Kim J H, et al. Effect of paraffin wax on combustion properties and surface protection of Al/CuO‑based nanoenergetic composite pellets[J]. Combustion & Flame, 2018, 198: 169-175. [百度学术]
Elbasuney S, El‑Sayyad G S, Ismael S, et al. Colloid thermite nanostructure: A Novel High Energy Density Material for Enhanced Explosive Performance[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31(2): 559-565. [百度学术]
Feng S, Rao G N, Peng J H. Experimental study and numerical simulation of CL‑20‑based aluminized explosive in underwater explosion[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(8): 686-695. [百度学术]
肖师云, 刘俞平, 涂兴文, 等. 含铝炸药对全预制破片加速能力试验[J]. 兵器装备工程学报, 2018, 39(11): 161-163. [百度学术]
XIAO Shi‑yun, LIU Yu‑ping, TU Xing‑wen, et al. Experimental on ability to accelerate preformed fragment of aluminized explosives[J]. Journal of Ordnance Equipment Engineering, 2018, 39(11): 161-163. [百度学术]
周楠, 樊武龙, 潘炎辉, 等. 圆柱形简易爆炸装置破坏特性数值仿真研究[J]. 重庆理工大学学报(自然科学), 2018, 32(6): 94-99. [百度学术]
ZHOU Nan, FAN Wu‑long, PAN Yan‑hui, et al. Numerical simulation on the damage characteristics of cylindrical improvised explosive device[J]. Journal of Chongqing University of Technology(Natural Science), 2018, 32(6): 94-99. [百度学术]