摘要
针对高强含能结构材料的发展现状和存在的问题,对高熵合金的特点、静态力学行为和动态力学行为的研究现状进行了总结和分析,从理论和实验两方面论述了高熵合金作为高强含能结构材料的设想、潜力和挑战。综述发现,高熵合金具有“成分设计自由”、“晶体结构简单且具有强畸变”、“强度和硬度高”等基本特点,同时高熵合金的静态力学行为和动态力学行为可以在很宽的范围内进行调节,调节方式包括工艺调整和成分设计等。以上特点表明高熵合金在可加工性、高强度和可快速氧化释能等方面具有成为高强含能结构材料的潜在优势。已有的实验结果也证实了高熵合金含能结构材料的应用潜力。提出了高熵合金含能结构材料研究面临的挑战和未来研究需要关注的重点,包括高通量实验和模拟、动态力学行为研究和大尺寸样件制备等。
图文摘要
Potential and challenges of high‑entropy alloy energetic structural materials were revealed by reviewing the definition, basic features, static and dynamic mechanical behaviors of high‑entropy alloys, as well as the development of high‑entropy alloy energetic structural materials.
含能结构材料(Energetic structural materials,ESMs)是指具有一定的力学性能,在特定条件下能够诱发材料组元之间或组元与环境介质的高能量化学反应,释放出热量的材
根据材料的成分特点,含能结构材料主要可分为金属‑氟聚物、金属‑氧化物、金属‑金属型和纯金属型四种类型。其中,金属‑氟聚物(如Al‑PTFE)、金属‑氧化物(如Al‑CuO)、金属‑金属型(如Al‑Ni)这三种复合材料因为可产生组元间的化学反应,具有很好的能量释放效率,而最先成为含能结构材料研究的主流。如8 g的Al‑Ni‑CuO弹丸以1400 m·
为此,研究者开始尝试具有更高理论强度的单相金属型含能结构材料。其中的典型代表是Zr基非晶合金。2006年,Walters
(1)非晶合金的制备需要极高的冷却速
(2)因为不具有周期性的晶体结构,无法在受载过程中发生位错运动主导的塑性变形,所以非晶合金的普遍韧塑性较差,难以进行变形加工和在炸药驱动过程中保持完整性,进而影响了释能效果。例如,Zr55Al10Ni5Cu3非晶合金以1200 m·
因此,开发一种可满足战斗部壳体承载和高效毁伤需求的全新材料体系,是高强含能结构材料发展的必然趋势。高熵合金作为一种新型金属材料,已在包括含能结构材料在内的多个领域展现出很好的应用潜力。2017年,国防科技大学白书欣等基于高熵合金的特点和含能结构材料的需要,首次提出并验证了高熵合金含能结构材料的概念,即基于高强、高塑、高活性高熵合金的含能结构材
高熵合金(High‑entropy Alloys,HEAs)是2004年由英国牛津大学Cantor在实验上首次发
在高熵合金被提出的头十多年中,研究者们大多恪守着叶均蔚所提出的高熵合金的定义,主要研究合金组元特性对高熵合金结构的影响规律。随着2015年大连理工大学卢一
传统的合金设计理念主要考虑合金元素间的“焓”值大小。“焓”是热力学中表征物质系统能量的重要状态参
而高熵合金则突破传统合金设计由“焓”调控材料“有序度”的理念,采用“熵”调控材料中的微观状态分布和无序程
(1) |
式中,ΔSmix为理想体系构型熵,在高熵合金中近似为体系的混合熵,J·
(2) |
式中,ΔG为体系吉布斯自由能变化,J·mo
高熵合金正是通过增加组元数量的方式来提升物质体系中“熵”值的方式,实现了多元素等比例的超混合,克服了传统合金无法摆脱的主元素固有性质的约束,实现合金在原子级别的“自由”设计和组合。
总之,高熵合金的特性不仅与组元种类相关也与组元数量有关。因此,在合金设计时,通过自由选取一定特性的目标元素就可以构成一个既有一定高熵合金共性特征又有一定组成元素个性特征的新型合金。例如,将多种活性元素组合在一起即可形成具有一类高氧化活性的高熵合
高熵合金的结构特点可以概况为:“化学占位无序,拓扑结构有序”的强畸变固溶体,如

图1 晶格畸变示意
Fig.1 Schematic of the lattice distortion in HE
合金体系的“熵”值除了与组元数量相关以外,还与组成原子的占位状态有关。原子占位的无序程度越高,“熵”值就越大。因此,受到高熵效应的影响,高熵合金会倾向于形成原子占位无序的单相固溶体结构,而不会形成原子占位有序的复杂化合
同时,因为一个包含多种组元的高熵合金中各类原子尺寸不同,且原子之间存在结合能、电负性等差异,使得多种原子“化学占位无序”的固溶体晶格产生严重的畸
高熵合金独特的结构也造成了独特的性能特点。已有研究表明,高熵合金具有优于传统材料的综合性能,集包括耐高温、轻量化、高比强度、高耐磨、耐腐蚀性、耐辐照等多种特性于一身,能够同时满足复杂多变的极端环境对军事材料不同性能的苛刻要
由于高熵合金的严重晶格畸变会阻碍晶体中位错的运动,从而形成一定的强化效应,因此高熵合金普遍具有比传统合金更高的强度和硬度,例如CrNbTiZr的硬度为4.10 GP

图2 高熵合金与传统合金强韧性对比
Fig.2 Comparison of strength and ductility between HEAs and conventional alloy
同时,严重的晶格畸变会对高温下合金的回复和再结晶产生阻碍,这使得高熵合金通常可表现出较高的耐回火软化性,进而表现出在高温环境下的工作潜

图3 部分高熵合金与传统合金的铸态与退火态硬度对
Fig.3 Comparison of hardness between HEAs and conventional alloys before and after annealin
传统合金通常以一种元素作为主元,通过向其中添加少量钝化元素的方式提高其耐腐蚀性能。而高熵合金能够直接以多种钝化元素作为主
在辐照条件下,辐照粒子会与材料自身晶格原子产生相互作用,导致材料微结构变化并形成辐照缺陷,进而造成体积膨胀、辐照硬化和脆化、辐照诱发相变、辐照蠕变以及高温氢脆等一系列材料失效行
整体而言,高熵合金普遍具有均匀的单相固溶体结构,并且由于单相固溶体晶格的畸变程度严重,所以具有不同于传统合金的诸多性能特点。
近年来,高熵合金的研究普遍集中在“如何通过调整合金结构,提升合金的准静态力学性能”。在此方面,国内外研究者们开展了大量有益的工作。
北德克萨斯大学Banerjee
别尔哥罗德国立大学Stepanov
叶均蔚
吕昭平
整体而言,在高熵合金的均匀单相固溶体基体中引入纳米级别的析出物和成分波动(Concentration fluctuations),会有利于位错的多重滑移,同时提升材料的强度和塑性。
2015年北德克萨斯州大学Mishra
近些年,国内外研究者对3d过渡高熵合金体系的动态力学行为进行了详细的研究。浦项科技大学Kim

图4 各金属体系的(a)屈服强度(σy)、(b)真实极限强度(σult,T)与真实极限应变(εult,T)随应变率的变化
Fig.4 The changing rates of (a) yield strength (σy), (b) true ultimate strength (σult,T)versus the changing rate of true ultimate strain (εult,T) with strain rates for a wide range of material system
以上对3 d过渡金属高熵合金动态力学行为的研究虽表明高熵合金的确具有一些不同于传统金属材料的动态力学行为和更加优异的动态力学性能,但却很少涉及难熔金属高速变形过程中普遍存在的绝热剪切现象,即材料因局部严重变形和温升集中而发生的熔化及失稳现象。在CoCrFeMnNi高熵合金体系中,尽管动态变形的早期阶段由于形成孪晶而显示出较高的加工硬化率,但是由于进一步应变带来的温升,热软化作用占主导地位,动态变形后期形成了绝热剪切
整体而言,对于高熵合金动态力学行为的研究还较少。但现有研究表明,具有良好静态力学性能的合金普遍也具有良好的动态力学性能,包括高强度和高塑性。
综合高强含能结构材料的性能需求,以及高熵合金的性能特点和发展趋势,作者认为高熵合金具有以下作为新型高强含能结构材料的优势:
首先,高熵合金形成了“拓扑结构有序”的晶体结构,提供了位错形成和运动的空间。因此,高熵合金拥有非晶合金不具有的塑性变形能力,可进行后期加工。例如,Zr含量达到29%(原子百分比)的TiZrHfTa0.4高熵合金的拉伸延伸率可以达到29
其次,因为高熵合金形成的是简单的固溶体结构,原子间的结合键是无方向性的、较弱的金属键。这意味着高活性的组元原子在高速侵彻过程中,很容易脱离原固溶体晶格,与空气发生氧化反应,快速释放能量。
第三,高熵合金的晶体结构畸变严重,这就形成了很强的固溶强化效应。因此,高熵合金普遍具有很高的强度和硬度。例如,AlMo0.5NbTa0.5TiZr高熵合金的屈服强度和硬度分别达到2000 MPa和5.8 GP
第四,高熵合金中严重的晶格畸变会为氧原子在合金内部的扩散提供快速通道,加速合金的氧化反应速率和效率。例如,TiZrNbTa高熵合金的氧化速率要明显高于所有组成元素的单质金
以上潜在优势意味着,受益于高熵合金“熵”调控的自由设计理念,通过将多种高活性元素等比或近等比组合,可以制备一型兼具高强度、高硬度、高释能活性和良好塑性变形能力的高熵合金,满足高强含能结构材料的需求。
为印证以上理论分析,2017年,白书欣等对准静态抗拉强度1100 MPa、延伸率27%的TiZrHfTa0.53合

图5 TiZrHfTa0.53合金在弹道实验中穿透钢板后不同时间的爆燃图
Fig.5 The high‑speed video frames of deflagration process of TiZrHfTa0.53 HE
2017年至今,国内已有北京理工大学、中科院金属研究所、南京航空航天大学等单位从事高熵合金含能结构材料的研究。其中,中科院力学研究所戴兰

图6 (a)WMoFeNi and 93 W在不同动能下的侵彻深度,(b) WMoFeNi和(c) 93 W侵彻中碳钢后纵截面照
Fig.6 (a) Depth of penetration of WMoFeNi and 93 W versus kinetic energy per volume calculated by ρ
作为一类具有特殊设计理念、结构和性能的新型合金,高熵合金理论上可满足高强含能结构材料的所有性能和应用需求。但现有的高熵合金含能结构材料研究,还处于技术成熟度较低的材料本征性能测试和相关机制研究阶段,没有达到实弹演示和验证阶段。其中原因主要包括以下几个方面:
(1)高熵合金含能结构材料的性能优势还不明显,合金成分尚未达到最优。
(2)高熵合金的动态变形机制尚不明了,缺乏有效的调控手段。
(3)难以制备出满足实弹实验要求的大尺寸样件。
因此,要实现高熵合金含能结构材料的真正应用,还需要材料设计、动态力学行为研究、构件加工、演示验证和总体设计等全链条的多家单位强强联合,在多个不同方面积累更多的数据和经验。具体而言,主要包含以下几个方面:
(1)高通量实验和模拟。高熵合金的自由设计理念为合金性能的调控带来了极大的便利,但也对合金的设计工作提出了极大的挑战。理论上多达6×1
(2)高熵合金的动态变形机制。基于“高熵合金含能结构材料的冲击释能源于其冲击过程中的氧化反应,氧化反应总量和速率取决于合金冲击过程中破碎程度、破碎程度取决于合金高速变形过程中累积的塑性变形功,合金动态力学性能取决于其动态变形机制”的逻辑关系可知,高熵合金的动态变形机制是决定其冲击释能特性的关键因素。但此方面的研究目前也才刚刚起步,许多与高熵合金特殊结构相关的动态变形机制尚需要进一步挖掘。
(3)高熵合金大尺寸构件的制备。制备组织可控的大尺寸复杂构件是新型结构材料从实验室研究走向应用的必经阶段。目前高熵合金的制备主要有熔铸和粉末冶金两种方
参考文献
史安顺.多功能含能结构材料冲击压缩特性及其反应行为研究[D].南京:南京理工大学, 2013. [百度学术]
SHI An‑shun. Research on impact compression characteristics and reaction behavior of multifunctional energetic structural materials[D]. Nanjing: Nanjing University of Science and Technology, 2013. [百度学术]
张先锋,赵晓宁.多功能含能结构材料研究进展[J].含能材料, 2009, 17(6): 731-739. [百度学术]
ZHANG Xian‑feng, ZHAO Xiao‑ning. Review on multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009, 17(6): 731-739. [百度学术]
Huang C M, Chen J, Bai S X, et al. Enhanced energy release performances of Al‑Ni composite with addition of CuO[J]. Journal of Alloys and Compounds, 2020, 835: 155271. [百度学术]
Walters W P, Kecskes L J, Pritchett J E. Investigation of a bulk metallic glass as a shaped charge liner material[R]. Army Research Laboratory, 2006. [百度学术]
Gilbert C J, Ager J W, Schroeder V, et al. Light emission during fracture of a Zr‑Ti‑Ni‑Cu‑Be bulk metallic glass[J]. Applied Physics Letters, 1999, 74(25): 3809-3811. [百度学术]
Huang C M, Bai S X, Li S, et al. Effect of in‑situ crystalline phase on the mechanical properties and energy release behaviors of Zr55Ni5Al10Cu30 bulk metallic glasses[J]. Intermetallics, 2020, 119: 106720. [百度学术]
Johnson W L. Bulk Glass‑Forming Metallic Alloys: Science and Technology [J]. MRS Bulletin, 1999, 24: 42-56. [百度学术]
Liu Y H, Wang G, Wang R J, et al. Super plastic bulk metallic glasses at room temperature [J]. Science, 2007, 315(5817): 1385-1388. [百度学术]
Löffler J F. Bulk metallic glasses[J]. Intermetallics, 2003, 11(6): 529-540. [百度学术]
Zhang Z R, Zhang H, Tang Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel high‑entropy alloy HfZrTiTa0.53[J]. Materials and Design, 2017, 133: 435-443. [百度学术]
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375-377: 213-218. [百度学术]
Hsu C Y, Yeh J W, Chen S K, et al. Wear resistance and high‑ temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition[J]. Metallurgical & Materials Transactions A, 2004, 35(5): 1465-1469. [百度学术]
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high‑entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [百度学术]
Lu Y P, Dong Y, Guo S, et al. A promising new class of high‑temperature alloys: Eutectic high‑entropy alloys[J]. Scientific Reports, 2014, 4: 6200. [百度学术]
Li Z M , Pradeep K G, Deng Y, et al. Metastable high‑entropy dual‑phase alloys overcome the strength‑ductility trade‑off[J]. Nature, 2016, 534(7606): 227-230. [百度学术]
Senkov O N, Senkova S V, Woodward C, et al. Low‑density, refractory multi‑principal element alloys of the Cr‑Nb‑Ti‑V‑Zr system: Microstructure and phase analysis[J]. Acta Materialia, 2013, 61(5): 1545-1557. [百度学术]
Guo W, Dmowski W, Noh J Y, et al. Local atomic structure of a high‑entropy alloy: An X‑ray and neutron scattering study [J]. Metallurgical and Materials Transactions A, 2013, 44(5): 1994-1997. [百度学术]
Zhang W R, Liaw P K, Zhang Y. Science and technology in high‑entropy alloys[J]. Science China Materials, 2018, 61(1): 2-22. [百度学术]
Gaskel D R. Introduction to the thermodynamics of materials [M]. Fourth Edition. New York: Taylor & Francis, 2003: 97-171. [百度学术]
Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817-2829. [百度学术]
Lei Z F, Liu Liu X J, Wang H, et al. Development of advanced materials via entropy engineering[J]. Scripta Materialia, 2019, 165: 164-169. [百度学术]
Macdonald B E, Fu Z, Zheng B, et al. Recent progress in high entropy alloy research [J]. JOM, 2017, 69(10): 2024-2031. [百度学术]
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high‑entropy alloys[J]. Progress in Materials Science, 2014, 61(1): 1-93. [百度学术]
Yeh J W. Alloy design strategies and future trends in high‑entropy alloys[J]. JOM, 2013, 65(12): 1759-1771. [百度学术]
Owen L R, Pickering E J, Playford H Y, et al. An assessment of the lattice strain in the CrMnFeCoNi high‑entropy alloy[J]. Acta Materialia, 2017, 122(1): 11-18. [百度学术]
Chen H, Kauffmann A, Laube S, et al. Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys[J]. Metallurgical and Materials Transactions A, 2018, 49(3): 772-781. [百度学术]
Tong Y, Zhao S J, Bei H B, et al. Severe local lattice distortion in Zr‑ and/or Hf‑containing refractory multi‑principal element alloys[J]. Acta Materialia, 2020, 183: 172-181. [百度学术]
Wang R X, Tang Y, Li S, et al. Effect of lattice distortion on the diffusion behavior of high‑entropy alloys[J]. Journal of Alloys and Compounds, 2020, 825: 154099. [百度学术]
Kumar N A P K, Li C, Leonard K J, et al. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation[J]. Acta Materialia, 2016: 113: 230-244. [百度学术]
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture‑resistant high‑entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158. [百度学术]
Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high‑entropy alloys[J]. Nature, 2019, 574(7777): 223-227. [百度学术]
Wang F L, Balbus G H, Xu S Z, et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy[J]. Science, 2020, 370(6512): 95-101. [百度学术]
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high‑entropy alloy via ordered oxygen complexes[J]. Nature, 2018, 563(7732): 546-550. [百度学术]
Huang H L, Wu Y, He J, et al. Phase‑transformation ductilization of brittle high‑entropy alloys via metastability engineering [J]. Advance Materials, 2017, 29(30): 11701678. [百度学术]
Senkov O N, Senkova S V, Woodward C, et al. Low‑density, refractory multi‑principal element alloys of the Cr‑Nb‑Ti‑V‑Zr system: Microstructure and phase analysis[J]. Acta Materialia, 2013, 61(5): 1545-1557. [百度学术]
Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high‑entropy alloys[J]. Acta Materialia, 2014, 68(14): 214-228. [百度学术]
Ye Y F, Wang Q, Lu J, et al. High‑entropy alloy: Challenges and prospects[J]. Materials Today, 2015, 19(6): 349-362. [百度学术]
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19(5): 698-706. [百度学术]
Senkov O N, Woodward C, Miracle D B. Microstructure and properties of aluminum‑containing refractory high‑entropy alloys[J]. Journal of the Minerals, Metals and Materials Society, 2014, 66(10): 2030-2042. [百度学术]
Stepanov N D, Yurchenko N Y, Skibin D V, et al. Structure and mechanical properties of the AlCrxNbTiV (x=0, 0.5, 1, 1.5) high entropy alloys[J]. Journal of Alloys & Compounds, 2015, 652(15): 266-280. [百度学术]
Shi Y Z, Yang B, Liaw P K. Corrosion‑resistant high‑entropy alloys: A review[J]. Metals, 2017, 7(2): 43. [百度学术]
Shi Y Z, Yang B, Xie X, et al. Corrosion of AlxCoCrFeNi high‑entropy alloys: Al‑content and potential scan‑rate dependent pitting behavior[J]. Corrosion Science, 2017, 119: 33-45. [百度学术]
Wu P F, Gan K F, Yan D S, et al. A non‑equiatomic FeNiCoCr high‑entropy alloy with excellent anti‑corrosion performance and strength‑ductility synergy[J]. Corrosion Science, 2021, 183: 109341. [百度学术]
Zhang Y W, Stocks G M, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys[J]. Nature Communications, 2015, 6(6): 8736. [百度学术]
Chang S, Tseng K K, Yang T Y, et al. Irradiation‑induced swelling and hardening in HfNbTaTiZr refractory high‑entropy alloy[J]. Materials Letters, 2020, 272: 127832. [百度学术]
Lu Y P, Huang H F, Gao X Z, et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high‑entropy alloy[J]. Journal of Materials Science & Technology, 2019, 35(3): 369-373. [百度学术]
Soni V, Gwalani B, Senkov O N, et al. Phase stability as a function of temperature in a refractory high‑entropy alloy[J]. Journal of Materials Research, 2018, 33(19): 3235-3246. [百度学术]
Soni V, Gwalani B, Alam T, et al. Phase inversion in a two‑phase, BCC+B2, refractory high entropy alloy[J]. Acta Materialia, 2019, 185: 89-97. [百度学术]
Soni V, Senkov O N, Gwalani B, et al. Microstructural design for improving ductility of an initially brittle refractory high entropy alloy[J]. Scientific Reports, 2018, 8(1): 8816. [百度学术]
Ma Y, Wu S, Jia Y, et al. Hexagonal closed‑packed precipitation enhancement in a NbTiHfZr refractory high‑entropy alloy [J]. Metals, 2019, 9(5): 485. [百度学术]
Yang C, Aoyagi K, Bian H, et al. Microstructure evolution and mechanical property of a precipitation‑strengthened refractory high‑entropy alloy HfNbTaTiZr[J]. Materials Letters, 2019, 254: 46-49. [百度学术]
Yurchenko N,Panina E,Tikhonovsky M,et al.Structure and mechanical properties of an in situ refractory Al20Cr10Nb15Ti20V25Zr10high entropy alloy composite[J]. Materials Letters, 2020, 264: 127372. [百度学术]
Yurchenko N Y,Panina E S,Zherebtsov S V, et al. Microstructure evolution of a novel low‑density Ti‑Cr‑Nb‑V refractory high entropy alloy during cold rolling and subsequent annealing[J]. Materials Characterization, 2019, 158: 109980. [百度学术]
Čížek J, Haušild P, Cieslar M, et al. Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation [J]. Journal of Alloys and Compounds, 2018, 768: 924-937. [百度学术]
Cao Y K, Liu Y, Li Y P, et al. Precipitation behavior and mechanical properties of a hot‑worked TiNbTa0.5ZrAl0.5 refractory high entropy alloy[J]. International Journal of Refractory Metals and Hard Materials, 2020, 86: 105132. [百度学术]
Tseng K K,Juan C C,Tso S,et al.Effects of Mo,Nb,Ta, Ti, and Zr on mechanical properties of equiatomic Hf‑Mo‑Nb‑Ta‑Ti‑Zr alloys[J]. Entropy, 2019, 21(1): 15. [百度学术]
Wang R X, Tang Y, Li S, et al. Novel metastable engineering in single‑phase high‑entropy alloy[J]. Materials and Design, 2019, 162: 256-262. [百度学术]
Lin C M, Juan C C, Chang C H, et al. Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys[J]. Journal of Alloys and Compounds, 2015, 624(14): 100-107. [百度学术]
Wei Q Q, Luo G Q, Zhang J, et al. Designing high entropy alloy‑ceramic eutectic composites of MoNbRe0.5TaW(TiC)x with high compressive strength[J]. Journal of Alloys and Compounds, 2019, 818: 152846. [百度学术]
Sheikh S, Shafeie S, Hu Q, et al. Alloy design for intrinsically ductile refractory high‑entropy alloys[J]. Journal of Applied Physics, 2016, 120(16): 164902. [百度学术]
Qi L, Chrzan D C. Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys[J]. Physical Review Letters, 2014, 112(11):115503. [百度学术]
Chen Y W, LiY K, ChengX W, et al. The microstructure and mechanical properties of refractory high‑entropy alloys with high plasticity[J]. Materials, 2018, 11(2): 208. [百度学术]
Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory high‑entropy alloys[J]. Materials Science and Engineering A, 2018, 712: 380-385. [百度学术]
Kumar N, Ying Q, Nie X, et al. High strain‑rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy [J]. Materials and Design, 2015, 86: 598-602. [百度学术]
Jiao Z M, Ma S G, Chu M Y, et al. Superior mechanical properties of AlCoCrFeNiTix high‑entropy alloys upon dynamic loading[J]. Journal of Materials Engineering and Performance, 2016, 25: 451-456. [百度学术]
Park J M, Moon J, Bae J W, et al. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high‑entropy alloy[J]. Materials Science & Engineering A, 2018, 719: 155-163. [百度学术]
He J Y, Wang Q, Zhang H S, et al. Dynamic deformation behavior of a face‑centered cubic FeCoNiCrMn high‑entropy alloy[J]. Science Bulletin, 2018, 63(6):362-368. [百度学术]
Shabani M, Indeck J, Hazeli K, et al. Effect of strain rate on the tensile behavior of CoCrFeNi and CoCrFeMnNi high‑entropy alloys[J]. Journal of Materials Engineering and Performance, 2019, 28(7): 4348-4356. [百度学术]
Zhang T W, Ma S G, Zhao D. Simultaneous enhancement of strength and ductility in a NiCoCrFe high‑entropy alloy upon dynamic tension: Micromechanism and constitutive modeling [J]. International Journal of Plasticity, 2020, 124: 226-246. [百度学术]
Zhang T W, Jiao Z M, Wang Z H, et al.Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high‑entropy alloy[J]. Scripta Materialia, 2017, 136(3): 15-19. [百度学术]
Li Z, Zhao S, Diao H, et al. High‑velocity deformation of Al0.3CoCrFeNi high‑entropy alloy: Remarkable resistance to shear failure[J]. Scientific Reports, 2017, 7: 42742. [百度学术]
Ma Y, Yuan F, Yang M, et al. Dynamic shear deformation of a CrCoNi medium‑entropy alloy with heterogeneous grain structures[J]. Acta Materialia, 2018, 148(1): 407-418. [百度学术]
Gangireddy S, Liu K M, Gwalani B, et al. Microstructural dependence of strain rate sensitivity in thermomechanically processed Al0.1CoCrFeNi high entropy alloy[J]. Materials Science & Engineering A, 2018, 727: 148-159. [百度学术]
Gangireddy S, Gwalani B, Liu K M, et al. Microstructures with extraordinary dynamic work hardening and strain rate sensitivity in Al0.3CoCrFeNi high entropy alloy[J]. Materials Science & Engineering A, 2018, 734: 42-50. [百度学术]
Gwalani B, Gangireddy S, Zheng Y F, et al. Influence of ordered L12 precipitation on strain‑rate dependent mechanical behavior in a eutectic high entropy alloy[J]. Scientific. Reporters, 2019, 9(1): 6371. [百度学术]
Dirras G, Couque H, Lilensten L, et al. Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high‑entropy alloy loaded under quasi‑static and dynamic compression[J]. Materials Characterization, 2016, 111: 106-113. [百度学术]
Liu X F, Tian Z L, Zhang X F, et al. “Self‑sharpening” tungsten high‑entropy alloy[J]. Acta Materialia, 2020, 186: 257-266. [百度学术]
Miracle D B. High entropy alloys as a bold step forward in alloy development[J]. Nature Communications, 2019, 10(1): 1805. [百度学术]
Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys:A review[J]. Journal of Materials Research, 2018, 33(19): 3092-3128. [百度学术]
Suryanarayana C. Mechanical alloying and milling[J]. Progress in Materials Science, 2001, 46(1-2):1-184. [百度学术]
Senkov O N, Wilks G B,Miracle D B,et al. Refractory high‑entropy alloys[J]. Intermetallics, 2010,18(9):1758-1765. [百度学术]
Couzinie J P, Dirras G, Perriere L, et al. Microstructure of a near‑equimolar refractory high‑entropy alloy[J]. Materials Letters, 2014, 126: 285-287. [百度学术]
Gao M C, Zhang B, Yang S, et al. Senary refractory high‑entropy alloy HfNbTaTiVZr[J]. Metallurgical and Materials Transactions A, 2016, 47(7): 3333-3345. [百度学术]
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122(1): 448-511. [百度学术]