摘要
炸药的热稳定性及力学性能已成为影响武器装备安全性的重要因素。为提高六硝基六氮杂异伍兹烷(CL‑20)和1,1‑二氨基‑2,2‑二硝基乙烯(FOX‑7)炸药的热稳定性及高聚物黏结炸药(PBX)的力学性能,基于多巴胺(DA)氧化自聚合反应包覆CL‑20和FOX‑7炸药晶体。采用扫描电子显微镜(SEM)、热分析仪(TG/DSC)、动态力学分析仪(DMA)、接触角测量仪、激光粒度仪、高效液相色谱(HPLC)、BAM撞击感度仪、红外吸收光谱仪、万能材料试验机等,对表面改性颗粒的形貌结构、粒径、包覆含量、感度、热分解性能及其制备的PBX力学性能进行测试。结果表明,多巴胺能在含能晶体表面形成很好的聚多巴胺(PDA)包覆层,通过调控聚合时间可以获得不同的表面包覆形态;同时,PDA还能改善炸药晶体的界面性质,有利于黏结剂的均匀分布;PDA包覆抑制CL‑20的转晶,提高CL‑20的活化能,提升热稳定性。力学性能表明,CL‑20基PBX的巴西强度和压缩强度都得到提高,最高分别提升了34.27%、10.21%;FOX‑7基PBX的巴西强度和压缩强度也都得到提高,最高分别提升了40.44%和11.92%,且包覆后,试样的延伸率均有所提升。另外,表面包覆PDA后,两种炸药的蠕变得到明显抑制,抗蠕变性能改善。
图文摘要
The CL‑20@PDA and FOX‑7@PDA particles were prepared by dopamine oxidative self‑polymerization reaction, and the influence of PDA coating time on the surface properties, thermal stability and mechanical properties of explosives were studied.
火炸药因其分子结构中含有爆炸性基团,受到一定的热、力等外界刺激后会迅速释放大量的能量,并对周围事物造成巨大的损伤和破
近年来,基于仿生领域发展而来的多巴胺(DA),因其可以在大多数表面形成强有力的分子粘附层,在表面改性领域得到了广泛的应
CL‑20是现已知综合性能优异的炸药之一,其密度、爆速、能量密度等都比HMX高,将逐渐取代一些传统含能化合物,在含能材料领域拥有广阔的发展前
基于此,本研究利用多巴胺在水溶液中氧化自聚合制备了CL‑20和FOX‑7表面改性的晶体颗粒(CL‑20@PDA和FOX‑7@PDA),通过FTIR、接触角等分析包覆前后表面性质变化;同时获得了包覆时间与PDA包覆量、炸药晶体粒度的相关联系;根据热分解峰温,由Kissinger公式计算相应的热分解动力学参数,研究不同包覆时间对两种炸药热稳定性的影响。选用乙烯‑醋酸乙烯共聚物(EVA)为黏结剂,将不同包覆时间的CL‑20@PDA和FOX‑7@PDA颗粒制备成造型粉,在一定压制条件下模压成不同尺寸药柱,用于力学性能测试,研究不同PDA包覆厚度对其PBX力学性能的增强效果。
原料CL‑20为ε晶型,平均粒径约为94.8 μm,辽宁庆阳化学工业有限公司;原料FOX‑7为α晶型,平均粒径约为150.1 μm,甘肃银光化学工业集团有限公司;盐酸多巴胺(Dopamine hydrochloride,纯度98.0%)和(羟甲基)氨基甲烷(Tris,纯度99.0%),西格玛奥德里奇(上海)贸易有限公司(Sigma‑Aldrich);丙酮和甲苯(AR,99.5%),成都市科隆化学品有限公司;乙烯‑醋酸乙烯共聚物(EVA),日本三井杜邦化学有限公司。
ΣIGMA‑HD‑0129型ZEISS场发射扫描电子显微镜(SEM),德国卡尔蔡司公司,测试电压5 kV;TG/DSC 2型热分析仪,梅特勒‑托利多国际贸易有限公司,测试试样的质量约2 mg,压强0.1 MPa,测试温度范围为50~400 ℃,升温速率(β)分别为5、10、15 K∙mi
采用水悬浮的方法制备CL‑20@PDA、FOX‑7@PDA颗粒,如

图1 制备流程示意图
Fig.1 Schematic diagram of preparation process
采用溶剂挥发法制备CL‑20、FOX‑7基PBX造型粉。首先将上述制备的CL‑20@PDA、FOX‑7@PDA颗粒机械搅拌分散于甲苯溶剂中;然后加入配制好的质量分数为6%的EVA黏结剂溶液,在恒温70 ℃水浴及真空处理下溶剂逐渐挥发完全,烘干得到预成型造型粉。包覆颗粒及其造型粉名称进行简化,如
根据测试对样品规格的要求,称取一定量的造型粉倒入钢模中,在压力110 kN的条件下热压成型。压缩试样的尺寸为Φ20 mm×20 mm,巴西试样的尺寸为Φ20 mm×6 mm,DMA试样的尺寸为 Φ30 mm×10 mm×2 mm。样品制备流程如
PDA包覆不同时长的CL‑20和FOX‑7晶体的表面形貌如

图2 PDA包覆不同时长的CL‑20和FOX‑7颗粒SEM图
Fig.2 SEM images of CL‑20 and FOX‑7 particles coated by PDA with different coating time
PDA包覆不同时长的CL‑20和FOX‑7晶体颗粒平均粒径结果如

图3 PDA包覆不同时长的CL‑20和FOX‑7 晶体粒径分布图
Fig.3 Distribution diagram of particle size for (a) CL‑20 and (b) FOX‑7 coated by PDA with different coating time
为了获得包覆在炸药表面的PDA含量,采用高效液相色谱法(HPLC)对包覆后颗粒进行测试,结果如

图4 PDA含量随包覆时间的变化曲线
Fig.4 PDA content change curve graph with coating time
为研究PDA包覆对两种含能晶体颗粒感度的影响,采用BAM撞击感度仪对包覆样品进行感度测试,用标定容积的取样匙对每一个试样进行取样,保证含量的一致性。测试结果如

a. CL‑20

b. FOX‑7
图5 CL‑20 和FOX‑7 包覆前后的BAM撞击感度柱状图
Fig.5 BAM collision histogram of CL‑20 and FOX‑7 before and after coating
为进一步研究表面包覆后炸药的表面性质,对CL‑20和FOX‑7及其不同PDA包覆时长的试样压片后,进行静态接触角的测量,采用差异较大的极性溶剂水和非极性溶剂二碘甲烷为测试液滴,结果如

图6 CL‑20 (a) 和FOX‑7 (b) 晶体包覆前后的表面接触角
Fig.6 The surface contact angle of CL‑20 (a) and FOX‑7 (b) before and after the PDA coating
二碘甲烷在原料CL‑20及FOX‑7表面的接触角分别为27.9°和32.3°,但经过3h包覆后,CL‑20@PDA接触角呈现出先增加后减小的趋势;而对于FOX‑7@PDA,PDA的包覆更有利于二碘甲烷在表面的铺展。这可能与两种晶体的表面形貌有关。
为了进一步获得表面性能数据,通过方程
(1) |
式中,γL为液体表面张力,mN·
原料CL‑20、FOX‑7及其包覆PDA样品的FTIR谱图如

a. CL‑20@PDA

b. FOX‑7@PDA
图7 PDA包覆的CL‑20和FOX‑7晶体FTIR图
Fig.7 FTIR spectra of CL‑20 and FOX‑7 particles coated by PDA

图8 PDA包覆的CL‑20和FOX‑7造型粉SEM图
Fig.8 SEM images of CL‑20 and FOX‑7 modeling powders coated with PDA
CL‑20@PDA、FOX‑7@PDA颗粒经过TG/DSC测试后,试样转晶峰温(T0)和分解峰温(Tp)见
(2) |
式中,Tp为试样的热分解峰温,K;A,指前因子,
Note: The data of FOX‑7 in the table is the peak temperature of the first stage of thermal decomposition.
根据
从
从
为了进一步了解PDA包覆对两种含能晶体热性能的影响,采用
(3) |
式中,T为升温速率β=10 K∙mi
在升温速率β=10 K∙mi

a. Brazil curves of CL‑20 based PBX

b. compression curves of CL‑20 based PBX

c. creep curves of CL‑20 based PBX
图9 CL‑20基PBX的巴西、压缩和蠕变曲线
Fig. 9 Brazil, compression and creep curves for CL‑20 based PBX
图

a. Brazil curves of CL‑20 based PBX

b. compression curves of CL‑20 based PBX

c. creep curves of CL‑20 based PBX
图10 FOX‑7基PBX的巴西、压缩和蠕变曲线
Fig.10 Brazil, compression and creep curves for FOX‑7 based PBX
CL‑20基PBX蠕变测试样条的断面SEM如

图11 CL‑20基PBX的断面SEM图
Fig.11 SEM image of CL‑20 based PBX section

图12 FOX‑7基PBX的断面SEM图
Fig.12 SEM images of FOX‑7 based PBX section
(1)通过PDA氧化自聚合实现了对CL‑20和FOX‑7炸药晶体的表面包覆,对包覆时间控制可以调控表面形貌。PDA包覆的含量和包覆晶体的粒径受炸药晶体表面形貌影响较大,且PDA包覆能够改善黏结剂EVA在炸药晶体表面的均匀分散和界面作用。
(2)接触角测试和表面张力计算表明,PDA包覆能够使炸药晶体的极性分量增加;热分解动力学计算表明,包覆后的CL‑20晶体活化能得到很大的提高,最高提升176 kJ∙mo
(3)力学性能可知,PDA包覆9 h的CL‑20基PBX试样的巴西和压缩强度最佳,相对于未包覆的CL‑20基PBX分别提高了34.27%和10.21%;对于FOX‑7基PBX试样,PDA包覆6 h的的巴西强度最高,相对于未包覆的试样提高了44.44%,PDA包覆9 h的试样压缩强度和延伸率也分别提高了11.92%和50.93%。同时,包覆PDA后,两种炸药的抗蠕变性能也得到了明显改善。
参考文献
Wang B, Yi H, Xu K, et at. Prediction of the self accelerating decomposition temperature of organic peroxides using QSPR models[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(1): 399-406. [百度学术]
Liang G, Ye Q, Zhang H, et al. Research progress in thermal risk evaluation of reactive materials[J]. Chemical Research, 2012, 23(1): 44-47. [百度学术]
李陈, 马凤国, 睢贺良,等. 含能材料热分解动力学求解及热安全性理论评估的进展[J]. 含能材料,2020, 28(8): 798-809. [百度学术]
LI Chen, MA Feng‑guo, SUI He‑liang, et al. Review on thermal decomposition kinetics and theoretical evaluation method for thermal safety of energetic materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2020, 28(8): 798-809. [百度学术]
Zeng C, Yang Z, Zhang J, Li Y, et al. Enhanced interfacial and mechanical properties of PBX composites via surface modification on energetic crystals[J]. Polymers, 2019, 11(8): 1308-1322. [百度学术]
Lee H, Ma Y, Zhou F, et al. Material‑independent surface chemistry beyond polydopamine coating[J]. Accounts of Chemical Research, 2019, 52(3): 704-713. [百度学术]
Ryu J, Messersmith P, Lee H, et al. Polydopamine surface chemistry: A decade of discovery[J]. ACS Applied Materials & interfacials, 2018, 10(9): 7523-7540. [百度学术]
Kwon I, Tang G, Chiang P, et al. Texture‑Dependent adhesion in polydopamine nanomembranes[J]. ACS Applied Materials & Interfaces, 2018, 10: 7681-7687. [百度学术]
Gong F, Zhang J, Ding L, et al. Mussel‑inspired coating of energetic crystals: A compact core‑shell structure with highly enhanced thermal stability[J]. Chemical Engineering Journal, 2017, 309: 140-150. [百度学术]
He G, Yang Z, Pan L, et al. Bioinspired interfacial reinforcement of polymer‑based energetic composites with a high loading of solid explosive crystals[J]. Journal of Materials Chemistry A, 2017, 5(26): 13499-13510. [百度学术]
Huang B, Xue Z, Chen S, et al. Stabilization of ε‑CL‑20 crystals by a minor interfacial doping of polydopamine‑coated graphene oxide[J]. Applied Surface Science, 2020, 510: 145454. [百度学术]
Sivabalan R, Gore G, Nair U, Study on ultrasound assisted precipitation of HNIW and its effect on morphology and sensitivity[J]. Journal of Hazardous Materials, 2007, 139: 199-207. [百度学术]
Yang Z, Li J, Huang B, et al. Preparation and properties study of core‑shell CL‑20/TATB composites[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(1): 51-58. [百度学术]
Yang Z, Ding L, Wu P, et al. Fabrication of RDX, HMX and CL‑20 based microcapsules via in situ polymerization of melamine formaldehyde resins with reduced sensitivity[J]. Chemical Engineering Journal, 2015, 268: 60-66. [百度学术]
Yan C, Qi X, Wan K, et al. Revisiting the reactive chemistry of FOX‑7: cyclization of FOX‑7 affords the fused‑ring polynitro compounds[J]. Chemical Communication, 2019, 55(24): 3497-3500. [百度学术]
Wang J, Jin S, Chen S, et al. Molecular dynamic simulations for FOX‑7 and FOX‑7 based PBXs[J]. Journal of Molecular Modeling, 2018, 24 (7): 145-153. [百度学术]
Zong H, Huang Y, Shu Y, et al. Theoretical study on the initial thermal decomposition and catalysis effects of NO2 on FOX‑7[J]. Chinese Journal of Energetic Materials, 2006, 14 (6): 425-428. [百度学术]
付秋菠. 1,1‑二氨基‑2,2‑二硝基乙烯的合成及其性能研究[D]. 成都: 四川大学, 2007. [百度学术]
FU Qiu‑bo. Study on the synthesis and properties of 1,1‑diamino‑2,2‑dinitroethylene[D]. Chengdu: Sichuan University, 2007. [百度学术]
刘子如. 含能材料热分析[M]. 北京: 国防工业出版社, 2008: 124-129. [百度学术]
LIU Zi‑ru. Thermal analysis of energetic materialste[M]. Beijing: National Defense Industry Press, 2008: 124-129. [百度学术]
Kissinger H. Reaction kinetics in different thermal analysis[J]. Analysis Chemistry, 1957, 29(11):1702-1706. [百度学术]
Yang X, Gong F, Zhang K, et al. Enhanced creep resistance and mechanical properties for CL‑20 and FOX‑7 based PBXs by crystal surface modification[J]. Propellants, Explosives, Pyrotechnics,2021, 46(6): 572-578. [百度学术]
李小东, 孙红燕, 宋昌贵,等. 黏结剂对CL‑20/FOX‑7基PBX性能的影响[J]. 火炸药学报,2020, 43(1): 51-56. [百度学术]
LI Xiao‑dong, SUN Hong‑yan, SONG Chang‑gui, et al. Effect of binder on the broperties of CL‑20 /FOX‑7‑based bolymer bonded bxplosive [J]. Chinese Journal of Explosives & Propellants, 2020, 43(1): 51-56. [百度学术]
曾诚成, 巩飞艳, 刘世俊. Al@GAP复合粒子对LLM‑105热分解性能的影响[J]. 火炸药学报, 2017, 40(4): 27-32. [百度学术]
ZENG Cheng‑cheng, GONG Fei‑yan, LIU Shi‑jun. Effect of Al@GAP composite carticles on chermal cecomposition cerformance of LLM‑105[J]. Chinese Journal of Explosives & Propellants, 2017, 40(4): 27-32. [百度学术]
Lin C, Wen Y, Huang X, et al. Tuning the mechanical performance efficiently of various LLM‑105 based PBXs via bioinspired interfacial reinforcement of polydopamine modification[J]. Composites Part B, 2020, 186:107842. [百度学术]