摘要
硝酸羟胺(HAN)基推进剂具有能量高、安全钝感和燃烧产物绿色无毒等优点,在推进系统连续启动和推力调节等操作方面具有一定优势。综述了HAN基液体推进剂、HAN基凝胶推进剂和HAN基固体推进剂的配方组成、分解特性、点火燃烧性能及相关的应用技术状况。提出了今后的研究重点:制备HAN基液体推进剂用高性能催化剂床,同时发展电点火为可靠点火方式;改善HAN基凝胶推进剂点火性能,加快工程化应用;探究HAN基固体推进剂燃熄可控机理,突破大规模推进系统应用瓶颈。
图文摘要
Hydroxylammonium nitrate (HAN)‑based propellant has the advantages of high energy, insensitive and non‑toxic combustion products. The formula composition, decomposition characteristics, ignition and combustion performance and application technology of HAN‑based propellant were introduced.
近年来,伴随着各国对航天和军事技术领域发展的不断深入,高能钝感、低特征信号及绿色无害型推进剂已成为各国的研究热
作为可替代肼类液体推进剂的绿色高能燃料,HAN因为能量大、密度高以及毒性小等优势引起研究人员的广泛关注。当前HAN基液体推进剂的研究已较为成熟,其在点火、稳定性以及比冲等各方面的性能已经能够达到应用水平。研究人员在HAN基液体推进剂的研究基础上改变推进剂的状态,逐步发展出HAN基凝胶推进剂和HAN基固体推进剂。HAN基凝胶推进剂具有能量较高和产气量大的特点,并且通过改变水的含量可调节推进剂的能量和燃速。2005年至今,研究人员已设计出多种HAN基固体推进剂配方,通过对配比的改进和功能组分的引入使推进剂的氧/燃比达到最优,推进剂对电压的响应能力和燃烧性能因此获得提高,此外其电刺激可控制燃烧的特性在可控推进技术领域展现出应用前
目前,HAN基液体推进剂在发生热催化分解时易造成催化剂床失活,HAN基凝胶推进剂点火存在困难,而且关于HAN基固体推进剂燃烧可控机理的研究甚少,上述这些问题严重限制了HAN基推进剂的应用。为了进一步加强对HAN基推进剂的研究,拓展其应用范围,对近年来HAN基推进剂的相关研究进展进行了总结,梳理和介绍了典型HAN基推进剂的配方组成、分解特性、点火燃烧性能以及其应用技术方面的研究结果,对HAN基推进剂的发展方向进行了展望,以期为今后相关的研究提供参考。
HAN由具有还原性的NH3O
HAN基液体推进剂的研究开始于20世纪70年代,其通常由HAN、燃料和水组成,常用的燃料有甲醇(MeOH)、硝酸三乙醇胺(TEAN)、甘氨酸(GLY)以及硝酸羟乙基肼(HEHN)
但是HAN基液体推进剂的稳定性差,对火源敏感易燃,造成HAN基液体推进剂运输和储存的困难,研究人员利用高分子胶凝剂将HAN水溶液凝胶化形成HAN基凝胶推进剂,保证了推进剂具有一定的结构和功能,可稳定存在。考虑到与HAN水溶液的相容性,HAN基凝胶推进剂中使用的胶凝剂为含有大量─OH基团的高分子物质,如水溶性聚乙烯醇(PVA)或羧甲基纤维素钠盐(CMCNa)
考虑到HAN基凝胶推进剂在点火方式上的困难,同时根据HAN在电作用刺激下能产生反应,国外研究人员在HAN基凝胶推进剂的基础上添加交联剂,固化后得到HAN基固体推进
作为HAN基推进剂配方中的共有成分,HAN水溶液的分解模式决定了HAN基推进剂的分解特性和点火燃烧性能。根据分解方式的不同,HAN水溶液的分解模式主要分为热分

a. thermal decomposition

b. electrochemical decomposition
图1 HAN水溶液分解机理
Fig.1 The decomposition mechanism of HAN aqueous solution
在HAN基液体推进剂的热分解反应中,引入催化剂降低了推进剂的起始分解温度,缩短了分解时间,有利于生成高温气体从而快速产生推力,因此对催化剂性能改进和探究催化剂对推进剂分解特性的影响是当前HAN基液体推进剂热催化分解研究领域的热点。目前,研究人员开展了金属离子、贵金属材料以及金属‑氧化物等一系列催化剂对HAN基液体推进剂热催化分解特性的研究(
重金属离子会导致HAN在高温条件下易发生热分解和爆炸,因此研究人员开展了金属离子对HAN基液体推进剂热分解特性的研究。Kumasaki
研究人员也将贵金属材料作为HAN基液体推进剂的催化剂开展了相关研究。Esparza
上述金属离子或贵金属材料作为催化剂虽然降低了HAN基液体推进剂的分解温度,但与空间飞行器实际应用条件仍具有一定差距,无法满足低温下分解的要求。近年来研究人员利用溶胶凝胶法、共沉淀法等制备了金属‑氧化物型催化

a. Pt‑Si‑Al2O3 (TEM

b. Ir‑Al2O3‑La2O3 (TEM

c. Ir‑Al2O3 (TEM

d. Ir‑CeCo (SEM
图2 典型HAN基液体推进剂用催化剂的TEM/SEM图
Fig.2 TEM/SEM images of typical catalysts for HAN‑based liquid propellants
除了研究HAN基液体推进剂的热催化分解特性外,研究人员还对其电化学分解特性进行了相关研究。研究人员从电化学分解过程以及燃料组分对推进剂分解过程影响等研究出发,逐步揭示了HAN基液体推进剂的电化学分解机理。Khare
国内一些学者报道了HAN基凝胶推进剂的热稳定性。陈永康
HAN基固体推进剂的性能在2013年后才出现相关报道,目前关于此类推进剂的分解特性研究较少。针对HAN基固体推进剂在发生燃烧前的分解阶段受热效应和电效应双重作用的影响,研究人员分别研究了热效应或电效应作用下推进剂的分解特性。在热效应作用方面,本课题
热催化点火是当前HAN基液体推进剂的主要点火方式,具有可靠稳定的特点。在推进剂点火前,催化剂床加热到预定温度,在催化剂床的作用下,推进剂中HAN首先发生热催化分解,随后产生的氧化组分与燃料在热量作用下点火燃烧,过程如

图3 HAN基液体推进剂热催化点火燃烧示意
Fig.3 The thermal catalytic ignition schematic diagram of HAN‑based liquid propellan
由于HAN基液体推进剂在热催化点火后,推进剂燃烧产生的高温会破坏催化剂床,对后续推进剂重复点火造成困难,因此在HAN水溶液电化学分解的基础上研究人员研究了基于电点火方式的HAN基液体推进剂的点火和燃烧性能(见
目前研究人员仍主要以点火药作为热源对HAN基凝胶推进剂进行热点火,并进行了点火和燃烧性能的相关研究。曲艳斌
HAN基固体推进剂在丁烷焊枪产生的火焰(1.9 W·m

图4 HAN基固体推进剂电点火燃烧示意
Fig.4 The electric ignition schematic diagram of HAN‑based solid propellan
HAN基液体推进剂经过近50年的发展,在性能和应用上已逐步成熟。根据HAN基液体推进剂的种类对推进系统进行分
HAN基凝胶推进剂点火困难,限制其广泛应用,所以目前相应的应用技术报道较少。美国曾报道将其应用于汽车安全气囊的气体发生
美国对HAN基固体推进剂研究起步较早,在应用方面已经取得较大的进展,根据应用系统的尺寸规模可以分为微推进器、点火器和固体火箭发动机(

图5 HAN基固体推进系统研究进展
Fig.5 Research progress of HAN‑based solid propulsion system
HAN基绿色推进剂具有能量高、安全钝感和燃烧产物绿色无毒等优点,同时满足推进系统连续启动和推力调节等操作,在航天和国防等领域展现出广阔的应用前景。
随着HAN基推进剂的种类不断发展扩大,当前已具备较为丰富的研究积累。针对当前研究和应用中HAN基推进剂所存在的不足,对其未来的研究重点提出以下几点建议:
(1)经历近50年发展,HAN基液体推进剂的性能和应用不断完善,但是热催化点火方式中,催化剂床存在高温失活和催化效率较低等缺陷,因此高性能催化剂床的制备和性能测试仍需进一步研究。同时低电压、耗能少的电点火方式将是HAN基液体推进剂可靠点火和应用的发展方向。
(2)当前HAN基凝胶推进剂的研究和应用报道较少,其中点火困难是制约其实际应用的主要瓶颈,应着重于推进剂点火性能的改善进行探索,解决推进剂工程化应用问题。
(3)HAN基固体推进剂至今已实现微推进领域的小型化应用,但是因为推进剂在燃烧过程中受热效应和电效应耦合作用,控制燃烧的主体反应不明,使得大尺寸推进系统的燃烧过程不受电压控制,难以熄火,因此HAN基固体推进剂的燃熄可控机理研究将是开展未来工作的突破点。
参考文献
Badgujar D M, Talawar M B, Asthana S N, et al. Advances in science and technology of modern energetic materials: an overview[J]. Journal of Hazardous Materials, 2008, 151(2-3): 289-305. [百度学术]
赵凤起, 胥会祥. 绿色固体推进剂的研究现状及展望[J]. 火炸药学报, 2011, 34(3): 1-5. [百度学术]
ZHAO Feng‑qi, XUHui‑xiang. Research situation and prospect of green solid propellant[J]. Chinese Journal of Explosives and Propellants, 2011, 34(3): 1-5. [百度学术]
何金选, 王业腾, 曹一林, 等. 固体推进剂高能氧化剂的发展方向[J]. 含能材料, 2018, 26(4): 286-289. [百度学术]
HE Jin‑xuan, WANG Ye‑teng, CAO Yi‑lin, et al. Development direction of high energetic oxidizers for solid composite propellants[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(4): 286-289. [百度学术]
鲍立荣, 陈永义, 陈苏杭, 等. 可控固体推进技术研究进展[J]. 推进技术, 2020,41(5): 961-973. [百度学术]
BAO Li‑ong, CHEN Yong‑yi, CHEN Su‑hang, et al. Research progress on controllable solid propulsion[J]. Journal of Propulsion Technology, 2020, 41(5): 961-973. [百度学术]
Lemmer K. Propulsion for cubesats[J]. Acta Astronautica, 2017, 134: 231-243. [百度学术]
Tummala A R, Dutta A. An overview of cube‑satellite propulsion technologies and trends[J]. Aerospace, 2017, 4(4): 58. [百度学术]
Rovey J, Lyne C T, Mundahl A J, et al. Review of chemical‑electric multimode space propulsion[C]//AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, 2019: 4169. [百度学术]
Wucherer E, Christofferson S, Reed B. Assessment of high performance HAN‑monopropellants[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Reston, VA, 2000: 3872. [百度学术]
Tanaka N, Matsuo T, Furukawa K, et al. The “greening” of spacecraft reaction control systems[J]. Mitsubishi Heavy Industries Technical Review, 2011, 48(4): 44-50. [百度学术]
贺芳, 方涛, 李亚裕, 等. 新型绿色液体推进剂研究进展[J]. 火炸药学报, 2006, 29 (4): 56-59. [百度学术]
HE Fang, FANG Tao, LI Ya‑yu, et al. Development of green liquid propellants[J]. Chinese Journal of Explosives and Propellants, 2006, 29(4): 56-59. [百度学术]
曲艳斌, 肖忠良. 硝酸羟胺(HAN)水凝胶性能研究[J]. 含能材料, 2014, 12(3): 168-170. [百度学术]
QU Yan‑bin, XIAO Zhong‑liang. Study on property of HAN hydrogel[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2004, 12(3): 168-170. [百度学术]
Hori K, Katsumi T, Tomiyama S, et al. Gas generating composition: US, 8114228[P]. 2012. [百度学术]
Sawka W N, Mcpherson M. Electrical solid propellants: a safe, micro to macro propulsion technology[C]//49th AIAA/ASME/SAE/ASEE Joint PropulsionConference, San Jose, CA, 2013:4168. [百度学术]
Grix C E, Sawka W N. Family of modifiable high performance electrically controlled propellants and explosives: US, 993084[P]. 2014. [百度学术]
Mcpherson M D. Solid electrically controlled propellants: US, 9598324[P]. 2014. [百度学术]
Katzakian A, Grix C E. Method for controlling a high performance electrically controlled solution solid propellant: US, 8617327[P]. 2013. [百度学术]
Oxley J C, Brower K R. Thermal decomposition of hydroxylamine nitrate[C]//International Society for Optics and Photonics, Los Angeles, CA, 1988, 872: 63-71. [百度学术]
Lee H S, Litzinger T A. Chemical kinetic study of HAN decomposition[J]. Combustion and Flame, 2003, 135(1): 151-169. [百度学术]
Yetter R A, Yang V, Wang Z, et al. Development of meso and micro scale liquid propellant thrusters[C]//41st Aerospace Sciences Meeting And Exhibit, Reno, Nevada, 2003: 676. [百度学术]
Meng H, Khare P, Risha G A. Decomposition and ignition of HAN‑based monopropellants by electrolysis[C]//47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum And Aerospace Exposition, Orlando, Florida, 2019: 451. [百度学术]
Kumasaki M. Calorimetric study on the decomposition of hydroxylamine in the presence of transition metals[J]. Journal of Hazardous materials, 2004, 115(1-3): 57-62. [百度学术]
刘建国, 安振涛, 张倩, 等. F
LIU Jian‑guo, AN Zhen‑tao, ZHANG Qian, et al. Effects of doping of F
程红波, 王拯, 陶博文, 等. 硝酸羟胺热分解特性及其稳定化技术研究[J]. 化学推进剂与高分子材料, 2018, 16(4): 80-85. [百度学术]
Cheng Hong‑bo, Wang Zheng, Tao Bo‑wen, et al. Study on thermal decomposition characteristics of hydroxylammonium nitrate and its stabilization technology[J]. Chemical Propellants and Polymeric Materials, 2018, 16(4): 80-85. [百度学术]
Esparza A A, Ferguson R E, Choudhuri A, et al. Thermoanalytical studies on the thermal and catalytic decomposition of aqueous hydroxylammonium nitrate solution[J]. Combustion and Flame, 2018, 193: 417-423. [百度学术]
Amrousse R, Brahmi R, Batonneau Y, et al. Preparation of monolithic catalysts for space propulsion applications[J]. Studies in Surface Science and Catalysis, 2010, 175: 755-758. [百度学术]
Courthéoux L, Eloirdi R, Rossignol S, et al. Catalytic decomposition of HAN‑water binary mixtures[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, Indiana, 2002. [百度学术]
Courthéoux L, Gautron E, Rossignol S, et al. Transformation of platinum supported on silicon‑doped alumina during the catalytic decomposition of energetic ionic liquid[J]. Journal of Catalysis, 2005, 232(1): 10-18. [百度学术]
Amariei D, Courthéoux L, Rossignol S, et al. Catalytic and thermal decomposition of ionic liquid monopropellants using a dynamic reactor: Comparison of powder and sphere‑shaped catalysts[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(2): 165-174. [百度学术]
Courthéoux L, Dan A, Rossignol S, et al. Thermal and catalytic decomposition of HNF and HAN liquid ionic as propellants[J]. Applied Catalysis B Environmental, 2006, 62(3): 217-225. [百度学术]
Amrousse R, KatsumI T, Niboshi Y, at al. Performance and deactivation of Ir‑based catalyst during hydroxylammonium nitrate catalytic decomposition[J]. Applied Catalysis A: General, 2013, 452: 64-68. [百度学术]
Amrousse R, Hori K, Fetimi W, et al. HAN and ADN as liquid ionic monopropellants: thermal and catalytic decomposition processes[J]. Applied Catalysis B: Environmental, 2012, 127: 121-128. [百度学术]
Amrousse R, Katsumi T, Sulaiman T, et al. Hydroxylammonium nitrate as green propellant: decomposition and stability[J]. International Journal of Energetic Materials and Chemical Propulsion, 2012, 11(3): 241-257. [百度学术]
Amrousse R, Katsumi T, Itouyama N, et al. New HAN‑based mixtures for reaction control system and low toxic spacecraft propulsion subsystem: thermal decomposition and possible thruster applications[J]. Combustion and Flame, 2015, 162(6): 2686-2692. [百度学术]
Amrousse R, Katsumi T, Azuma N, et al. Hydroxylammonium nitrate (HAN)‑based green propellant as alternative energy resource for potential hydrazine substitution: From lab scale to pilot plant scale‑up[J]. Combustion and Flame, 2017, 176:334-348. [百度学术]
Amrousse R, Katsumi T, Mishima Y, et al. Thermal analysis of hydroxylammonium nitrate based monopropellant: effect of heating rate and reaction temperature[J]. Science and Technology of Energetic Materials, 2018, 79(3-4): 89-92. [百度学术]
Hwang C H, Baek S W, Cho S J. Experimental investigation of decomposition and evaporation characteristics of HAN‑based monopropellants[J]. Combustion and Flame, 2014, 161(4): 1109-1116. [百度学术]
Ruchika A, Charlie O. Cerium oxide based active catalyst for hydroxylammonium nitrate (HAN) fueled monopropellant thrusters[J]. Rsc Advances, 2018, 8(40): 22293-22302. [百度学术]
Agnihotri R, Oommen C. Evaluation of hydroxylammonium nitrate (HAN) decomposition using bifunctional catalyst for thruster application[J]. Molecular Catalysis, 2020,486: 110851. [百度学术]
Amrousse R, Katsumi T, Sulaiman T, et al. Hydroxylammonium nitrate as green propellant decomposition and stability[J]. International Journal of Energetic Materials and Chemical Propulsion, 2012, 11(3): 241-257. [百度学术]
Khare P, Yang V, Meng H, et al. Thermal and electrolytic decomposition and ignition of HAN‑water solutions[J]. Combustion Science and Technology, 2015, 187(7): 1065-1078. [百度学术]
Chai W S, Cheah K H, Meng H, et al. Experimental and analytical study on electrolytic decomposition of HAN‑water solution using graphite electrodes[J]. Journal of Molecular Liquids, 2019, 293: 111496. [百度学术]
Chai W S,Chin J,Cheah K H,et al. Calorimetric study on electrolytic decomposition of hydroxylammonium nitrate (HAN) ternary mixtures[J]. Acta Astronautica, 2019, 162: 66-71. [百度学术]
Chai W S. Characterization and analysis on electrolytic decomposition of hydroxylammonium nitrate (HAN) ternary mixtures in microreactors[D]. Nottingham: University of Nottingham, 2017. [百度学术]
Chen Y K, Chen Y H, An Z T, et al. Thermal decomposition reaction kinetics of a HAN‑based gel propellant[J]. Chinese Journal of Explosives and Propellants, 2016, 39(4): 77-81. [百度学术]
胡松启, 康博, 张研, 等. 二茂铁类衍生物对HAN/PVA 热分解影响研究[J]. 火炸药学报, 2019, 43(2): 149-160. [百度学术]
HU Song‑qi, KANG Bo, ZHANG Yan, et al. Effect of ferrocene derivative on the thermal decomposition of HAN/PVA[J]. Chinese Journal of Explosives and Propellants, 2019, 43(2): 149-160. [百度学术]
鲍立荣, 张伟, 陈永义, 等.HAN基电控固体推进剂的热分解和电导率特性[J].含能材料,2019,27(9): 743-748. [百度学术]
BAO Li‑rong,Z HANG Wei, CHEN Yong‑yi, et al. Thermal decomposition and conductivity characteristics of han‑based electrically controlled solid propellants [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2019,27(9): 743-748. [百度学术]
HE Zhi‑cheng, XIA Zhi‑xun, HU Jian‑xin, et al. Thermodynamic properties of polyvinyl alcohol binder of electrically controlled solid propellant[J]. Journal of Polymer Research, 2019, 26(9): 219. [百度学术]
HE Zhi‑cheng, XIA Zhi‑xun, HU Jian‑xin, et al. Thermal decomposition and kinetics of electrically controlled solid propellant through thermogravimetric analysis[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(3): 2187-2195. [百度学术]
Baird J K, Huang S, Frederick R A. Space charge limited conduction and internal electric field in the polyvinyl alcohol + hydroxyl ammonium nitrate solid propellant[C]//2018 Joint Propulsion Conference, Cincinnati, Ohio, 2018. [百度学术]
Baird J K, Huang S, Frederick R A. Space charge limited conduction in polyvinyl + hydroxyl ammonium nitrate solid propellant[J]. Journal of Propulsion and Power, 2020, 36(3): 479-484. [百度学术]
Oommen C, Rajaraman S, Chandru R A, et al. Catalytic decomposition of hydroxylammonium nitrate monopropellant[C]//2011 International Conference on Chemistry and Chemical Process, Singapore, 2011. [百度学术]
Ren X G, Li M H, Wang A Q, et al. Catalytic decomposition of hydroxyl ammonium nitrate at room temperature[J]. Chinese Journal of Catalysis, 2007, 28(1): 1-2. [百度学术]
任晓光. 硝酸羟胺基推进剂的催化分解研究[D]. 大连: 大连轻工业学院, 2006. [百度学术]
REN Xiao‑guang. Investigation of catalytic decomposition of HAN‑based monopropellants[D]. Dalian: Dalian Polytechnic University, 2006. [百度学术]
Chambreau S D, Popolan‑vaida D M, VAGHJIAni G L, wt al. Catalytic decomposition of hydroxylammonium nitrate ionic liquid: enhancement of NO formation[J]. The Journal of Physical Chemistry Letters, 2017, 8(10): 2126-2130. [百度学术]
Berg S, Rovey J. Ignition evaluation of monopropellant blends of HAN and Imidazole‑based ionic liquid fuels[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition,Nashville,Tennessee,2012:0974. [百度学术]
Amrousse R, Katsumi T, Bachar A, at al. Chemical engineering study for hydroxylammonium nitrate monopropellant decomposition over monolith and grain metal‑based catalysts[J]. Reaction Kinetics Mechanisms and Catalysis, 2014, 111(1): 71-88. [百度学术]
Wahida T, Hafizah N, Azmin F, at al. Electrolytic decomposition of hydroxylammonium nitrate (HAN) Mixtures in micropropulsion[C]//8th MUCET, Melaka, Malaysia, 2014. [百度学术]
Kai S K, Chin J, Chik T F W K. Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN) solutions[J]. Propulsion and Power Research, 2013, 2(3): 194-200. [百度学术]
Chai W S, Koh K S, Cheah k H, et al. Performance comparison between single and multi‑electrode system for electrolytic decomposition of HAN[C]//30th International Symposium on Space Technology and Science (ISTS), Kobe, Japan, 2015. [百度学术]
Chai W S, Cheah K H, Koh K S, et al. Parametric studies of electrolytic decomposition of hydroxylammonium nitrate (HAN) energetic ionic liquid in microreactor using image processing technique[J]. Chemical Engineering Journal, 2016, 296: 19-27. [百度学术]
余永刚, 李明, 周彦煌, 等. 液体推进剂液滴电点火特性的实验研究[J]. 含能材料, 2008, 16(5): 265-268. [百度学术]
YU Yong‑gang, LI Ming, ZHOU Yan‑huang, et al. Experimental study on electrical ignition properties of liquid propellant droplet[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(5): 625-628. [百度学术]
Yu Y G, Li M, Zhou Y H, et al. Study on electrical ignition and micro‑explosion properties of HAN‑based monopropellant droplet[J]. Frontiers of Energy and Power Engineering in China, 2010, 4(3): 430-435. [百度学术]
刘焜, 余永刚, 倪彬. HAN基液体推进剂单滴无弧点火过程的数值模拟[J]. 含能材料, 2014, 22(2): 155-160. [百度学术]
LIU Kun, YU Yong‑gang, NI Bin. Numerical simulation for arcless electrical ignition process of single droplet of han‑based liquid propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(2): 155-160. [百度学术]
Risha G A, Yette R A, Yang V. Electrolytic‑induced decomposition and ignition of HAN‑based liquid monopropellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2007, 6(5): 575-588. [百度学术]
曲艳斌. 一种完全、洁净气体发生剂配方基础与作用原理研究[D]. 太原:华北工学院, 2004. [百度学术]
QU Yan‑bin. Study on prescription and function mechanism of a kind of clean gas generating agent[D]. Taiyuan: North China Institute of Technology, 2014. [百度学术]
马忠亮, 吴昊, 何利明, 等. HAN基凝胶发射药的性能[J]. 四川兵工学报, 2008, 29(3): 3-5. [百度学术]
MA Zhong‑liang, WU Hao, HE Li‑ming, et al. Properties of HAN‑based gel propellant[J]. Journal of Sichuan Ordnance Engineering, 2008, 29(3): 3-5. [百度学术]
Hiatt A T, Frederick R A. Laboratory experimentation and basic research investigating electric solid propellant electrolytic characteristics[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT , 2016: 4935. [百度学术]
Wayne S N, Katzakian A, Grix C. Solid state digital propulsion cluster thrusters for small satellites using high performance electrically controlled extinguishable solid propellants[C]//19th Annual AIAA/USU Conference On Small Satellites, Salt Lake City, UT, 2005. [百度学术]
王新强, 邓康清, 李洪旭, 等. 电控固体推进剂点火技术研究[J]. 固体火箭技术, 2017, 40(3): 313-318. [百度学术]
WANG Xin‑qiang, DENG Kang‑ qing, LI Hong‑xu, et al. Experimental investigation of electrically stimulated ignition characteristics of electric solid propellant[J]. Journal of Solid Rocket Technology, 2017,40(3): 313-318. [百度学术]
Baird J K, Lang J R, Hiatt A T, et al. Electrolytic combustion in the polyvinyl alcohol+ hydroxyl ammonium nitrate solid propellant[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, 2016. [百度学术]
Baird J K, Lang J R, Hiatt A T, et al. Electrolytic combustion in the polyvinyl alcohol plus hydroxylammonium nitrate solid propellant[J]. Journal of Propulsion and Power, 2017, 33(6): 1-2. [百度学术]
Glascock M S, Rovey J L, Williams S, et al. Plasma plume characterization of electric solid propellant micro pulsed plasma thrusters[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL, 2015. [百度学术]
Glascock M S, Rovey J L, WIlliams S, et al. Plume characterization of electric solid propellant pulsed microthrusters[J]. Journal of Propulsion and Power, 2017, 33(4): 870-880. [百度学术]
Glascock M S, Rovey J L, Williams S, et al. Observation of late‑time ablation in electric solid propellant pulsed microthrusters[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, 2016. [百度学术]
Glascock M S, Rovey J L, Polzin K A. Specific impulse of electric solid propellant in an electrothermal ablation‑fed pulsed plasma thruster[C]//36th International Electric Propulsion Conference, Austria, 2019. [百度学术]
Bao L, Zhang W, Zhang X, et al. Impact of MWCNT/Al on the combustion behavior of hydroxyl ammonium nitrate (HAN)‑based electrically controlled solid propellant [J]. Combustion and Flame, 2020, 218: 218-228. [百度学术]
Hisatsune K, Izumi J, Tsutaya H, et al. Development of HAN‑based liquid propellant thruster[C]//2nd International Conference on Green Propellants for Space Propulsion, Caglisri, Sardinia, 2004. [百度学术]
Hawkins T W, Brand A J, Mckay M B, et al. Reduced toxicity, high performance monopropellant at the us air force research laboratory[R]. AFRL‑RZ‑ED‑TP‑2010‑219, 2010. [百度学术]
Deans M C, Oleson S R, Fittje J, et al. An evaluation of the impacts of AF‑M315E propulsion systems for varied mission applications[R]. GRC‑E‑DAA‑TN25211: 2015. [百度学术]
Blomquist H R. Vehicle occupant protection device and solid solution gas generating composition therefor: US, 6231701[P]. 2001. [百度学术]
曲艳斌, 肖忠良. 汽车安全气囊用气体发生剂[J]. 中北大学学报(自然科学版), 2003, 24(6): 428-431. [百度学术]
QU Yan‑bin, XIAO Zhong‑liang. Gas generating composition for automobile airbag[J]. Journal of North China Institute of Technology, 2003, 24(6): 428-431. [百度学术]
Nicholas A, FinnE T, Sawka W N, et al. Spinsat mission overview[C]//27th Annual AIAA/USU Conference on Small Satellites, Logan, UT, 2013. [百度学术]
Chung K, Rozumov E, Kaminsky D, et al. Development of electrically controlled energetic materials for 120mm tank igniters[C]//Insensitive Munitions and Energetic Materials Technology Symposium, Las Vegas, NV, 2012. [百度学术]
Chung K, Rozumov E, Kaminsky D, et al. Development of electrically controlled energetic materials (ECEM)[J]. ECS Transactions, 2013, 50(40): 59-66. [百度学术]