摘要
联吡唑结构具有氮含量高、结构致密、钝感且热稳定性好的性质,是构建高能量密度材料理想的含能骨架。基于单吡唑环C—C、C—N以及N—N不同键合方式,从联吡唑环构建、爆轰基团引入策略与衍生物性能评价等方面,对近几年在含能材料领域已报道的5种联吡唑结构单元2H,2′H‑3,3′‑联吡唑(Ⅰ)、1H,1′H‑4,4′‑联吡唑(Ⅱ)、1′H‑1,4′‑联吡唑(Ⅲ)、2'H‑1,3'‑联吡唑(Ⅳ),1'H,2H‑3,4'‑联吡唑(Ⅴ)相关含能化合物的最新进展进行了简要综述。从合成方法及物化爆轰性能等方面梳理了联吡唑含能化合物合成研究发展方向与趋势。指出以下几点是今后联吡唑含能化合物发展的重点方向:筛选已报道的性能优异的联吡唑含能化合物进行合成优化及应用研究;通过引入不同的含能基团和富氮阳离子,设计合成更多综合性能优异的联吡唑含能化合物;完善联吡唑含能化合物研究体系,加强几种报道较少的联吡唑单元(如2′H‑1,3′‑联吡唑(Ⅳ)、1′H,2H‑3,4′‑联吡唑(Ⅴ)和1,1'‑联吡唑(Ⅵ))含能化合物的制备与性能研究。
图文摘要
Advances in the construction of bipyrazole energetic compounds were reviewed. The reported bipyrazole energetic compounds were divided by different bonding modes.
关键词
吡唑结构单元含有较多的N—N,C—N,C N键,这些化学键对标准生成焓的贡献大都为正值,非常有利于设计、合成新型含能材料,并提高其爆热和单元比

图1 不同的联吡唑母体环结
Fig.1 Different bipyrazole structures
为了推动联吡唑骨架结构在含能材料中的应用,以不同结构联吡唑骨架单元化合物分类,重点归纳了在含能材料领域已开展研究的5种联吡唑骨架含能化合物的母体构建与含能基团引入方法,总结了联吡唑骨架含能化合物的研究进展,并对相同结构联吡唑骨架含能化合物的性能进行了梳理对比,重点介绍了近年来部分性能突出的新型联吡唑含能化合物的研发,为联吡唑骨架含能化合物的设计制备提供借鉴。
1965年,F.Effenberger

Scheme 1 Synthesis of 2H,2′H‑3,3′‑ bipyrazole with oxalyl chloride as as primary materia
另外还有两种不同原料合成2H,2′H‑3,3′‑联吡唑的方法,2009年,K. V. Yakovlev

Scheme 2 Synthesis of 2H,2′H‑3,3′‑ bipyrazole with 4,4′,5,5′‑tetrahydro ‑3H,3′H‑3,3′‑ bipyrazole as primary materia
2001年,T. M. Shironina

Scheme 3 Synthesis of compound
2018年,Dheeraj Kumar
1)Density, measured with a gas pycnometer (25 ℃). 2)Calculated detonation velocity. 3)Calculated detonation pressure. 4)Heat of formation. 5)Decomposition temperature (onset). 6)Impact sensitivity. 7)Friction sensitivity.

Scheme 4 Synthesis of polynitro 2H,2′H‑3,3′‑bipyrazole energetic compound
从
8026 m·
2018年,Tatyana K. Shkineva

Scheme 5 Synthesis of compound 9 via VN
2018年,Yongxing Tang

Scheme 6 Synthesis of compound 9 with compound 7 as primary materia

Scheme 7 Synthesis of compound 9 and 13 with compound 5 as primary materia

Scheme 8 Synthesis of compound 9 with 4,4′‑dinitro‑5,5′‑dicarboxybipyrazol
化合物5既是一种性能优异含能化合物,也是一种重要的含能材料合成中间体,其密度为1.84 g·c
1)Density, measured with a gas pycnometer (25 ℃). 2)Detonation velocity calculated with EXPLO5 v6.01. 3)Detonation pressure calculated with EXPLO5 v6.01. 4)Heat of formation. 5)Decomposition temperature (onset temperature). 6)Impact sensitivity. 7)Friction sensitivity.

Scheme 9 Derivative reaction of compound
含能化合物5结构中活泼N—H的酸性,严重影响了其在武器装备中的应用。因此,拟通过氨化反应,在联吡唑分子结构中引入两个N—NH2,使分子内氨基偶联形成吡唑稠环结构,可降低其感度。2017年,Yongxing Tang
2018年,Yongxing Tang

Scheme 10 Synthesis of compound 15 and 1

Scheme 11 Synthesis of compound 18 and 1
2018年,Dalinger

Scheme 12 Synthesis of compound 2
2018年,Yongxing Tang
1)Measured densities‑gas pycnometer at room temperature. 2)Calculated detonation velocity.3)Calculated detonation pressure. 4)Calculated heat of formation. 5) Thermal decomposition temperature (onset) under nitrogen gas (DSC, 5 ℃·mi
从前期的研究可以得

Scheme 13 Synthesis of compound 2

Scheme 14 Structure of compound 24
1964年,S.Trofimenko

Scheme 15 Synthesis of 1H,1'H‑4,4'‑ bipyrazol
2013年,Kostiantyn V.Domasevitch
1)Density at 298 K. 2)Detonation velocity. 3)Detonation pressure. 4)Standard molar enthalpy of formation. 5)Temperature of decomposition (DTA onset points, β = 5 ℃∙mi

Scheme 16 Synthesis of 1H,1'H‑4,4'‑ bipyrazole derivative
1'H‑1,4'‑联吡唑的构建分为两种情况:1、单吡唑环上取代基与水合肼作用,发生合环反应;2、双吡唑环之间的亲和取代反应。明确应用于含能材料方面的构建有如下两种方式。
二醛缩合法:1988年,Kral, B.
3,4,5‑三硝基吡唑法:3,4,5‑三硝基吡唑(TNP)作为一种重要的硝基吡唑类化合物,具有高密度、高能量、低感度的优点,在含能材料领域具有广阔的应用前

Scheme 17 Synthesis of 4‑nitro‑1'H‑1,4'‑bipyrazol

Scheme 18 Synthesis of 4‑R‑3',5,5'‑trinitro‑1'H‑1,4'‑bipyrazol
2014年,Chuan Li
1) Measured densities‑gas pycnometer at room temperature. 2) Detonation velocity calculated by the EXPLO5 program, modified nitrogen equivalent method, and Kamlet‑Jacobs equations. 3) Detonation pressure calculated using the EXPLO5 program, modified nitrogen equivalent method, and Kamlet‑Jacobs equations. 4) Calculated molar enthalpy of formation. 5) Thermal degradation. 6)Impact sensitivity.

Scheme 19 Synthesis of 1'H‑1,4'‑bipyrazole derivative
室温下,乙腈溶液中,1,4‑二硝基吡唑与吡唑反应,以较高的收率得到硝基取代2'H‑1,3'‑联吡唑化合
前期研究表明,TNP与1H‑吡唑发生亲核取代反应,是在4‑位硝基上发生。2011年,Dalinger,I.L.
2019年,Mao‑xi,Zhang

Scheme 20 Synthesis of compound 3

Scheme 21 Synthesis of 2'H‑1,3'‑bipyrazole derivative

Scheme 22 Synthesis of LLM‑22
1'H,2H‑3,4'‑联吡唑含能化合物的研究比较少,只有1993年,Shevelev, S. A.

Scheme 23 Synthesis of compound 37 and 3
利用同样的环化方法,通过改变母体结构得到两种联吡唑化合物39和42,然后对这两种联吡唑化合物进行硝化,采用不同的硝化条件分别得到N—NO2硝化产物40和41,以及C‑NO2硝化产物43和44(

Scheme 24 Synthesis of 1'H,2H‑3,4'‑bipyrazole derivative
联吡唑骨架结构因其具有N—N杂五元芳香环结构,且可以形成共轭大π键,具有高生成焓、高密度、正氧平衡、钝感及热稳定性好的优点,因而构建联吡唑骨架含能化合物成为设计合成高能低感或耐热单质炸药的重要途径。基于联吡唑环之间键合方式的不同,联吡唑包括2H,2′H‑3,3′‑联吡唑(Ⅰ)、1H,1′H‑4,4′‑联吡唑(Ⅱ)、1′H‑1,4′‑联吡唑(Ⅲ)、2′H‑1,3′‑联吡唑(Ⅳ)、1′H,2H‑3,4′‑联吡唑(Ⅴ)和1,1'‑联吡唑(Ⅵ)6种联吡唑结构单元。其中Ⅰ、Ⅱ和Ⅲ三种联吡唑结构单元在含能材料领域的研究较为广泛,已合成出大量的综合性能优异的联吡唑含能化合物;Ⅳ和Ⅴ两种联吡唑结构单元在含能材料领域的研究较少,只有合成方面的报道,性能研究起步较晚,但从已报道的化合物的性能来看在含能材料领域也有一定的前景,可以作为联吡唑含能化合物发展的一个方向;Ⅵ型联吡唑含能化合物目前还未有合成和性能方面的报道。综上,联吡唑含能化合物进一步的发展趋势应集中在以下几个方面:
(1) 目前,在已合成的化合物中筛选综合性能优异的联吡唑含能化合物,尽快实现其高效制备并开展应用研究,寻找制备更为简单的母体合成及含能基团引入方法。以Ⅰ、Ⅱ、和Ⅲ三种联吡唑含能化合物为研究对象。
(2) 寻找制备更为简单、性能更为优异的含能化合物仍是含能材料研究领域的长期目标。对于联吡唑母体,通过改变不同的含能基团和引入不同的富氮阳离子策略,有利于合成出能量与感度性能兼备,综合性能优异的含能化合物,这些化合物在诸多性能上都表现出传统含能化合物所不具备的优势。
(3) Ⅳ及Ⅴ两种联吡唑含能化合物的性能研究较少,通过研究这两种类型联吡唑化合物的性能,判断出这两种联吡唑含能化合物的性能特点;对于Ⅵ型联吡唑设计及探索其母体合成方法以及含能基团的引入方法,将该领域的研究继续扩展,完善联吡唑含能化合物的研究。
(责编: 王艳秀)
参考文献
Kanishchev M I,Korneeva N V,Shevelev S A,et al. Nitropyr azoles(Review)[M]. Plenum Publishing Corporation,1988: 435-453. [百度学术]
李亚南,胡建建,陈涛,等.1,4‑二氨基‑3,6‑二硝基吡唑[4,3‑c]并吡唑的制备及热分解机理[J].含能材料,2019,27(12):1025-1030. [百度学术]
LI Ya‑nan,HU Jian‑jian, CHEN Tao, et al. Preparation and thermal decomposition mechanism of 1,4‑diamino‑3,6‑dinitropyrazolo[4,3‑c]pyrazole[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2019, 27(12): 1025-1030. [百度学术]
潘永飞,汪营磊,赵宝东,等.硝基吡唑及其衍生物的合成、性能及应用研究进展[J].含能材料,2018,26(9):796~812. [百度学术]
PAN Yong‑fei,WANG Ying‑lei,ZHAO Bao‑dong,et al. Research progress in synthesis, properties and applications of nitropyrazoles and their derivatives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018,26(9):796-812. [百度学术]
Rao E N, Ravi P, Tewari S P. Experimental and theoretical stud ies on the structure and vibrational properties of nitropyrazoles[J]. Journal of Molecular Structure, 2013(1043): 121-131. [百度学术]
汪营磊,张志忠,王伯周,等.3,5‑二硝基吡唑合成研究[J].含能材料,2007,15(6):574-576. [百度学术]
WANG Ying‑lei,ZHANG Zhi‑zhong,WANG Bo‑zhou, et al. Synthesis of 3,5‑dinitropyrazole[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2007,15(6):574-576. [百度学术]
Chuan Li, Man Zhang, Qishan Chen, et al. 1(3,5Dinitro1Hpyrazol4yl)3nitro1H1,2,4triazol5amine(HCPT) and its energetic salts:highly thermally stable energetic materials with highperformance[J]. Dalton Trans, 2016, 45: 17956-17965. [百度学术]
Ravi P, Gore G M, Tewari S P, et al. A simple and environmen tally benign nitration of pyrazoles by impregn nitration of pyr azoles by impregnated bismuth nitrate[J]. Journal of Heterocyclic Chemistry, 2013, 50(6): 1322-1327. [百度学术]
赵丹,蔡春.1,4‑二氨基‑3,5‑二硝基吡唑的合成[J].含能材料,2016,24(1):64-68. [百度学术]
ZHAO Dan, CAI Chun. Synthesis of 1,4‑diamino‑3,5‑dinitropyrazole[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(1): 64-68. [百度学术]
Zaitsev A A, Dalinger I L, Shevelev S A. Dinitropyrazoles[J]. Russian Chemical Reviews, 2009, 78(7): 589-627. [百度学术]
Su Jin Han, Hyun Tae Kim, Jung Min Joo. Direct CH alkenylation of functionalized pyrazoles[J]. J Org Chem, 2016, 81: 689-698. [百度学术]
罗义芬, 王伯周, 陈晓芳, 等. 1,3,4,6‑四硝基吡唑[4,3‑c]并吡唑(TNPP) 合成[J]. 含能材料, 2012, 20(6) : 814-815. [百度学术]
LUO Yi‑fen, WANG Bo‑zhou, CHEN Xiao‑fang, et al. Synthesis of 1,3,4,6‑‑tetranitropyrazole[4,3‑c]pyrazole[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2012, 20(6) : 814-815. [百度学术]
Joseph H, Boyer. Nitroazoles: the C‑nitro derivatives of fiver‑membered N‑ and N,O‑hetrocycles[M]. VCH publishers, Deerfield beach. 1986:125-127. [百度学术]
Bakr F, Abdel W, Dawood K M. Synthesis and applications of bipyrazole systems[J]. ARKIVOC, 2012, 1:491-545. [百度学术]
F Effenberger, Enolather, Ⅱ: Syntheses und reaktionen von 1.4‑bis‑athoxymethylen‑butandion‑(2.3)[J]. Chem.Ber. 1965, 98(7): 2260-2265. [百度学术]
Virginie Vicente, Alain Fruchier, José Elguero. The effenberger′s synthesis of 3,3'‑bipyrazole revisited[J].ARKIVOC 2004,3: 5-10. [百度学术]
Yakovlev K V, Petrov D V, Dokichev V A, et al. Synthesis of 3‑substituted pyrazoles by oxidative dehydrogenation of 4,5‑dihydro‑3H‑pyrazoles[J].Russian Journal of Organic Chemistry, 2009, 45(6): 950-952. [百度学术]
Shironina T M, Igidov N M, Koz′minykh E N, et al. 1,3,4,6‑Tetracarbonyl compounds: IV. Reaction of 3,4‑dihydroxy‑2,4‑hexadiene‑1,6‑diones with hydrazine and arylhydrazines[J]. Russ J Org Chem, 2001, 37(10):1486-1494. [百度学术]
Dheeraj Kumar, Yongxing Tang, Chunlin He, et al. Multipurpose energetic materials by shuffling nitro groups on a 3,3′‑bipyrazole moiety[J]. Chemistry—A European Journal,2018,24(65):17220-17224. [百度学术]
王小军,张晓鹏,尚凤琴,等.耐热炸药5,5′‑联四唑‑1,1′‑二氧钾盐的合成及热分解[J].含能材料,2016,24(6):528-531. [百度学术]
WANG Xiao‑jun,ZHANG Xiao‑peng,SHANG Feng‑qin,et al. Synthesis and thermal decomposition of a heat‑resistance explosive potassium salts of 5,5′‑bistetrazole‑1,1′‑diolate[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2016,24(6):528-531. [百度学术]
Mayer R, Kohler J, Homburg A.Explosives[M]. 6th ed.Wiley‑VCH, Weinheim, 2007:57-62. [百度学术]
Tatyana K Shkineva, Alexandr V Kormanov, Valeriya N. Boldinova,et al. Synthesis of 4,4'‑dinitro‑1H,1'H‑[3,3'‑bipyrazole]‑5,5'‑diamine[J]. Chemistry of Heterocyclic Compounds, 2018, 54(7): 703-709. [百度学术]
Yongxing Tang, Chunlin He, Gregory H Imler, et al. A C—C bonded 5,6‑fused bicyclic energetic molecule: exploring an advanced energetic compound with improved performance [J]. Chem Commun, 2018, 54(75):10566-10569. [百度学术]
Yongxing Tang, Chunlin He, Gregory H Imler, et al. Energetic derivatives of 4,4',5,5'‑tetranitro‑2H,2'H‑3,3'‑bipyrazole(TNBP): synthesis, characterization and promising properties[J]. Journal of Materials Chemistry A, 2018,6(12):5136-5142. [百度学术]
Yongxing Tang, Dheeraj Kumar, Jean′ne M Shreeve. Balancing excellent performance and high thermal stability in a dinitropyrazole fused 1,2,3,4‑tetrazine[J]. J Am Chem Soc, 2017, 139(39):13684-13687. [百度学术]
Yongxing Tang, Chunlin He, Gregory H Imler, et al. Ring closure of polynitroazoles via an N,N′‑alkylene bridge: towards high thermally stable energetic compounds[J]. Journal of Materials Chemistry A, 2018, 6(18):8382-8387. [百度学术]
Igor L Dalinger, Kyrill Yu Suponitsky, Tatyana K Shkineva, et al. Bipyrazole bearing ten nitro groups‑a novel highly dense oxidizer for forward‑looking rocket propulsions[J]. J Mater Chem A, 2018, 6(30):14780-14786. [百度学术]
盛涤伦,马凤娥.新型起爆药DACP的合成及其主要性能[J].含能材料, 2006,14(3):161-164. [百度学术]
SHENG Di‑lun,MA Feng‑e. Synthesis and main properties of new initiating explosive DACP[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2006,14(3):161-164. [百度学术]
Igor L Dalinger, Tatyana I Cherkasova,Svyatoslav A Shevelev. Synthesis of 4‑diazo‑3,5‑dinitropyrazole and characteristic features of its behavior towards nucleophiles[J]. Mendeleev Commun., 1997, 7(2):58-59. [百度学术]
Yongxing Tang, Gregory H Imler, Damon A Parrish, et al. C6N10O4: Thermally stable nitrogen‑rich inner bis(diazonium) zwitterions[J]. Org Lett, 2019,21(20):8201-8204. [百度学术]
Trofimenko S.1,1,2,2‑Ethanetetracarboxaldehyde and its reactions[J]. J Org Chem, 1964, 29(10),3046-3049. [百度学术]
Kostiantyn V Domasevitch, Ivan Gospodinov, Harald Krautscheid, et al. Facile and selective polynitrations at the 4‑pyrazolyl dual backbone: a straightforward access to a series of high‑density energetic materials[J]. New Journal of Chemistry, 2019, 43(3):1305-1312. [百度学术]
Kral V, Kanishchev M I, Semenov V V, et al. Synthetic utilization of N‑diformylmethylazoles: the preparation of 1‑heteryl‑4‑nitropyrazoles[J]. Collect. Czech. Chem. Commun. 1988, 53(7): 1529-1533. [百度学术]
吴军鹏, 曹端林, 王建龙, 等. 3,4,5‑三硝基吡唑及其衍生物的研究进展[J],含能材料, 2016, 24(11): 1121-1130. [百度学术]
WU Jun‑peng, CAO Duan‑lin, WANG Jian‑long, et al. Progress on 3,4,5‑trinitro‑1H‑pyrazole and its derivaties[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2016, 24(11): 1121-1130. [百度学术]
Herve G, Roussel C, Graindorge H. Selective preparation of 3,4,5‑trinitro‑1H‑pyrazole:a stable all‑carbon‑nitrated arene[J]. Angewandte Chemie international Edition,2010,49(18): 3177-3181. [百度学术]
Herve G. Dinitropyrazole derivatives, their preparation, and energetic compositions comprising them:US,2009/0186931[P],2009. [百度学术]
E K S, Latypov N V. Four syntheses of 4‑amino‑3,5‑dinitropyrazole[J].Journal of Heterocyclic Chemistry,2014,51(6):1621-1627. [百度学术]
Dalinger I L, Popova G P, Vatsadze I A, et al. Synthesis of 3,4,5‑trinitropyrazole[J]. Russian Chemical Bulletin,2009,58(10):2185-2185. [百度学术]
Zhang Yan‑qiang, Guo Yong, Joo Y H, et al. 3,4,5‑Trinitropyrazole‑based energetic salts[J]. Chemistry—A European Journal, 2010,16(35):10778-10784. [百度学术]
Zhao X, Zhang J C, Li S H, et al. A green and facile approach for synthesis of nitro heteroaromatics in water[J]. Organic process Research & Development, 2014,18(7): 886-890. [百度学术]
Ines E. Drukenmüller, Thomas M Klapötke, Yvonne Morgenstern,et al. Metal salts of dinitro‑, trinitropyrazole, and trinitroimidazole[J]. Z Anorg Allg Chem, 2014, 640(11):2139-2148. [百度学术]
Herv´e G, Roussel C, Graindorg H, et al. Selective preparation of 3,4,5‑trinitro‑1H‑pyrazole: a stable all‑carbon‑nitrated arene[J].Angew Chem, Int Ed, 2010, 122(18): 3245-3249. [百度学术]
Dalinger I L, Vatsadze I A, Shkineva T K, et al. Efficient procedure for high‑yield synthesis of 4‑substituted 3,5‑dinitropyrazoles using 4‑chloro‑3,5‑dinitropyrazole[J]. Synthesis, 2012, 44(13):2058-2064. [百度学术]
Gao H, Shreeve J M. Azole based energetic salts[J]. Chemical Reviews, 2011, 111(11):7377-7436. [百度学术]
Dalinger I L, Vatsadze I A, Shkineva T K, et al. Synthesis of 4‑(N‑azolyl)‑3,5‑dinitropyrazoles[J]. Mendeleev Commun, 2010, 20: 355-356. [百度学术]
Chuan Li, Lixuan Liang, Kai Wang, et al. Polynitro‑substituted bispyrazoles: A new family of high‑performance energetic materials[J].Journal of Materials Chemistry A,2014,2(42):18097-18105. [百度学术]
Berbee R P M, Habraken C L. Pyrazoles. XVIII (1). synthesis of a novel tripyrazolyl by two consecutive cine substitution reactions[J]. J Heterocycl Chem,1981, 18(3): 559-560. [百度学术]
Fernandes P C, Erkelens C, Van Eendenburg C G M , et al. Synthesis of 3(5)‑(1′‑pyrazolyl)pyrazoles from 1,4‑dinitropyrazole by cine substitution reaction. structure determination[J]. J Org Chem. 1979, 44(23): 4156-4160. [百度学术]
Dalinger I L, Vatsadze I A, Shkineva T K, et al. Nucleophilic substitution in 1‑methyl‑3,4,5‑trinitro‑1H‑pyrazole[J].Mendeleev Commun. 2011, 21(3):149-150. [百度学术]
吴霏,李永祥,郝彩丽, 等. N2O5/发烟硫酸体系一步法合成1‑甲基‑3,4,5‑三硝基吡唑[J].含能材料,2016,24(6):618-620. [百度学术]
WU Fei, LI Yong‑xiang, HAO Cai‑li, et al. One step synthesis of MTNP with N2O5/oleum system[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(6):618-620. [百度学术]
郭俊玲,李永祥,王建龙,等.1‑甲基‑3,4,5‑三硝基吡唑的一步法合成及热性能[J].含能材料,2015,23(3):304-306. [百度学术]
GUO Jun‑ling, LI Yong‑xiang, WANG Jian‑long, et al. One‑step synthesis and thermal behavior of 1‑methyl‑3,4,5‑trinitropyrazole[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015,23(3):304-306. [百度学术]
李雅津,曹端林,李永祥, 等. 1‑甲基‑3,4,5‑三硝基吡唑的合成与表征[J].火炸药学报,2013,36(3):28-30. [百度学术]
LI Ya‑jin, CAO Duan‑lin, LI Yong‑xiang, et al. Synthesis and characterization of 1‑methyl‑3,4,5‑trinitropyrazoles[J]. Chinese Journal of Explosives&Propellants, 2013,36(3):28-30. [百度学术]
郭俊玲,李永祥,王建龙, 等. 超酸硝化法合成1‑甲基‑3,4,5‑三硝基吡唑[J].合成化学,2015,23(2):161-163. [百度学术]
GUO Jun‑ling, LI Yong‑xiang, WANG Jian‑long, et al. Synthesis of 1‑methyl‑3,4,5‑trinitropyrazole by nitration with super acids[J]. Chinese Journal of Synthetic Chemistry, 2015,23(2):161-163. [百度学术]
Mao‑Xi Zhang, Philip F Pagoria, Gregory H. Imler, et al. Trimerization of 4‑amino‑3,5‑dinitropyrazole: formation, preparation, and characterization of 4‑diazo‑3,5‑bis(4‑amino‑3,5‑dinitropyrazol‑1‑yl)pyrazole (LLM‑226)[J]. Chemistry of Heterocyclic Chemistry, 2019, 56(3): 781-787. [百度学术]
Shevelev S A, Dalinger I L, Shkineva T K , et al. Nitropyrazoles 7. nitro derivatives of bi‑, ter‑, and quaterpyrazoles[J], Russ Chem Bull, 1993,42(11):1857-1861. [百度学术]