1 引言
在双基系固体推进剂中加入燃烧催化剂是调节其燃速的有效手
段[1,2,3,4] 。由于燃烧过程的复杂性,催化剂的组成和结构对其燃烧催化性能影响显著[3] 。其中,含铅的物质[2,5,6,7,8] 对双基系固体推进剂的燃烧具有显著的催化效果,特别是芳香族铅盐[9,10] 配合物应用效果较佳。此外,研究证明苯环上羟基的数量对其催化效果有很大的影响[11] 。在中低压区(2~10 MPa),含羟基基团较少的芳香族燃烧催化剂对推进剂燃速的提高有利;相反,在高压区(10~16 MPa),催化剂中含羟基越多,其催化性能越好。鞣酸(Ta⁃H)是一种多羟基芳香酸(如图1所示),苯环上共连接有25个不同类型的羟基。大量的研究结果已证实:其铅盐对双基系固体推进剂的高压燃烧具有良好的催化作
用[13] 。鞣酸与铅离子反应后,在鞣酸铅中仍保留了较多的羟基,而羟基具有的推电子共轭效应使得鞣酸铅活性较高(图1)[12] ,鞣酸铅不同的合成方法、Pb2+ 含量以及pH值会导致鞣酸铅样品催化活性有明显差异,进而影响其对固体推进剂的燃烧催化性能。探究不同鞣酸铅对双基推进剂燃烧催化性能的影响,有利于认识鞣酸铅的催化燃烧机制,得到催化燃烧性能稳定的鞣酸铅样品,及对固体推进剂的性能进行优化;也可增进对铅基芳香酸盐[7] 类燃烧催化剂催化活性与组成、构效关系的认识。因此,为了探索影响鞣酸铅燃烧催化活性的因素,本研究采用氧化铅法和醋酸铅法分别合成出不同组成的鞣酸
铅[12,14] ,探究了两种方法制备的鞣酸铅对推进剂催化燃烧效果的影响。在此基础上,又研究了铅含量、反应体系pH值对鞣酸铅燃烧催化性能的影响,为含鞣酸铅推进剂的性能优化提供一定的依据。2 实验
2.1 主要试剂
鞣酸(Ta⁃H):食用级,北方兴安化学工业有限公司;氧化铅(PbO):分析纯,冰醋酸(HAc):分析纯,成都市科龙化工试剂厂;醋酸铅[Pb(Ac
)2 3H2 O],分析纯 ,上海阿拉丁生化科技股份有限公司。2.2 样品制备
按照不同摩尔比称取鞣酸与醋酸铅或鞣酸与氧化铅[n(Ta⁃H)∶n(Pb(Ac
)2 /PbO)=1∶3~1∶8]。为了使铅离子完全参与反应,称取过量5%鞣酸,保证配合物的铅含量随配比的增加而不断提高。氧化铅
法[13] :称取冰醋酸加入三口烧瓶中,加热至70 ℃,将氧化铅缓慢加入三口烧瓶中,使之与冰醋酸反应,然后将配置好的鞣酸溶液逐滴加至三口烧瓶中,溶液产生大量沉淀,反应3 h后,将溶液趁热过滤得沉淀产物,并用蒸馏水与无水乙醇洗涤、干燥后得到土黄色Ta⁃Pb样品。醋酸铅
法[14] :称取醋酸铅加入三口烧瓶中,加热至70 ℃,将配制好的鞣酸溶液逐滴加至三口烧瓶中。随后溶液产生大量沉淀,反应3 h后将溶液趁热过滤得沉淀产物,并用蒸馏水与无水乙醇洗涤、干燥后得到土黄色Ta⁃Pb样品。2.3 分析测试
用Bruker Vertex 70v(德国)红外光谱仪测试样品的红外光谱(KBr压片);用PerkinElmer NexION 300X型电感耦合等离子(ICP)光谱发生仪(美国)测定样品的P
b2+ 含量。2.4 燃速测定
为研究燃烧催化剂对于双基推进剂燃速的影响,设计配方,将上述两种方法制备的鞣酸铅分别加入双基推进剂配方,对所得推进剂样品进行燃速测试。双基推进剂配方如下,硝化棉/硝化甘油(NC/NG):83.9%;功能助剂:11.7%,鞣酸铅(Ta⁃Pb)催化剂:4.4%。
采用传统的双基推进剂制造工艺,经过吸收、驱水和光棍压延制备成Φ5 mm ×150 mm小药柱。将已处理过的药柱侧面用聚乙烯醇溶液浸渍包覆6次并晾干, 然后在充氮缓动式燃速仪中采用靶线
法[15] 进行燃速测试。试验温度 20 ℃,压强6~16 MPa。压强指数则根据公
式[16] :r=apn(r为燃烧速率,p为燃烧时的压强,n为压强指数),采用最小二乘法编程计算求出。3 结果与讨论
3.1 制备方法对鞣酸铅催化活性的影响
氧化铅法和醋酸铅法合成鞣酸铅的机理都是通过鞣酸中羟基氧原子与金属铅离子的结合形成配合物。两种方法的反应原料不同导致反应体系不同,因此制备的鞣酸铅样品在组成和结构以及催化性能等方面存在很大差异。分别利用不同方法制备鞣酸铅,两种方法所得鞣酸铅对双基固体推进剂燃速的影响测试结果见表1和表2。
表1 醋酸铅法所得鞣酸铅对推进剂的燃速影响
Table 1 The effect of Ta⁃Pb obtained by lead acetate method on burning rate of propellant
m(Ta⁃H)∶m( Pb(Ac )2 )u / mm· s-1 n
2-16 MPa
6 MPa 8 MPa 10 MPa 12 MPa 14 MPa 16 MPa 1∶3 18.33 21.27 23.97 26.14 28.12 29.01 0.36 1∶4 18.66 21.38 24.05 26.21 28.14 30.08 0.47 1∶5 20.98 24.00 26.2 27.94 30.35 31.21 0.38 1∶6 19.23 21.53 24.17 26.47 28.42 29.71 0.39 1∶7 18.49 21.06 23.95 26.25 27.86 29.53 0.40 1∶8 17.76 20.06 23.16 25.52 27.53 29.04 0.45 表2 氧化铅法所得鞣酸铅对推进剂的燃速影响
Table 2 The effect of Ta⁃Pb obtained by lead oxide method on burning rate of propellant
m(Ta⁃H)∶m(PbO) u / mm· s-1 n
12-16 MPa
6 MPa 8 MPa 10 MPa 12 MPa 14 MPa 16 MPa 1∶3 20.46 22.76 25.29 27.42 29.74 29.97 0.31 1∶4 19.67 22.49 25.3 27.28 29.64 30.05 0.34 1∶5 21.45 24.8 27.37 29.67 30.99 32.79 0.35 1∶6 19.72 22.44 25.06 26.92 28.9 31.29 0.52 1∶7 19.20 22.15 24.68 26.31 28.47 30.84 0.55 1∶8 21.44 23.9 26.26 28.47 29.43 30.63 0.25 NOTE: m is molar amount; u is burning rate; n is pressure exponent.
对比表1和表2结果可知,氧化铅法与醋酸铅法制备的鞣酸铅均能不同程度地提高固体推进剂的燃速。在摩尔比为1:3~1:8时,氧化铅法制备的鞣酸铅在提升燃速方面的效果更明显。添加醋酸铅法制备的鞣酸铅的推进剂在16 MPa下燃速能够达到31.21 mm·
s-1 ,而氧化铅法制备的鞣酸铅则可以将燃速提高到32.79 mm·s-1 。如式(1)所示,醋酸铅法的合成过程中,醋酸铅直接与鞣酸分子中羟基形成配位;随着反应的进行,醋酸铅失去铅离子后不断形成游离醋酸根离子,醋酸根离子会争夺水中的H+ 形成醋酸,致使pH不断降低。因此醋酸铅法制备鞣酸铅的反应体系是一个动态不平衡的反应体系。而在氧化铅法的反应体系中,首先用冰醋酸与一部分的氧化铅反应生成醋酸铅,醋酸铅与鞣酸进行配位失去铅离子。游离出的醋酸根离子又与剩余的部分氧化铅反应得到醋酸铅。如此反复进行反应,直至氧化铅反应完全,铅离子完全与鞣酸进行配位。在这一过程中,反应体系始终保持平衡状态,醋酸起到了缓冲平衡的作用,即氧化铅法制备鞣酸铅的反应体系是动态平衡过程。
综上,氧化铅法与醋酸铅法制备鞣酸铅过程中,尽管配位方式相同,但其反应环境体系存在差异。由于醋酸中羧基的酸性高于鞣酸中酚羟基所具有的酸性,醋酸铅法反应后醋酸的存在可能使鞣酸铅中铅离子与鞣酸中酚羟基氧的配位键键能降低,导致鞣酸铅样品的结构及催化性能不同。而且固体推进剂的燃速数据也表明,相对于醋酸铅法,氧化铅法制得样品在推进剂中拥有更高燃速和低的压力指数,燃烧性能更为优良。
3.2 Pb2+含量对氧化铅法鞣酸铅催化活性的影响
进一步研究发现,在氧化铅法合成鞣酸铅的过程中,鞣酸与氧化铅的摩尔比不同,铅离子与鞣酸分子中酚羟基的反应也存在很大差异。具体表现在不同摩尔配比时其产物中P
b2+ 含量的差异[12,14,17] 。测试了氧化铅法制备的6种鞣酸铅的铅含量,结果见表3。表3 鞣酸与氧化铅不同摩尔配比的鞣酸铅样品铅含量
Table 3 Lead content of Ta⁃Pb samples obtained at different molar ratios of Ta⁃H and lead oxide
m(Ta⁃H)∶m(PbO) ωPb / % 1∶03 25.95 1∶04 28.55 1∶05 31.95 1∶06 33.65 1∶07 35.29 1∶08 36.45 NOTE: m is molar amount; ωPb is P
b2+ content.由表3可见,鞣酸与氧化铅摩尔比从1∶3~1∶8,随着氧化铅的量不断增加,参与反应的铅离子量也随之增加,导致不同摩尔比时鞣酸与铅离子配位的数量存在差异。考虑到鞣酸铅中铅为催化活性组分,可认为鞣酸与氧化铅摩尔比不同导致的鞣酸铅中铅含量差异是表2中含不同鞣酸铅的推进剂燃速存在区别的重要原因。但铅含量的增加并不是线性的,随着氧化铅比例提高,铅离子含量增加越缓慢,说明鞣酸中酚羟基氧与铅离子的配位能力逐渐减弱。这可能是由于鞣酸中不同酚羟基空间结构的差异,导致后期参与反应的酚羟基氧与铅离子配位的空间位阻变大,反应难以进行。
对氧化铅法制备的6种鞣酸铅进行FT⁃IR测试,结果如图2所示。由图2可见,随着鞣酸与氧化铅的摩尔配比变化,不同样品中各基团特征峰并未出现明显的区别。鞣酸与氧化铅反应生成的不同鞣酸铅样品中,苯环、酯基、酚羟基的吸收峰均存在,而随着鞣酸与氧化铅摩尔配比的提高,属于酚羟基的1087.02 c
m-1 和1031.88 cm-1 处吸收峰强度明显降低,说明鞣酸铅生成过程中,仅是鞣酸中的部分羟基与铅离子进行了配位,鞣酸铅中仍然有羟基剩余。同时结合氧化铅比例升高后,鞣酸铅中铅含量的增加逐渐变得缓慢的现象,可进一步说明不同位置羟基氧与铅离子配位的能力的不同。图2 鞣酸与氧化铅不同摩尔配比鞣酸铅FT⁃IR图
Fig.2 The FT⁃IR spectra of Ta⁃Pb obtained by different molar ratio of Ta⁃H and lead oxide
为了进一步研究鞣酸铅的化学键成键特征,图3给出了鞣酸和摩尔配比为1∶5的鞣酸铅配合物在400~4000 c
m-1 范围内的FT⁃IR谱图。图3 鞣酸和氧化铅摩尔配比为1∶5的鞣酸铅FT⁃IR图
Fig. 3 The FT⁃IR spectra of Ta⁃Pb with Ta⁃H and lead oxide molar ratio of 1∶5
与鞣酸相比,在配合物中属于酯基的碳氧双键(1713.13 c
m-1 )和碳氧单键(1190.89 cm-1 )这2个伸缩振动吸收峰仍然存在,说明酯基氧原子未参与配位,只是形成配合物后碳氧双键吸收峰向左移动了2 cm-1 。位于1087.02 cm-1 和1031.88 cm-1 处属于酚羟基的吸收峰在配合物中简并成一个宽峰(1016.3 cm-1 ),说明配体是由—OH与Pb(Ⅱ)形成配位,酚羟基减少后,其吸收峰强度变弱。另外,属于苯环的三个吸收峰(1614.23,1539.61,1451.82 cm-1 ),在配合物中也仅出现了2个(1615.3,1448.24 cm-1 ),这是由于形成配合物后,酚羟基氧对苯环供电子能力增加,使苯环碳架的吸收峰位置和个数都产生变化。进一步说明鞣酸铅的合成是铅离子与鞣酸中部分羟基进行配位。鞣酸与氧化铅不同摩尔配比制备的鞣酸铅对于双基推进剂燃速以及压强指数的影响列于表2,燃速变化趋势如图4所示。
图4 鞣酸与氧化铅不同配比对双基推进剂燃速的影响
Fig 4 The effect of ratio of Ta⁃H and lead oxide on the burning rate of double⁃based propellant
由图4可知,在6~16 MPa下,不同鞣酸铅对双基推进剂的燃速效果影响不同。铅含量增加时,其推进剂的燃速相应提高,摩尔比为1∶5时(P
b2+ 含量为31.95%)燃速达到最高值。对于m(Ta⁃H)∶m(PbO)=1∶5时(Pb2+ 含量为31.95%)制备的鞣酸铅样品,随着压强的升高,推进剂的燃速增大,最大燃速可达到32.79 mm·s-1 ;此外,在12~16 MPa下,燃速压强指数为0.35;表现出较为优异的催化燃烧性能。当继续增加氧化铅的比例,即铅含量继续升高,推进剂的燃速开始缓慢降低,说明铅含量并不是影响鞣酸铅催化活性的唯一因素。考虑到不同鞣酸铅中均存在一定量未配位的活性酚羟基,其与推进剂的其它组分在凝聚相反应区中存在相互作用,认为酚羟基对于鞣酸铅的燃烧催化活性也有影响。由于随着铅含量升高,酚羟基的数量逐渐下降,m(Ta⁃H)∶m(PbO)=1∶5时出现燃速峰值,说明铅和酚羟基在一定程度上均有利于提高燃速。3.3 反应体系pH值对氧化铅法鞣酸铅催化活性的影响
鞣酸铅的合成过程中,铅离子与鞣酸分子中苯环上羟基的配位程度与pH值息息相关,pH值不同导致了其配位环境的差异,从而使铅离子与羟基的配位能力变化,进而对其燃烧催化活性产生影
响[18] 。有报道表明,pH=5~6时制备的鞣酸铅催化活性高于pH=4时制备的样品[12,19] 。因此,在研究Pb2+ 离子含量对鞣酸铅燃烧催化性能影响的基础上,有必要进一步讨论pH的改变对鞣酸铅催化活性的影响。向不同原料配比的反应体系中滴加NaOH溶液,将pH值调节至中性,进一步研究pH值变化对于鞣酸铅燃烧催化活性的影响。pH=7时,不同鞣酸铅对推进剂燃速影响结果列于表4。表4 调节pH=7制得鞣酸铅在推进剂中的燃速
Table 4 The burn rate for propellants containing Ta⁃Pb obtained by adjusting the pH=7
m(Ta⁃H)∶m(PbO)pH=7 u/mm∙ s-1 n
12-16MPa
6 MPa 8 MPa 10 MPa 12 MPa 14 MPa 16 MPa 1∶3 18.92 21.53 24.69 26.52 28.73 29.07 0.32 1∶4 19.15 22.14 25.51 26.62 28.97 30.18 0.43 1∶5 20.46 23.37 26.26 29.94 31.26 33.13 0.35 1∶6 20.02 22.73 25.58 27.42 29.5 32.52 0.58 1∶7 20.16 23.19 25.53 27.97 29.37 30.93 0.34 1∶8 20.64 22.22 24.65 26.46 27.8 29.98 0.43 NOTE: m is molar amount; u is burning rate; n is pressure index.
对比分析表2、表4及图5可知,随着氧化铅比例的提高,同一压强下固体推进剂的燃速先不断升高,在摩尔配比为1∶5时达到最大值,然后逐渐降低。同时,在摩尔配比为1∶5的情况下,相对于不加NaOH的反应体系来说,调节其pH值至中性能够进一步提高在高压下双基推进剂的燃速。16 MPa下固体推进剂的燃速达到了33.13 mm·
s-1 ,相比于不调节pH至中性的鞣酸铅体系燃速有了较大提高。同时,该燃烧催化剂在12~16 MPa下,能够使压强指数稳定在0.35。说明这种燃烧催化剂使推进剂在该压强范围内的燃烧较为平稳,提高了其燃烧性能。这可能是由于鞣酸铅合成中体系的pH值对鞣酸中酚羟基氧原子的电子分布产生影响,从而影响了铅离子与酚羟基氧原子的配位结合能,导致了燃烧催化活性的差异。4 结论
(1) 氧化铅法制备的鞣酸铅在双基推进剂中的催化燃烧性能优于醋酸铅法制备的鞣酸铅,可以显著提高推进剂的燃速、且使推进剂的燃烧更为稳定。
(2) 鞣酸铅的催化燃烧性能与样品中的铅含量有关,随着反应体系中鞣酸与氧化铅摩尔比的增大,样品中的铅含量在一定范围内不断增加;相应推进剂的燃速随着铅含量的变化先增大,而后减小。在鞣酸与氧化铅摩尔比为1∶5、P
b2+ 含量为31.95%时,得到的鞣酸铅催化燃烧性能最佳。(3) 反应体系的pH值对鞣酸铅的催化燃烧性能具有显著的影响,调节pH至中性可进一步提高含鞣酸铅的推进剂的燃速。在16 MPa下,可使双基推进剂的燃速提高到33.13 mm·
s-1 ,压强指数降至0.35,从而实现双基推进剂的高效稳态燃烧。(责编: 王艳秀)
参考文献
- 1
陈京,王晗,刘萌,等.复合改性双基推进剂降感技术及感度机理研究进展[J].火炸药学报,2017,40(6):7-16.
CHEN Jing, WANG Han, LIU Meng, et al.Research progress on the technology and sensitivity mechanism of composite modified double⁃base propellant [J].Chinese Journal of Explosives & Propellants , 2017,40(6):7-16.
- 2
Hai N T, Lin C C, Seung H W, et al. Efficient removal of copper and lead by Mg/Al layered double hydroxides intercalated with organic acid anions: Adsorption kinetics, isotherms, and thermodynamics[J]. Applied Clay Science,2018,154:17-27.
- 3
严启龙.浅谈固体推进剂燃烧催化剂的评判标准[J].含能材料,2019,27(4):266-269,257.
YAN Qi⁃long. Discussion on the evaluation criteria of solid propellant combustion catalyst [J]. Energetic materials:2019,27(4):266-269+257.
- 4
汪营磊,赵凤起,仪建华.固体火箭推进剂用燃烧催化剂研究新进展[J].火炸药学报,2012,35(5):1-8.
WANG Ying⁃lei, ZHAO Feng⁃qi, YI Jian⁃hua. New progress in research on combustion catalysts for solid rocket propellants[J].Chinese Journal of Explosives & Propellants,2012,35(5):1-8.
- 5
马文喆,赵凤起,刘晓连,等.单环芳香族金属盐配合物对双基系固体推进剂的燃烧催化效果分析研究进展[J].火炸药学报,2019,42(4):319-327.
MA Wen⁃zhe, ZHAO Feng⁃qi , LIU Xiao⁃lian, et al .Advances in the researches on combustion catalysis of metal monocyclic aromatic complexes on DB and CMDB solid propellants[J].Chinese Journal of Explosives & Propellants ,2019,42(4):319-327.
- 6
YAN Qi⁃long, ZHAO Feng⁃qi, Kenneth K. K,et al. Catalytic effects of nano additives on decomposition and combustion of RDX⁃, HMX⁃, and AP⁃based energetic compositions [J], Prog Energ Combust Sci, 2016, 57: 75-136.
- 7
谢明召,冯小琼,衡淑云,等.纳米铅盐对双基推进剂的催化热分解[J].含能材料,2011,19(1):23-27.
XIE Ming⁃zhao, FENG Xiao⁃qiong, HENG Shu⁃yun, et al. Catalytic thermal decomposition of nano⁃lead salts to double⁃based propellants[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2011, 19(1): 23-27.
- 8
刘春,李笑江,蔡炳源,等.燃烧催化剂对EMCDB推进剂交联固化反应的催化作用[J].火炸药学报,2002(2):42-44.
LIU Chun, LI Xiao⁃jiang, CAI Bing⁃yuan, et al. Catalysis of combustion catalyst for cross⁃linking curing reaction of EMCDB propellant[J]. Journal of Explosives & Propellants, 2002(2): 42-44.
- 9
王晗,赵凤起,高红旭,等.纳米邻苯二甲酸铅的制备及其对双基推进剂燃烧催化的研究[J].含能材料,2006(1):45-48.
WANG Han, ZHAO Feng⁃qi, GAO Hong⁃xu, et al. Preparation of nano⁃phthalate phthalate and its catalytic activity for double⁃based propellant[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2006(1):45-48.
- 10
付小龙,樊学忠,李吉祯,等.有机铅盐对高能改性双基推进剂燃烧性能和热分解的影响[J].火炸药学报,2008(2):49-52.
FU Xiao⁃long, FAN Xue⁃zhong, LI Ji⁃zhen, et al.Effect of organic lead salt on combustion performance and thermal decomposition of high energy modified double⁃based propellant[J].Chinese Journal of Explosives & Propellants,2008(2):49-52.
- 11
付小龙,李吉祯,刘小刚,等.铅盐对高能无烟改性双基推进剂燃烧性能的影响[J].含能材料,2007(4):329-331.
FU Xiao⁃long,LI Ji⁃zhen,LIU Xiao⁃gang, et al.Influence of lead salt on combustion performance of high energy smokeless modified double⁃base propellant[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2007(4):329-331.
- 12
孙翠桃,李裕,张齐,等.螯合沉淀组合高级氧化降解鞣酸铅废水研究[J].中北大学学报(自然科学版),2015,36(2):182-187.
SUN Cui⁃tao, LI Yu, ZHANG Qi, et al.Study on advanced oxidative degradation of lead phthalate wastewater by chelate precipitation[J].Journal of North University of China(Natural Science Edition),2015,36(2):182-187.
- 13
洪伟良,李琳琳,赵凤起,等.纳米鞣酸Pb(Ⅱ)配合物的合成及其燃烧催化性能研究[J].固体火箭技术,2007(2):135-137.
HONG Wei⁃liang, LI Lin⁃lin, ZHAO Feng⁃qi, et al. Synthesis of nano Ta⁃Pb(II) complex and its catalytic performance for combustion[J].Journal of Solid Rocket Technology,2007(2):135-137.
- 14
张洪秀,高俊.鞣酸铅的合成与研究[J].中国石油和化工标准与质量,2013,34(4):26.
ZHANG Hong⁃xiu, GAO Jun. Synthesis and research of lead citrate [J]. China Petroleum and Chemical Standards and Quality, 2013, 34 (4): 26.
- 15
李伟,尹欣梅,王小英,等.铅盐催化剂对GAP少烟推进剂燃烧性能的影响[J].火炸药学报,2016,39(6):80-83.
LI Wei, YIN Xin⁃mei, WANG Xiao⁃ying, et al.Effect of lead salt catalyst on combustion performance of GAP less smoke propellant[J].Journal of Explosives & Propellants,2016,39(6):80 -83.
- 16
赵凤起,高红旭,胡荣祖,等.4⁃羟基⁃3,5⁃二硝基吡啶铅盐在固体推进剂燃烧中的催化作用[J].含能材料,2006(2):86-88+98.
ZHAO Feng⁃qi, GAO Hong⁃xu, HU Rong⁃zu, et al. The catalysis of lead⁃sodium 4⁃hydroxy⁃3,5⁃ dinitropyridine in solid propellant combustion[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2006(2):86-88+98.
- 17
洪伟良,刘剑洪,赵凤起,等.纳米Pb(Ⅱ)⁃没食子酸配合物的合成及其燃烧催化性能[J].化学学报,2005(3):249-253+178.
HONG Wei⁃liang, LIU Jian⁃hong, ZHAO Feng⁃qi, et al. Synthesis and catalytic properties of nano⁃Pb(Ⅱ)⁃gallate complexes[J].Acta Chimica Sinica,2005(3):249-253,178.
- 18
汪莹莹. 没食子酸、并没食子酸的分离、性能及应用研究[D].合肥:安徽大学,2012.
WANG Ying⁃ying. Separation, properties and application of gallic acid and ellagic acid [D]. Hefei:Anhui University, 2012.
- 19
Zárate G R, Gregorio V L, Lapidus G T. Selective leaching of lead from a lead–silver–zinc concentrate with hydrogen peroxide in citrate solutions[J]. Canadian Metallurgical Quarterly,2015,54(3): 305-309.
- 1
摘要
鞣酸铅(Ta⁃Pb)是双基系固体推进剂的高效燃烧催化剂,但其催化活性受化学组成、结构等多个因素的影响,导致在实际应用中易出现批次间燃烧催化性能差异较大的问题。为了解决这一问题,探究了氧化铅法和醋酸铅法制备的鞣酸铅样品对推进剂燃速和压强的影响规律,并从P
Abstract
Lead tannate (Ta⁃Pb) is usually used as a high⁃efficiency combustion catalyst for double⁃base propellants, but its catalytic efficiency is greatly affected by various factors such as chemical compositions and structure. Therefore, the catalytic performance of Ta⁃Pb is usually not predictable which limits its widely practical applications. In order to solve the above problems, the effects of Ta⁃Pb samples prepared by both lead oxide and lead acetate methods on the burning rate and pressure exponent of double⁃base propellants have been investigated. Furthermore, the catalytic combustion properties of Ta⁃Pb prepared under different conditions, such as different P
Graphic Abstract
图文摘要
The factors that may influence combustion⁃catalysis properties of Ta⁃Pb were studied systematically from the aspects of preparation method, P