1 引 言
子弹高速撞击炸药时,在炸药中产生冲击波,同时在穿透炸药过程中,子弹与炸药之间产生摩擦热,炸药在冲击波和摩擦热的共同作用下可能发生燃烧或爆轰反
应[1] 。复杂战场环境下,带壳装药可能受到子弹或碎片撞击,导致武器平台或弹药库着火甚至爆炸,引发安全性问题。因此,枪击条件下带壳装药的响应安全性是目前不敏感弹药的研究热点。国内外学者对含能材料的机械撞击响应问题进行了广泛的研究。但大多以理论、数值计算或者试验的方法对平面装药的响应研究为主,如对平面带壳装药的枪击响应特
性[2,3] 、尺寸效应[4,5] 和破片冲击起爆[6,7,8,9] 研究,然而由于平面和圆柱形装药结构的差异,这些研究结论对圆柱形带壳装药是否适用尚待验证。一些学者也曾对圆柱形带壳装药的枪击响应特性进行了研究,其中Hamaide等[10] 对枪击试验中战术固体火箭发动机发生的延迟爆炸现象进行了仿真分析,发现发动机的延迟爆炸与推进剂的感度和内孔型装药结构有关;Eishu Kimura[11] 等发现子弹和纤维壳体之间的摩擦力小于子弹和钢壳体之间的摩擦力,纤维壳体能有效降低推进剂的枪击感度;刘所恩等[12] 开展了7种RDX含量推进剂的枪击试验,发现RDX含量的提高增加了推进剂的燃烧概率。但这些研究并未给出子弹撞击不同位置时圆柱形推进剂带壳装药的响应差异,且由于测试手段单一,也并未对枪击后的空气超压和破片速度进行定量分析。为此,本研究通过多参量测试,利用高速摄影图像、超压传感器和测速靶板,记录某圆柱形带壳装药(Φ170 mm×200 mm)的响应过程、空气超压和破片速度,分析了子弹撞击位置对圆柱形带壳装药反应程度的影响,并对带壳装药的理想爆轰进行了数值计算,结果可为评估带壳装药的枪击安全性提供参考。
2 枪击试验及结果
2.1 试验装置
圆柱形带壳推进剂装药的枪击试验布置如图1所示,由带壳装药、12.7 mm弹道枪、支架、红外热像仪、高速摄影机、自由场超压传感器(1~9)、测速靶板(A~E)和采集设备组成。带壳装药尺寸为Φ170×200 mm,其内部填充某高能固体推进剂(主要成分为HMX、氧化剂、铝粉、粘合剂,密度为1.836 g·c
m-3 );壳体材料为碳纤维增强塑料,可实现装药钝感化。大、小端盖材料为铝,和支架上的限位装置配合,以固定带壳装药;采集卡、放大器等采集设备置于防护墙后,采样频率为200 kHz。2.2 试验方法
试验中用12.7 mm弹道枪垂直射击圆柱形带壳装药,枪口保持水平并与装药高度相同。前三发子弹垂直入射带壳装药轴线,第四发子弹撞击位置偏离轴线30 mm,以对比不同撞击位置对推进剂反应程度的影响。子弹为穿甲燃烧弹,高速摄影机标定出试验中子弹速度范围为845~860 m·
s-1 。带壳装药距离枪口5 m,距离地面高1.3 m。在带壳装药前方布置9个与装药轴线同高度的不同距离和方位的自由场超压传感器,用以测量推进剂反应后的空气超压,传感器1~4、5~8、9分别距离装药中心0.5, 1, 1.5 m传感器的布置角度错开,防止互相遮挡影响测试结果。在以带壳装药为中心且半径相同的圆周上布置5个测速靶板,用以测量壳体破片速度并记录破片撞击靶板后的穿孔或凹坑,测速靶板距离装药2 m。高速摄影机和红外热像仪记录装药的响应过程和温度响应,用来判断推进剂的反应情况。2.3 试验结果与分析
第三次枪击试验中带壳装药的点火、燃烧及相应时刻的热像图如图2所示,可见当子弹垂直入射带壳装药轴线后推进剂发生点火(图2a),并产生浓烟,浓烟消散后暂时熄火,随后推进剂落地长时间低压燃烧直至燃尽(图2b)。由图2a可见,带壳装药点火瞬间的温度为208.4 ℃,由于壳体的遮挡导致图像显示温度可能低于推进剂点火的温度;由图2b可见,带壳装药落地燃烧瞬时温度可达1310 ℃。图3为第三台带壳装药残骸图,由图3可知,所有含能材料燃尽、壳体发生破裂、端盖几乎完好,结合高速图像和壳体残骸图可判断带壳装药发生了爆燃反应。共进行了四次圆柱形带壳装药的枪击试验,前三次带壳装药响应过程相同,均发生爆燃反应,第四次几乎无反应。通过图像及推进剂装药创伤通道可知第四次试验中子弹撞击位置偏上(撞击点偏移轴线大约30 mm),子弹撞击后仅冒出火光(部分火光可能来自穿甲燃烧弹头的燃烧剂,且火光明显弱于前三次试验),随后熄火并未燃烧,反应程度明显低于前三次试验。分析原因可能是撞击位置的偏移导致子弹在推进剂中的穿行距离变短,对推进剂的做功减少,导致推进剂反应程度低。且临界起爆速度随偏移距离的增大呈现指数增
加[13] ,在子弹速度不变的情况下,撞击位置偏移轴线时,反应程度会降低。图2 带壳装药点火、燃烧高速录像及热像图
Fig.2 High⁃speed and thermal images of the ignition and combustion of the shelled charge
测量了第三、四次试验中带壳装药反应的空气超压,各个超压传感器处的空气超压峰值结果见表1,序号记为p3和p4,试验中典型空气超压时程曲线如图4所示(图中超压p的下标依次表示试验次序和传感器序号)。分析对比表1发现:第三次试验中各个位置的空气超压峰值均大于第四次,这是由于第三次试验的推进剂反应程度高于第四次造成的;超压传感器距离装药越远,测得空气超压峰值越小,而距离相等时,更靠近子弹飞行迹线的空气超压峰值更大(如p32大于p31);带壳装药轴线方向上的不对称性以及大小端盖的遮挡作用导致距装药相同距离处的超压峰值数值不相等(如p31和p34不相等)。
表1 空气超压峰值测试值
Table 1 Air peak overpressures
number distance / m p3 / kPa p4 / kPa 1 0.5 91.65 / 2 0.5 124.55 / 3 0.5 192.30 72.9 4 0.5 81.2 29.16 5 1 25.4 15.2 6 1 25.4 15.5 7 1 25.6 24.3 8 1 35 25.02 9 1.5 14.03 / NOTE: p3 and p4 are air overpressures in the third and fourth tests, respectively.
带壳装药遭受意外击打所产生的碎片可作为毁伤元对我方人员或战斗系统造成损伤,研究破片的飞行速度具有重要意义。枪击试验中的壳体破片速度测试值见表2,序号记为V1~V4。第一、二次枪击试验中A和D靶板置于带壳装药前方,未测到破片,后续试验中将靶板A~E均置于装药后方。分析高速图像发现壳体破片主要产生于子弹撞击后推进剂发生点火的瞬间,说明子弹的撞击和推进剂的点火反应是产生破片的主要原因。观察表2可知,前三次试验的破片速度均高于第四次,分析原因可能是由于前三次试验推进剂的反应程度更高造成的,说明推进剂的反应对壳体破片有加速效应。高速破片穿过测速靶板会留下穿孔,低速破片在测速靶板表面会留下凹坑,回收第三、四次试验后测速靶板如图5所示。观察靶板表面的穿孔和凹坑形状发现,破片多为细小碎片,易于加速,因此无反应和爆燃反应下的破片最高速度可达70.1 m·
s-1 和428.6 m·s-1 。对比图5a、图5b和图5c、图5d可知第三次试验的靶板穿孔和凹坑数量多于第四次试验,说明反应程度高的带壳装药会产生更多的破片。3 带壳装药理想爆轰数值模拟
相对能量释放率定义为实测超压与理想爆轰条件下的计算超压之比,用于定量评估炸药的反应程
度[14] 。通过上节的枪击试验得到了带壳装药反应后的空气超压,本节对带壳装药的理想爆轰进行数值计算,以得到对应位置的计算超压,从而定量分析带壳装药在枪击试验中的反应程度。3.1 仿真模型
建立圆柱形带壳装药理想爆轰1/2二维轴对称模型如图6所示。为简化计算,提高计算效率,建立空气域大小240 mm×500 mm,欧拉网格大小0.5 mm×0.5 mm,网格数量为480000。考虑到仿真中材料的大变形和高应变率,对空气域、端盖、壳体和推进剂进行Euler网格划分,并设置Flow⁃out无反射边界和中心点起爆。在空气域中设置观测点2和3对应2号和3号超压传感器以记录空气超压。
壳体和端盖的材料状态方程、强度模型和侵蚀准则列于表3中,参数取自AUTODYN标准材料库。推进剂采用JWL状态方
程[15] :表3 壳体和端盖材料模型
Table 3 Material models of the shell and end cover
component material equation of state strength model failure model shell Kevlar ortho elastic geometric strain end cover Al⁃7039 shock Johnson Cook geometric strain 式中,p为爆轰产物压力,Pa;V为爆轰产物的相对比容;E0为初始体积能量,J·
m-3 或Pa;A、B、R1、R2、ω为常数,取值为A=909.59 GPa, B=60.25GPa, R1=5、R2=1.82、ω=0.2 [16] 。3.2 计算结果
提取仿真程序中观测点2和3的空气超压时程曲线如图7所示,分别记为ps2和ps3。由图7可知ps2和ps3超压峰值分别为12229.5 kPa和15424.6 kPa,两点超压峰值均值为13827.05 kPa。带壳装药的轴线方向上的不对称性以及大、小端盖对爆轰波的阻挡和反射作用导致ps2和ps3并不相等。试验中空气超压p32和p33的峰值均值为158.43 kPa,则第三台带壳装药的相对能量释放率为1.146%;由于仅得到p43峰值为72.9 kPa,计算p43和ps3峰值之比得到第四台带壳装药的相对能量释放率为0.473%。
4 结 论
对某型带壳装药进行了四次枪击试验,并对带壳装药的理想爆轰进行了数值模拟计算,得到结论如下:
(1) 子弹撞击位置对圆柱形带壳装药的枪击响应影响较大,当子弹垂直入射带壳装药轴线时,发生点火、冒烟、熄火以及燃烧的时序响应,而当子弹撞击位置偏离轴线一定距离(大约30 mm)时,推进剂几乎无反应,子弹垂直入射带壳装药轴线时,其反应更剧烈。
(2) 推进剂的反应对壳体破片有加速效果,推进剂反应程度更高时壳体破片速度更高,前三次试验推进剂发生爆燃反应时的破片速度可达428.6 m·
s-1 ,而第四次推进剂几乎无反应时的破片速度最高仅有70.1 m·s-1 。(3) 子弹撞击位置对柱壳装药的能量释放率有一定影响,子弹垂直入射带壳装药轴线推进剂发生爆燃反应时的相对能量释放率为1.146%,而撞击位置偏离带壳装药轴线推进剂几乎无反应时的相对能量释放率为0.473%,撞击位置偏离发动机轴线时,推进剂的能量释放率降低。
(责编: 王艳秀)
参考文献
- 1
张冠人,陈大年.凝聚炸药起爆动力学[M].北京:国防工业出版社,1991:258-259.
ZHANG Guan⁃ren, CHEN Da⁃nian. Initiation dynamics of condensed explosives[M].Beijing: National Defense Industry Press,1991:258-259.
- 2
聂少云,赵学峰,姚奎光,等.枪击环境下带空腔双层装药的响应特性[J] .火炸药学报,2018,41(6):582-587.
NIE Shao⁃yun,ZHAO Xue⁃feng, YAO Kui⁃guang,et al. Response characteristics of double⁃layer charge with cavity under bullet impact environment[J]. Chinese Journal of Explosives and Propellants,2018,41(6):582-587.
- 3
吕玺,庞维强,李军强,等.HTPE钝感推进剂的子弹撞击和快速烤燃特性[J].火炸药学报,2019,42(1):79-83.
LÜ Xi, PANG Wei⁃qiang, LI Jun⁃qiang, et al. Bullet impact and fast cookoff characteristics of HTPE insensitive solid propellant[J]. Chinese Journal of Explosives and Propellants,2019,42(1):79-83.
- 4
代晓淦,申春迎,吕子剑,等.枪击试验中不同尺寸PBX⁃2炸药响应规律研究[J] .含能材料,2008,16(4):432-435.
DAI Xiao⁃gan, SHEN Chun⁃ying, LÜ Zi⁃jian, et al. Reaction properties for different size PBX⁃2 explosives in bullet impact test[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008 , 16(4):432-435.
- 5
Danzhu Ma, Yong Tian,Jingming Li,et al. Effects of specimen size on impact⁃induced reaction of high explosives [J]. Combustion Science and Technology, 2013,185:1227-1240.
- 6
陈卫东,张忠,刘家良.破片对屏蔽炸药冲击起爆的数值模拟和分析[J].兵工学报,2009,30(9):1187-1191.
CHEN Wei⁃dong, ZHANG Zhong, LIU Jia⁃liang. Numerical simulation and analysis of shock initiation of shielded explosive impacted by fragments[J]. Acta Armamentarii, 2009,30(9):1187-1191.
- 7
周双,陈利,张庆明.碎片冲击起爆带壳装药的数值模拟[J].兵工学报,2015,36(1):317-321.
ZHOU Shuang, CHEN Li, ZHANG Qing⁃ming. Numerical simulation of shock initiation of confined charge by debris impact[J]. Acta Armamentarii,2015,36(1): 1317-321.
- 8
路迎,王芳,卞晓兵,等.破片对复合壳体装药冲击起爆判据的研究[J].兵工学报,2017,38(1):194-199.
LU Ying, WANG Fang, BIAN Xiao⁃bing,et al. Shock initiation criterion of composite shell charges under impact of fragment[J]. Acta Armamentarii, 2017, 38(1):194-199.
- 9
李小笠,屈明,路中华,等.三种破片对带壳炸药冲击起爆能力的数值分析[J].弹道学报,2009,21(4):72-75.
LI Xiao⁃li, QU Ming, LU Zhong⁃hua, et al. Numerical analysis of impact initiation ability of three kinds of fragments on shell explosive[J]. Journal of Ballistics,2009,21(4) : 72- 75.
- 10
Hamaide S, Quidot M, Brunet J. Tactical solid rocket motors response to bullet impact [J]. Propellants, Explosives, Pyrotechnics,2010,17(3):120-125.
- 11
Eishu Kimura, Yoshio Oyumi. Sensitivity of azide polymer propellants in fast cook⁃off, card GAP and bullet impact tests[J]. Journal of Energetic Materials,1997,15:163-178.
- 12
刘所恩,赵效民,赵美玲,等.螺压硝胺改性双基推进剂对机械刺激的安全性分析[J].含能材料,2013,21(6): 818-820.
LIU Suo⁃en, ZHAO Xiao⁃min, ZHAO Mei⁃ling, et al. Safety performance of modified nitramine double base propellant by screw extrusion subject to mechanical stimulus[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2013,21(6):818-820.
- 13
王昕,蒋建伟,王树友,等.钨球对柱面带壳装药的冲击起爆数值模拟研究[J] .兵工学报,2017,38(8):1498-1505.
WANG Xin, JIANG Jian⁃wei, WANG Shu⁃you, et al. Numerical simulation on the initiation of cylindrical covered charge impacted by tungsten sphere fragment[J]. Acta Armamentarii ,2017,38(8):1498-1505.
- 14
Idar D J, Straight J W, Osborn M A, et al. Low amplitude impact of damaged PBX 9501[J].AIP Conference Proceedings,1999, 505:655-658.
- 15
Kury J W, Hornig H C, Lee E L, et al. Metal acceleration by chemical explosive[C]//Proceedings of the 4th International Symposium on Detonation. Berlin, Germay: Springer,1965:3-13.
- 16
崔浩,郭锐,宋浦.固体发动机跌落安全性数值分析[J] .兵工学报,2018,39(1):66-71.
CUI Hao, GUO Rui, SONG Pu. Numerical analysis of safety for solid motor during falling process[J]. Acta Armamentarii, 2018,39(1):66-71.
- 1
摘要
为研究某圆柱形带壳推进剂装药的枪击响应特性,设计了一种12.7 mm子弹撞击试验。利用高速摄影机记录带壳装药在子弹撞击下的响应过程,并测试不同距离、方位处的空气超压及壳体破片速度,同时进行带壳装药在理想爆轰条件下的数值计算,得到了带壳装药的能量释放率。一共开展了四次圆柱形带壳装药的枪击试验,前三次装药发生了爆燃反应,第四次几乎无反应。结果表明:子弹撞击位置对圆柱形带壳装药的反应和能量释放率有较大影响,当子弹垂直入射带壳装药轴线后,推进剂发生点火、冒烟、熄火和低压燃烧的时序响应,其相对能量释放率为1.146%;而当子弹撞击位置偏离轴线一定距离时,推进剂几乎无反应,其相对能量释放率仅为0.473%; 推进剂的反应对壳体破片有加速效应,带壳装药发生爆燃反应时的破片速度可达428.6 m·
Abstract
In order to study the response characteristics of cylindrical shelled propellant charges under the impact of the bullet, a kind of 12.7 mm bullet impact test was designed. The high⁃speed camera recorded the response of the shelled charges under the impact of a 12.7 mm bullet. Shell fragment velocities and air overpressures at different positions and azimuths were measured. Besides, the ideal detonation of the shelled charge was numerically calculated and the relative energy release rate was obtained. Four bullet impact tests of cylindrical shelled charge were carried out totally, in the first three tests, deflagration reaction occurred in the charge, and in the fourth test, almost no reaction occurred in the charge. Results show that the reaction and relative energy release rate are great influenced by the impact position. A time sequence response of ignition, smoking, extinguishment and low⁃pressure combustion occurred in the propellant when the bullet impacted vertically on the axis of the shelled charge, and its relative energy release rate was 1.146%. When the bullet impact position deviated from the axis by a distance, the propellant almost had no reaction, and its relative energy release rate was only 0.473%. The reaction of propellant can accelerate the shell fragments. When the deflagration reaction occurred in the shelled charge, the fragment velocity could reach 428.6 m·