1 引 言
新型导弹对固体火箭发动机提出了短时间内产生大推力的需
求[1] ,需采用高燃速推进剂。高氯酸铵(AP)高燃速推进剂[2] 一般采用添加二茂铁类燃速催化剂和细粒度AP来提高燃速。但是,含AP/双核二茂铁衍生物(DFD)的高燃速推进剂存在静电感度和机械感度(撞击感度和摩擦感度)急剧升高、危险性增大等问题,严重制约了该类推进剂的应用。国内外学者在二茂铁及其衍生物的设计、合成和结构表
征[3,4,5] 、二茂铁衍生物的迁移特性[2,6] 和对AP的催化热分解特性[4,5,6] 方面开展了大量研究工作,合成了小分子单核、双核或多核二茂铁类化合物、聚合型大分子二茂铁类化合物、二茂铁离子型化合物及二茂铁类配合物等燃速催化剂。Abdin等[6] 研究了二茂铁化合物的催化机理。加热过程中,二茂铁单元解构生成的茂环和Fe原子分别被AP分解产物氧化生成CO2 和纳米Fe2 O3 ,纳米Fe2 O3 进一步加速AP的热分解。李健等[7] 模拟了AP粒度对AP/HTPB推进剂撞击起爆的影响。结果表明,AP颗粒爆炸是局部反应;撞击作用下,AP变形越集中,变形升温和化学反应温升越大,爆炸概率越大。张炜
等[8] 研究了二茂铁种类对超细AP/二茂铁体系撞击感度和摩擦的影响。结果表明,单核或双核DFD均使超细AP/二茂铁混合物的撞击感度和摩擦感度显著升高;超细AP/二茂铁体系的撞击感度与二茂铁催化剂的铁含量不存在相关关系,而超细AP/二茂铁体系的摩擦感度与二茂铁的铁含量存在正相关关系。张炜等[9] 分析了DFD的反应特性,研究了DFD分子结构特性与超细AP/DFD二元体系撞击感度间的关系。周俊红等[10] 分别计算了AP分子、AP分子簇、AP晶面与2,2⁃双(乙基二茂铁)丙烷(GFP)之间的相互作用。结果表明,低温(低于250 ℃)下GFP与AP的反应主要是AP分解的H+ 或NH4 +与GFP质子化生成GFP⁃H+ 或GFP⁃NH4 +,GFP质子化离子易氧化。姜本正等[11] 发现超细AP/GFP混合物存在低温氧化反应,放热峰温为173 ℃;超细AP/GFP混合物中GFP氧化过程有FeO、Fe2 O3 和FeClx 生成;认为低温氧化反应是超细AP/GFP混合物高感度的诱因之一。但关于二茂铁衍生物分子结构对超细AP/DFD体系机械感度的影响机制尚无定论。为此,本工作研究了四个新型DFD的分子结构、AP与DFD相互作用、超细AP/DFD体系的热分解特性及机械感度特性,阐明了超细AP/DFD体系撞击感度和摩擦感度的触发机制。2 理论计算与实验
2.1 实验部分
2.1.1 实验材料
超细AP,中位粒径(D50,AP)为6.75 μm,黎明化工研究院有限公司提供;DFD,纯度98%,上海有机所提供。
以目前常用的高效双核二茂铁衍生物——GFP为比较对象,设计了两组共四个新型双核二茂铁衍生物,四个新型双核二茂铁衍生物及GFP的分子结构和铁含量如表1所示。
表1 DFDs的分子结构参数
Table 1 Molecular parameters of DFDs
group symbol molecular formula bridge group side group Fe / % Ⅰ DEFM H5 C2 —Fc—CH2 —Fc—C2 H5 —C H2 —two ethyls 25.45 EDFM Fc—C H2 —Fc—C2 H5 —C H2 —one ethyl 27.18 BDFM Fc—C H2 —Fc—C4 H9 —C H2 —one butyl 25.45 Ⅱ GFP H5 C2 —Fc—C(CH3 )2 —Fc—C2 H5 —C(C H3 )2 —two ethyls 23.93 TBPF (C H3 )3 C—Fc—C(CH3 )2 —Fc—C(CH3 )3 —C(C H3 )2 —two t⁃butyls 21.37 第Ⅰ组双核二茂铁衍生物包括DEFM、EDFM和BDFM。其分子结构特征是二茂铁间桥联基团为亚甲撑,二茂铁基的取代烷基分为单侧取代和双侧取代两种:DEFM分子的二茂铁基两侧均为相同的乙基,即为对称结构;EDFM和BDFM分子的二茂铁基均为单侧取代烷基,两者的差别是EDFM的二茂铁基单侧取代基为乙基,Fe含量最高;而BDFM的二茂铁基单侧取代基为丁基。本组内比较的是: ①单侧基(EDFM)与双侧基(DEFM)的不同,两者Fe含量相同; ②同为单侧基时,乙基(EDFM)和丁基(BDFM)的不同。
第Ⅱ组双核二茂铁衍生物包括GFP和TBPF。其分子结构特征是两个二茂铁基之间的桥联基团为叔丙基,二茂铁基两侧均为相同的烷基,即分子为对称结构。组内比较的是侧基——乙基和叔丁基的不同。
2.1.2 样品制备
按超细AP与DFD的质量比为95∶5,称取一定质量的超细AP和DFD,加入乙酸乙酯溶剂并在常温下超声分散,混合均匀,将超细AP/DFD混合物放入旋转蒸发仪,在50 ℃条件下至乙酸乙酯完全蒸发,取出样品放入真空干燥箱,在50 ℃下干燥2 h,得到超细AP/DFD样品。
2.1.3 热分解特性测试
采用北京恒久科学仪器厂HTF型TG⁃DTA综合热分析仪,氩气气氛,常压下升温速率为10 ℃·mi
n-1 ,温度范围为室温~500 ℃,试样量2.0~2.5 mg。2.1.3 超细AP/DFD的撞击感度测试
采用撞击感度仪,按照GJB772-1997方法601.2特性落高法,采用升降法测试超细AP/DFD体系撞击感度的特性落高(H50);试验条件:落锤质量:(2.000±0.002) kg;药量:(20±1) mg;温度:25 ℃;相对湿度:40%;在同一落高下,每个样品进行50次平行实验,
2.1.4 超细AP/DFD的摩擦感度测试
采用摩擦感度仪,按照GJB772-1997方法602.1爆炸概率法进行试验,试验条件: 摆锤质量(1500±10) g; 摆角(66±1)°;表压(1.0±0.05)MPa;药量(20±1)mg;温度25 ℃;相对湿度40%;每个样品进行100次平行实验。
2.2 计算方法
采用Gaussia
n[12] 商用软件,基于密度泛函理论(DFT)的B3LYP方法[13] ,结合6⁃311G*基组,对双核二茂铁衍生物进行结构优化,得到的分子平衡构型经振动频率分析无虚频,表明其为相对稳定构型,计算得到的DFD平衡分子结构如图1和图2所示。图1 带亚甲基桥连基的DFDs的平衡分子结构
Fig.1 Equilibrium molecular configurations of DFDs with methylene bridge group
图2 带叔丙基桥连基的DFDs的平衡分子结构
Fig.2 Equilibrium molecular configurations of DFDs with methylethlidene bridge group
AP分解产物与DFD之间的相互作用能及AP晶面⁃DFD结合能的计算,在Materials Studio的Dmol3模块中进行,采用Perdew⁃Burke⁃Ernzerhof(PBE)泛函形式和双数值轨道+极化函数(DNP)基组。为了更精确地计算AP/DFD体系存在的色散相互作用,经过对二茂铁计算数据与实测值比较,计算时采用了Grimme色散校正方
法[14] 。3 结果与讨论
3.1 超细AP/DFD体系的机械感度
超细AP/DFD体系的撞击感度和摩擦感度测试结果见表2。由表2可见,超细AP/DFD体系撞击感度的顺序为:
表2 超细AP/DFD体系的机械感度
Table 2 Mechanical sensitivities of fine AP/DFD
AP/DFD Ⅰ Ⅱ AP/DEFM AP/EDFM AP/BDFM AP/GFP AP/TBPF H50 / cm 6.17 7.47 6.03 6.88 7.24 Pf / % 46 68 80 80 86 Ⅰ组: AP/BDFM>AP/DEFM> AP/EDFM;
Ⅱ组: AP/GFP>AP/TBPF
超细AP/DFD体系摩擦感度的顺序为:
Ⅰ组:AP/BDFM>AP/EDFM>AP/DEFM;
Ⅱ组:AP/TBPF> AP/GFP
显然,超细AP/DFD体系撞击感度顺序与摩擦感度顺序完全不同,即在撞击感度测试过程冲击载荷和摩擦感度测试过程剪切载荷作用下,超细AP/DFD体系的触发机制不同。
3.2 DFD分子结构与超细AP/DFD体系撞击感度的相关性
3.2.1 DFD分子结构特性与超细AP/DFD体系撞击感度的相关性
对大量分子结构参数及其计算结果分析后,选择了分子及特征基团的静电势(EP)和前线轨道能级差(EL⁃H)等参数作为分子结构特性的表征参数(表3)。
表3 DFD分子结构特性参数
Table 3 Characteristic parameters of DFD Molecular structures
group symbol EPM/kJ·mo l-1 EPFC2/kJ·mo l-1 EL⁃H/kJ·mo l-1 Ⅰ DEFM 3.959 -7.085 503.702 EDFM 3.592 -6.674 499.475 BDFM 3.873 -7.089 499.580 Ⅱ GFP 4.118 -7.069 500.972 TBPF 5.220 -6.416 499.501 NOTE: EPM is the molecular electrostatic potential, EPFC2 is the electrostatic potential of negative ferrocene, EL⁃H is the difference of frontline orbital energy.
取分子表面电荷密度0.001的等值面作为体系的VdW面,研究在VdW面上静电势的分布情况。从Ⅰ组的DFD分子静电势(EPM)可以看出:DEFM分子的静电势最高,说明尽管该分子具有反对称结构,但两个侧乙基的推电子作用使该分子具有较大的极性;在单侧取代基的条件下,与DEFM相比,EDFM和BDFM的单侧基结构并不显著提高分子的极性,但丁基的推电子作用强于乙基的推电子作用。
本文的特征基团静电势是指在分子特征基团VdW面上的平均静电势,以反映所对应的分子特征基团表面静电势电负性的强弱情况。从DFD分子中负电性二茂铁基的静电势(EPFC2)可以看出:BDFM最高,DEFM略低,EDFM最小。说明侧基的推电子作用强弱和侧基的数量对负电性二茂铁基的静电势起主导作用。
DFD分子的前线轨道能级差(EL⁃H)数据表明,对称性分子——DEFM具有良好的稳定性,侧基单取代的双核二茂铁衍生物稳定性稍差。即三种亚甲撑桥联基团双核二茂铁衍生物的稳定性顺序为DEFM>EDFM≈BDFM。
结合表2中超细AP/DFD体系的特性落高数据,发现两组双核二茂铁衍生物分子中的负电性二茂铁基静电势与超细AP/DFD体系撞击感度具有相关关系,如图3所示。由图3可见,两组双核二茂铁衍生物分子中二茂铁基静电势的负电性越小,即反应活性越弱,对应的超细AP/DFD体系撞击感度越小。因此,Ⅰ组中AP/EDFM的撞击感度最低,Ⅱ组中AP/TBPF的撞击感度最低。
3.2.2 DFD⁃AP分子的相互作用与超细AP/DFD体系撞击感度的相关性
AP为无机离子化合物,其热分解一般遵循质子转移机
理[15] :其后,HCl
O4 进一步分解,生成一系列的氧化性产物。AP的热分解也有电子转移机理[16] 说:且
因此,AP的初始分解产物主要包括N
H4 +或质子(H+ )、HClO4 等。在考虑DFD⁃AP分子的相互作用中,本文考虑AP主要分解产物(NH4 +和HClO4 )与DFD分子间的相互作用。根据二茂铁衍生物分子静电势表面的特点,考虑DFD与AP分子分别以“TOP”、“SIDE”(SIDE1)、“TOP”和“SIDE”同时存在(SIDE2)三种可能作用方
式[10] ,优化后结构模型如图4所示。其中“TOP”作用方式为茂环与AP之间的配对相互作用,“SIDE1”作用方式为铁原子与AP之间的配对相互作用,“SIDE2”作用方式为AP同时与Fe原子、茂环相互作用。AP分解产物与DFD之间的相互作用能计算结果如表4所示。由表4可见,在DFD分子与N
H4 +的三种结合方式中,SIDE2方式结合最强,TOP方式次之,SIDE1方式最弱。原因在于DFD分子与NH4 +的结合本质上是DFD分子中负电性的茂环与质子的结合,显然质子与显正电性的铁原子结合最弱。在DFD分子与HClO4 的两种结合方式中,两者差异不大,TOP的相互作用能略大于SIDE1结合方式。DFD分子与NH4 +的相互作用能大于DFD分子与HClO4 的相互作用能,说明DFD分子负电性的茂环与NH4 +的相互作用占主导地位。这也验证了图3结果的正确性。表4 DFD和AP分解产物的相互作用能
Table 4 Interaction energy between DFD and AP decomposited productskJ·mo
l-1 group product of AP N H4 +HCl O4 interaction mode TOP SIDE1 SIDE2 TOP SIDE1 Ⅰ DEFM -128.43 -100.14 -161.73 -61.14 -58.97 EDFM -126.45 -94.84 -160.36 -61.19 -55.69 BDFM -130.39 -100.82 -162.30 -63.15 -57.38 Ⅱ GFP -141.71 -115.13 -167.01 -62.19 -62.65 TBPF -149.54 -119.58 -168.06 -62.44 -55.65 结合表2中超细AP/DFD体系的特性落高数据,发现两组DFD⁃N
H4 +、DFD⁃HClO4 的最低相互作用能与超细AP/DFD体系撞击感度相关如图5所示。由图5可以看出,对于亚甲撑桥联基双核二茂铁衍生物,DFD⁃NH4 +和DFD⁃HClO4 的相互作用能越小,超细AP/DFD体系的撞击感度越低;对于叔丙基桥联基双核二茂铁衍生物,DFD⁃NH4 +相互作用能越大、DFD⁃HClO4 的相互作用能越小,超细AP/DFD体系的撞击感度越低。说明DFD分子与AP热分解产物之间的相互作用影响着超细AP/DFD体系的撞击感度,据此推测在超细AP/DFD体系受重锤撞击过程中,冲击载荷及其对空气的压缩加热作用首先诱发了AP的热分解反应,然后才是DFD对AP热分解反应的催化作用和反应,即AP热分解反应是撞击感度触发的关键影响因素。3.2.3 超细AP/DFD体系热分解特性与其撞击感度的相关性
本课题组研究发
现[11] ,在惰性气氛、程序升温条件下,在180 ℃左右,超细AP/DFD体系会出现一个小放热峰。经分析,确认该峰为AP存在时DFD的氧化峰。即按温度升高的顺序,超细AP/DFD体系的热分解过程包括DFD低温氧化、AP晶型转变、AP低温和高温热分解四个峰。因AP晶型转变与超细AP/DFD体系的感度关系不大,在此不做讨论。超细AP/DFD体系的热分解特征量如表5所示。超细AP/DFD体系热分解温度与该体系特性落高的关系如图6所示。由图6可见:两组超细AP/DFD体系的高温热分解峰温越低,高温热分解峰温与DFD低温氧化峰温之差越小,该体系的撞击感度越低。即DFD低温氧化反应和AP高温热分解反应温差越小,即超细AP/DFD体系的三个放热反应过程越集中,体系的撞击感度越低。
表5 超细AP/DFD体系的热分解特征量
Table 5 Characteristic parameters of thermal decomposition of fine AP/DFD
sample Ⅰ Ⅱ AP/DEFM AP/EDFM AP/BDFM AP/GFP AP/TBPF Tp,ox⁃DFD1) / ℃ 168.4 170.1 168.6 187.7 198.4 Tp,LTD2)
/ ℃
310.9 309.9 306.7 310.1 309.1 Tp,HTD3)
/ ℃
353.4 349.5 361.2 362.5 360.2 ΔTp,LTD⁃DFD4)
/ ℃
142.5 139.8 138.1 122.4 110.7 ΔTp,HTD⁃DFD5)
/ ℃
185.0 179.4 192.6 174.8 161.8 NOTE: 1) refers to the peak temperature of low⁃temperature oxidation of DFD and fine AP mixture; 2) refers to the peak temperature of low⁃ temperature decomposition; 3) refers to the peak temperature of high⁃ temperature decomposition; 4) refers to the difference of Tp,LTD and Tp,ox⁃DFD; 5) refers to the difference of Tp,HTD and Tp,ox⁃DFD.
3.3 DFD分子结构与超细AP/DFD体系摩擦感度的相关性
3.3.1 AP晶面⁃DFD结合能与超细AP/DFD体系摩擦感度的相关性
以DEFM和EDFM两种二茂铁衍生物分子为例,研究了双核二茂铁衍生物与AP常见晶面——(101)、(011)、(111)、(200)、(210)晶面的相互作用。优化后的AP(011)晶面⁃DFD的典型结合方式如图7所示,部分计算结果如表6所示。表6计算结果表明:DEFM、EDFM两种DFD与AP晶面结合能的大小顺序为:(101)>(011)>(111)>(200)>(210);当桥联基团均为亚甲撑时,AP晶面⁃EDFM的结合能均大于AP晶面⁃DEFM的最低结合能,表明单侧取代基的DFD对AP晶面的结合能更强。
表6 DFD和AP晶面的结合能
Table 6 Binding energy between DFD and crystal planes of APkJ·mo
l-1 crystal plane of AP DEFM EDFM (101) -346.78 -350.73 (011) -246.98 -280.76 (111) -178.02 -196.19 (200) -211.18 -181.23 (210) -88.73 -130.38 当桥联基团均为亚甲撑时(DEFM和EDFM),对比表2中超细AP/DEFM和超细AP/EDFM体系的摩擦感度数据,结合表6中相关数据,发现AP晶面与DFD的结合能越高,即AP晶面与DFD之间的相互作用越强,超细AP/DFD体系的摩擦感度越大。显然,与超细AP/DFD体系的撞击感度不同,在摩擦剪切力的作用下,该体系摩擦感度的触发因素是AP晶面与DFD之间的相互作用。
3.3.2 超细AP/DFD体系热分解特性与其摩擦感度的相关性
结合表2超细AP/DFD体系的摩擦感度和表5中热分解特征量数据,超细AP/DFD(I)体系的特征低温热分解峰温及特征低温热分解峰温与氧化峰的温差与摩擦感度的关系分别如图8和图9所示。
图8 超细AP/DFD(I)体系的低温热分解峰温与摩擦感度相关性
Fig. 8 Correlation between friction sensitivity and peak temperature of low⁃temperature thermal decomposition of fine AP/DFD(I) mixture
图9 超细AP/DFD体系的特征低温热分解峰峰温与氧化峰的温差与摩擦感度相关性
Fig. 9 Correlation between friction sensitivity and peak temperature difference of LTD of AP and LTO of DFD in fine AP /DFD mixture
由图8和图9可以看出,对于桥连基团为亚甲撑的DFD(DEFM、EDFM和BDFM),超细AP/DFD体系AP的低温热分解峰温越高,超细AP/DFD体系的摩擦感度越低;对于两组DFD,AP低温热分解峰温与DFD低温氧化峰温之差越大,超细AP/DFD体系的摩擦感度越低。即对于超细AP/DFD体系的摩擦感度而言,关键因素是DFD低温氧化和AP低温热分解段的反应,两类反应峰温温差越大,超细AP/DFD体系的摩擦感度越低。
4 结 论
双核二茂铁衍生物的分子结构、AP分解产物⁃DFD分子间及AP晶面⁃DFD相互作用、超细AP/DFD体系的热分解特性影响着该体系的机械感度。
(1) 超细AP/DFD体系的撞击感度和摩擦感度规律不同,说明两者的触发机制存在差异,撞击感度的触发源于AP热分解,摩擦感度的触发源于AP晶面⁃DFD相互作用和该体系低温段的反应。
(2) DFD二茂铁基静电势的负电性越小、HCl
O4 ⁃DFD分子间相互作用能越小、超细AP/DFD体系的AP高温热分解峰温越低、AP高温热分解峰温与DFD低温氧化峰温之差越小,超细AP/DFD体系的撞击感度越低。(3) AP晶面⁃DFD相互作用越弱、超细AP/DFD体系的AP低温热分解峰温越高、AP低温热分解峰温与DFD低温氧化峰温之差越大,超细AP/DFD体系的摩擦感度越低。
(责编: 王艳秀)
参考文献
- 1
Pamela J, Kaste B. Novel energetic materials for the future force: the army pursues the next generation of propellants and explosives [J]. The Amptiac Newsletter, 2004, 8(4): 85-89.
- 2
Muhammad U, Wang L, Yu H J, et al. Recent progress on ferrocene⁃based burning rate catalysts for propellant applications[J]. Journal of Organometallic Chemistry, 2018, 872: 40-53.
- 3
Lai Z M, Ye H M, Wan Q, et al. Synthesis, crystal structure and properties of benzimidazole⁃bridged dinuclear ferrocenyl derivatives[J]. Journal of Molecular Structure, 2014, 1059:33-39.
- 4
Xiao F J, Sun X A, Wu X F, et al. Synthesis and characterization of ferrocenyl⁃functionalized polyester dendrimersand catalytic performance for thermal decomposition of ammonium perchlorate[J]. Journal of Organometallic Chemistry, 2012, 713: 96-103.
- 5
王吉成, 袁耀锋, 卓继斌, 等. 2⁃茂铁基⁃4,5⁃二苯基咪唑离子液体的合成及对高氯酸铵热分解的催化作用[J]. 高等学校化学学报, 2018, 39(5):889-896.
WANG Ji⁃cheng, YUAN Yao⁃feng, ZHUO Ji⁃bin, et al. Synthesis of 2⁃Ferrocenyl⁃4, 5⁃diphenylimidazolium ionic liquids and their catalysis performance for thermal decomposition of ammonium perchlorate[J]. Chemical Journal of Chinese Universities, 2018, 39(5): 889-896.
- 6
Abdin Z U, Yu H, Wang L, et al. Synthesis, anti⁃migration and burning rate catalytic mechanism of ferrocene⁃based compounds[J]. Applied Organometallic Chemistry, 2014, 28(8):567-575.
- 7
李健, 张勇, 吴彦卓, 等. AP粒度对HTPB推进剂撞击起爆影响的数值模拟[J].火炸药学报, 2018,41(3):298-302.
LI Jian, ZHANG Yong, WU Yan⁃zhuo, et al. Numerical simulation of effects of AP particle size on impact initiation of HTPB propellant [J]. Chinese Journal of Explosives&Propellants, 2018,41(3):298-302.
- 8
张炜,杨军,俞艳,等. 二茂铁种类对超细AP/二茂铁体系感度的影响[J]. 含能材料,. 2011,19(6):627-631.
ZHANG Wei, YANG Jun, YU Yan, et al. Type of ferrocenes on sensitivities of ultra⁃fine AP and ferrocene mixture[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2011,19(6):627-631.
- 9
张炜, 周星, 鲍桐, 等. 双核二茂铁衍生物(DFD)分子结构对超细AP/DFD二元体系撞击感度的影响[J].火炸药学报,2016,39(5):58-63.
ZHANG Wei, ZHOU Xing, BAO Tong, et al. Effect of molecular structure of double⁃core ferrocene derivative(DFD)on impact sensitivity of superfine AP/DFD binary system[J]. Chinese Journal of Explosives&Propellants, 2016,39(5):58-63.
- 10
Zhou J H, Zhang W, Yang J, et al. Theoretical study of interactions between 2,2⁃bis (ethylferrocenyl) propane and ammonium perchlorate at low temperature [J]. Chemical Physics Letters, 2016, 652:79-85.
- 11
Jiang B Z, Zhang W, Yang J, et al. Low⁃temperature oxidation of catocene and its influence on the mechanical sensitivities of a fine⁃AP/catocene mixture[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(6):854-859.
- 12
Frisch M J, Trucks G W, Schlegel H B, etal. Gaussian 03[CP], Revision E.01, Gaussian, Inc , Wallingford CT, 2004.
- 13
Becke A D. Density functional thermochemistry. III. The role of exact exchange [J]. J Chem Phys, 1993, 98: 5648-5652.
- 14
Grimme S. Semiempirical GGA⁃type density functional constructed with a long⁃range dispersion correction [J]. J Comput. Chem, 2006, 27: 1787.
- 15
Jacobs R V, Russel A A. On the mechanism of decomposition of ammonium perchlorate[J]. Raketnaya Tekhnikai Kosmotavtika in Russian, 1967, 5(4): 275-278.
- 16
Boldyrev V V. Thermal decomposition of ammonium perchlorate[J]. Thermochimica Acta, 2006, 443(1): 1-36.
- 1
摘要
为了研究双核二茂铁衍生物(DFD)分子结构与超细高氯酸铵(AP)/DFD体系机械感度的相关性,采用计算化学与实验相结合的方法,探索了DFD分子结构、AP与DFD相互作用、超细AP/DFD体系的热分解特征量与该体系机械感度的相关性。结果表明,超细AP/DFD体系的撞击感度和摩擦感度的触发机制不同。超细AP/DFD体系机械感度的相关性分析表明,该体系撞击感度的触发源于AP热分解,超细AP/DFD体系的三个放热反应过程越集中,撞击感度越低;该体系摩擦感度的触发源于AP晶面⁃DFD相互作用和该体系低温段的反应,AP低温热分解峰温与DFD低温氧化峰温之差越大,摩擦感度越低。
Abstract
To study the relationship between the molecular structure of double⁃core ferrocene derivatives (DFDs) and mechanical sensitivity of fine AP/DFD, molecular structure of DFD, interaction between AP and DFD, characteristics of thermal decomposition of super fine AP/DFD, and mechanical sensitivity of the mixture were studied by simulation and experiments. The trigger mechanisms of impact and friction sensitivity of the AP/DFD mixture were different. The correlation analysis showed that the thermal decomposition of AP was the dependent factor on the impact sensitivity of the mixture, the closer profiles for the three exothermic reaction processes caused lower impact sensitivity. The friction sensitivity of the mixture was dependent on the reaction between DFD molecule and crystal planes of AP,Higher difference beween the lower thermal decomposition temperature of AP and DFD led to lower friction sensitivity.