1 引 言
随着战争模式转变,新型武器装备研发,武器系统要求炸药不仅要具备高能量密度,而且还要满足安全性、环境友好性,所以不敏感含能材料逐渐成为研究热
点[1] 。富氮类化合物,不仅能量密度高、安全性良好而且对环境友好性强,是一种集高能、安全、绿色为一体的新型含能材料[2] 。德国慕尼黑大学Fischer等[3] 在2012年设计合成的一种新型富氮含能离子盐5,5'⁃联四唑⁃1,1'⁃二氧二羟铵(TKX⁃50,HATO)就属于这种材料,HATO理论密度为1.918 g·cm-3 、爆速9679 m·s-1 、标准生成焓446.6 kJ·mol-1 ,计算表明其能量与六硝基六氮杂异伍兹烷(CL⁃20)相当,并且生产制备工艺更简单,产气量大,因此HATO是一种高能、钝感、综合性能优异的含能离子盐化合物[4,5] 。然而,俄罗斯学者Sinditskii[6] 研究发现其燃烧热为(2054±6) kJ·mol-1 ,计算HATO的生成晗仅为(111±16)kJ·mol-1 ,远低于德国人的报道。因此,HATO是一种严重负氧类含能材料(氧平衡为-27.1%),有必要探究氧化剂对其热分解影响,为其释能机制研究提供参考。近年,国内外学者在HATO热分解研究方面逐步开展了一些工作。王俊峰
等[7,8] 采用热重和差热分析技术初步分析了HATO及HATO基PBX的热分解阶段,用Kissinger法计算了其热分解第一阶段的动力学参数; Huang等[9,10,11] 对HATO受热分解后的气体产物进行了推测,分析认为N2 、N2 O为HATO最终分解后的产物。高氯酸铵(AP)是常用的氧化剂,常用于调节负氧类含能材料(比如,黑索今(RDX)[12] 、奥克托今(HMX)[13] 、CL⁃20[14] 等)的氧平衡,因此,研究AP的热分解及其与含能材料相互作用机理对含能材料的应用具有重要意义。刘子如等[15,16] 采用FTIR联用等技术研究了AP的热分解过程,提出了AP分解“局部化学现象”并推测了两个分解阶段机理;阴翠梅等[17] 进一步研究了AP与RDX和HMX的混合体现的热分解,结果表明,AP对RDX分解具有加速作用,与HMX的相互作用更剧烈。然而,AP 对HATO的热分解影响机制尚未见报道。为此,本研究采用热重⁃质谱⁃傅里叶红外光谱(TG⁃MS⁃FTIR)联用技术、差示扫描量热法(DSC)、傅里叶红外光谱(FTIR)方法研究了HATO和HATO/AP共混物的热分解特性,用TG⁃MS⁃FTIR分析了HATO、HATO/AP共混物的热分解过程;并利用傅里叶红外光谱技术探究了HATO、HATO/AP共混物凝聚相四唑环基团随温度的变化,采用Kissinger
法[18] 计算了HATO和HATO/AP共混物四唑环基团的活化能;对比了HATO和HATO/AP共混物热分解特性、热分解气体产物以及凝聚相特征基团变化趋势,推测了HATO/AP共混物的热分解机理。2 实验部分
2.1 试剂
HATO(白色粉末,纯度大于99%),AP(白色粉末,纯度大于99%,粒度为150 μm),均由西安近代化学研究所自制;二甲基亚砜(DMSO),纯度99.99%,百灵威科技有限公司;乙酸乙酯,纯度99.9%,中纳海盛化工有限公司。
2.2 样品制备
HATO/AP共混物:通过溶剂⁃非溶剂法制备,根据零氧平衡设计,将HATO与AP以质量比7∶3的比例加入到DMSO溶剂中加热搅拌溶解,然后加入非溶剂乙酸乙酯并降温,晶体析出,过滤、干燥获得最后样品。
2.3 仪器与实验条件
热分析仪:德国耐驰公司449C型TG⁃DSC同步热分析仪。试样量1~2 mg,采用三氧化二铝坩埚,载气为Ar(流量25 mL·mi
n-1 );升温速率10 ℃·min-1 ,温度范围30~500 ℃。红外光谱仪:美国Nicolet公司5700型红外光谱仪;检测器为:DTGS;光谱范围:4000~650 c
m-1 ;分辨率>0.09 cm-1 ;气体原位池温度:30~230 ℃;吹扫气流量:25 mL·min-1 。质谱:德国耐驰公司QMS403四级杆质谱仪;热分析仪器与质谱及红外连接管温度: 190 ℃; 接口温度: 200 ℃; 测试质量范围: 1.0~300.0 μm,分辨率<0.5 μm,检测极限>1 μg·
g-1 。固体原位池:美国Thermo⁃Fisher公司 NEXUS 870型傅里叶变换红外光谱仪,厦门大学变温反应池,检测器为电热型氘代硫酸三苷肽(DTGS)。检测温度范围:25~465 ℃,变温反应池升温速率为2.5 ℃·mi
n-1 ,数据采集速率为1.8988 cm·s-1 ,红外光谱分辨率为4 cm-1 ,图谱扫描次数为每张8次;试样量为0.7 mg。3 结果与讨论
3.1 TG、DTG、DSC结果分析
HATO、AP、HATO/AP共混物的TG、DTG及DSC曲线如图1所示。由图1a可见,HATO从219.2 ℃开始分解(质量损失开始),255.3 ℃分解基本完成,时间历程3.61 min,两个分解过程质量损失分别为70.7%和23.9%。HATO/AP共混物热分解(质量损失)开始温度为209.1 ℃,在283.4 ℃时分解基本完成,时间历程为7.43 min,3个阶段的质量损失分别为15.2%、73.6%、8.9%;HATO/AP共混物热分解(质量损失)开始温度低于HATO,分解基本完成时的温度高于HATO,且HATO和HATO/AP共混物分解残渣剩余分别为5.4%和2.3%。由DSC和DTG (图1b) 曲线可见,HATO热分解过程主要为两个连续阶段,第一阶段分解反应比较剧烈,分解峰温为236.8℃,第二阶段分解峰温为250.5 ℃。AP具有一个吸热峰和两个放热峰,在244.5 ℃的熔融吸热峰是斜方晶系转变为立方晶系的转晶峰,此过程只有热效应并没有质量损失,295.1 ℃和411.3 ℃热分解峰温分别对应于DTG的两个质量损失峰。HATO/AP共混物具有3个热分解阶段,热分解峰温分别为225.8,278.9,482.6 ℃,对应于DTG的3个质量损失峰。对比图1b中DSC曲线可以发现,HATO、AP共混之后HATO的热分解阶段由2个增加到3个,AP的熔融吸热峰消失,并且HATO/AP共混物分解峰温度、分解峰形并不是简单的由HATO与AP的峰叠加组成。上述结果表明,HATO与AP在热分解过程中发生了强烈的相互作用,AP的加入可以使HATO初始分解温度提前并导致分解时间延长,但基本不影响其分解完全性。
3.2 气体产物分析
HATO、HATO/AP共混物在升温速率为10 ℃·mi
n-1 时气体产物随时间变化的三维红外谱图,气体浓度最大时的红外谱图以及气体产物离子强度随温度变化的质谱图如图2。由图2a可见,具有红外活性气体的红外强度随时间(温度)变化,红外强度大小间接表明了红外气体的含量;大约为22 min时温度即达到220 ℃,HATO热分解产生的红外活性气体开始出现并逐渐增多,吸收强度增强表明气体浓度变大,28 min(温度280 ℃)左右时,气体浓度达到最大随后缓慢降低至0。根据文献[19]已报道的气体红外数据,由图2b分析峰形和振动频率可知,HATO热分解产生的具有红外活性的气体主要有CO2 (3705,3499,2354,2305,668 cm-1 )、N2 O(2581,2237,2201,1303,1272 cm-1 )、HCN(720 cm-1 )、NH3 (969 cm-1 )、NO(1908,1846 cm-1 )。由图2c分析离子碎片的大小及强度,可以看出HATO热分解产生的气体有N2 (m/z=28)、NH3 (m/z = 15,16,17)、H2 O (m/z = 18)、HCN (m/z=26,27)、NO(m/z=30)、N2 O或者CO2 (m/z=44)。热分解温度为480℃左右时HATO/AP共混物分解比较彻底,气体浓度最大。分析图2d谱图可知,HATO/AP共混物分解产生具有红外活性气体主要有CO2 (3745,3652,2340,2293 cm-1 )、N2 O(2582,2551,2231,2202,1302,1271 cm-1 )、NOCl(1809,1774 cm-1 )、HCN(711 cm-1 )、NH3 (967, 932 cm-1 )、NO(1905,1849 cm-1 )、少量HCl(2991 cm-1 )。由图2e可见,HATO/AP共混物热分解产生的气体有NH3 (m/z=15,16,17)、H2 O(m/z=18)、HCN(m/z=26,27)、NO(m/z=30)、N2 O或者CO2 (m/z=44)。以上结果表明,HATO热分解气体浓度变化趋势与HATO的TG、DSC曲线基本吻合,反映了HATO两个热分解阶段是连续的,气体浓度增至最大后缓慢降低; 结合红外谱图与质谱图结果可知,HATO受热分解产生的气体主要有:CO2 、N2 O、HCN、NH3 、NO、N2 、H2 O。HATO/AP共混物热分解产生气体主要有:N2 、CO2 、N2 O、HCN、NH3 、H2 O、HCN、NO、HCl、NOCl。对比二者红外谱图峰的相对强度可以看出,HCN、NO含量增加,从质谱图(图2e)可以发现m/z=15的峰强度比较弱,表示NH3 含量较少。AP单质热分解产生的气体[16] 主要有NO2 、N2 O、NO、HCl、NOCl。可以说明,在AP的作用下HATO的中N主要转化为了N2 O、NO和HCN,进一步表明HATO与AP发生了强烈的相互作用。3.3 凝聚相分析
HATO是以联四唑基团为骨架,与两个羟胺正离子组成的离子盐化合物,分子内存在丰富的C—N、N N键。由图3可见,3422 c
m-1 代表的是NH3 OH+ 上羟基的氢氧键伸缩振动,由于空气中H2 O的作用使得氢氧键伸缩振动吸收发生蓝移(向高频率波段移动),3058,1577,1526 cm-1 处的吸收带是HATO的芳香基团即四唑环的特征吸收,814 cm-1 特征吸收由四唑环上的氮氧键伸缩振动造成,624 cm-1 出现的特征吸收为AP的高氯酸根的氯氧之间伸缩振动。HATO、HATO/AP共混物特征基团四唑环在2.5 ℃·mi
n-1 升温速率下红外吸收强度变化如图4a。由图4a可见,对比红外吸收强度变化曲线的“突跃”点,HATO/AP共混物比HATO单质延后5 ℃左右,但最终二者四唑环的相对红外吸收强度都接近0;可以说明,AP的加入能使HATO四唑环热分解温度提高,但AP并不影响HATO分解完全性。将四唑环的红外吸光度值随温度变化趋势转换为转化率(α)与温度的关系即α=(λmax-λx)/(λmax-λmin),其中α为转化率,λx为某一温度下的吸光度值,λmin、λmax为分解范围内红外吸光度的最大值和最小值。HATO和HATO/AP共混物在2.5、5、10、20 ℃·min-1 升温速率下转化率(α)与温度(T)的变化关系分别如图4b和图4c所示。图4 HATO、HATO/AP共混物四唑环红外吸收吸强度与温度关系
Fig.4 Relationships between IR absorption intensity of HATO, HATO/AP blends tetrazole ring and temperature
将HATO不同升温速率下转化率(α)所对应的温度数据带入Kissinger方程(1
)[18] ,通过数值模拟可得不同转化率(α)所对应的活化能,结果见表1。分析表1可知,在0%~100%范围内,HATO四唑环基团的活化能始终低于HATO/AP共混物,进一步计算得到HATO和HATO/AP共混物四唑环基团活化能平均值分别为53.38 kJ·mol-1 和60.69 kJ·mol-1 。表1 热分解活化能随转化率的变化
Table 1 Thermal decomposition activation energy of HATO with conversion rate
tetrazole ring α / % E / kJ·mo l-1 r HATO 10 47.53 0.9754 20 53.92 0.9912 30 55.86 0.9951 40 55.12 0.9962 50 54.81 0.9954 60 54.30 0.9949 70 52.15 0.9973 80 50.77 0.9991 90 51.00 0.9928 100 58.37 0.9972 HATO/AP blends 10 50.56 0.9653 20 61.01 0.9932 30 61.94 0.9893 40 64.11 0.9926 50 64.75 0.9885 60 62.65 0.9861 70 63.56 0.9815 80 60.75 0.9713 90 57.67 0.9481 100 59.87 0.9968 3.4 机理分析
基于HATO、HATO/AP共混物四唑环基团活化能计算值、热行为曲线变化特征、以及热分解产生的气体产物,推测HATO/AP共混物热分解可能机理如Scheme 1所示。AP热分解机理分为两个阶段,第一阶段主要是N
H4 +发生质子转移生成NH3 和HClO4 的降解过程[15,20,21] ,主要反应过程如式(A)。HATO热分解第一步也是质子转移过程[22] ;由图1可知,HATO初始分解温度低于AP,又HATO、AP都是含能离子盐,因此,HATO/AP共混物首先发生的反应为:AP铵根阳离子与HATO阴离子之间发生质子转移,促进HATO的分解反应正向进行,从而导致HATO分解温度提前,根据文献[23],HATO热分解第一阶段产生羟胺和1,1'‑二羟基‑5,5'‑联四唑(BTO),BTO与NH3 反应生成5, 5'‑联四唑‑1, 1'‑二氧铵盐(ABTOX),羟胺进一步分解成H2 O、NH3 等小分子[24] 。根据图1中AP的DSC初始分解峰温以及ABTOX热分解温度[25] ,HATO/AP共混物其次发生的反应为:AP生成NH3 和HClO4 的降解过程与ABTOX热分解反应;随着温度的升高,ABTOX分解成BTO;BTO可能发生N—N键断裂生成产物a,产物a进一步被HClO4 降解产生的O2 或者活性O氧化成氮氧化物等小分子或者生成偶联产物[26] ,BTO也可能发生C—N键断裂生成产物b并进一步产生N2 等小分子。HATO/AP共混物最后即高温阶段发生的反应可能是NH3 氧化反应[15] ,也可能是偶联产物被高温氧化;通过质谱检测到的离子碎片m/z=15强度很低,与HATO/AP共混物分解残渣剩余量更低可以证实。由以上结果可以推测:AP的加入促进了HATO质子转移反应正向进行,导致HATO分解温度提前;HATO/AP共混物分解生成的NH3 与BTO反应生成ABTOX导致了HATO分解时间延长。4 结 论
(1) HATO与AP之间发生了强烈的相互作用。HATO与AP共混后,HATO使得AP在244.5 ℃的熔融吸热峰消失; AP使HATO初始热分解温度从236.8 ℃提前到225.8 ℃,并且在一定程度上延长了HATO的热分解时间但不影响其分解完全性。
(2) 采用TG‑FTIR‑MS联用技术测定了HATO及HATO/AP共混物的热分解气体,HATO热分解产生的气体主要有C
O2 、N2 O、HCN、NH3 、NO、N2 、H2 O; HATO/AP共混物产生气体主要有:N2 、CO2 、N2 O、HCN、NH3 、H2 O、HCN、NO、HCl、NOCl。(3) AP对HATO的热分解影响机理是: AP的铵根离子与HATO之间发生了
H+ 转移,导致分解温度提前; HATO/AP共混物热分解产生的NH3 与BTO反应生成ABTOX延长了HTAO的热分解时间。(责编: 王艳秀)
参考文献
- 1
王晓峰. 军用混合炸药的发展趋势[J]. 火炸药学报, 2011, 34(4): 1-4.
WANG Xiao‑feng. Developmental trends in military composite explosive[J]. Chinese Journal of Explosives & Propellants, 2011, 34(4): 1-4.
- 2
彭蕾, 李玉川, 杨雨璋, 等. 双环和多环四唑含能化合物的合成研究进展[J]. 有机化学, 2012, 32(4): 667-676.
PENG Lei, LI Yu‑chuan, YANG Yu‑zhang, et al. Research progress in synthesis of energetic compounds of bicyclo‑ and multicyclo‑tetrazoles[J]. Chinese Journal of Organic Chemistry, 2012, 32(4): 667-676.
- 3
Fischer N, Fischer D, Klaptke T M, et al. Pushing the limits of energetic materials: the synthesis and characterization of dihydroxylammonium‑5,5'‑bistetrazole‑1,1'‑diolate[J]. Journal of Materials Chemistry, 2012, 22( 38): 20418-20422.
- 4
黄晓川, 郭涛, 刘敏, 等. 联唑类含能化合物及其含能离子盐研究进展[J]. 含能材料, 2015, 23(3) :291-301.
HUANG Xiao‑chuan, GUO Tao, LIU Min, et al. Review on bis‑azoles and its energetic ion derivatives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(3):291-301.
- 5
毕福强, 樊学忠, 许诚, 等. 不敏感四唑非金属含能离子化合物的研究进展[J]. 含能材料, 2012, 20(6): 805-811.
BI Fu‑qiang, FAN Xue‑zhong, XU Cheng, et al. Review on insensitive non‑metallic energetic ionic compounds of tetrazolate anions[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2012, 20(6): 805-811.
- 6
Sinditskii V P, Filatov S A, Kolesov V I, et al. Combustion behavior and physico‑chemical properties of dihydroxylammonium‑5,5′‑bistetrazole‑1,1′‑diolate (TKX‑50)[J]. Thermochimica Acta, 2015, 614: 85-92.
- 7
王俊峰, 杨云峰, 张春园, 等. 5,5′‑联四唑‑1,1′‑二氧二羟胺的热分解动力学[J]. 火炸药学报, 2015(2):42-45.
WANG Jun‑Feng, YANG Yun‑feng, ZHANG Chun‑yuan, et al. Thermal decomposition reaction kinetics of dihydroxylammonium‑5,5'‑ bistetrazole‑1,1'‑diolate[J]. Chinese Journal of Explosives & Propellants, 2015, 38(2):42-45.
- 8
Hu Niu, Chen Shu‑sen, Jin Shao‑hua, et al. Preparation, nonisothermal decomposition kinetics, heat capacity, and safety parameters of TKX‑50‑based PBX[J]. Journal of Thermal Analysis and Calorimetry, 2017, 131(3):1-7.
- 9
Huang Hai‑feng, Shi Ya‑meng, Yang Jun. Thermal characterization of the promising energetic material TKX‑50[J]. Journal of Thermal Analysis and Calorimetry, 2015, 121(2):705-709.
- 10
余一, 张蕾, 姜胜利, 等. TKX‑50热分解氮气形成机理的分子动力学模拟[J]. 含能材料, 2018(1):75-79.
YU Yi, ZHANG Lei, JIANG Sheng‑li, et al. Molecular simulation on the nitrogen generation in thermal decomposition of TKX‑50[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(1):75-79.
- 11
YUAN Bing, YU Zi‑jun, Bernstein E R. Initial mechanisms for the decomposition of electronically excited energetic salts: TKX‑50 and MAD‑X1[J]. Journal of Chemical Physics, 2015, 119(12):2965-2981.
- 12
ZHAO Feng‑qi, CHEN Pei, LI Shang‑wen, et al. Effect of ballistic modifiers on thermal decomposition characteristics of RDX/AP/HTPB propellant[J]. Thermochimica Acta, 2004, 416(1):75-78.
- 13
NIE Fu‑de, ZHANG Juan, GUO Qi‑xia, et al. Sol–gel synthesis of nanocomposite crystalline HMX/AP coated by resorcinol–formaldehyde[J]. Journal of Physics & Chemistry of Solids, 2010, 71(2): 109-113.
- 14
翟恒, 朱燕芳, 鲁月文, 等. 零氧平衡CL‑20/AP复合含能材料的制备及表征[J]. 火炸药学报, 2018(1):41-46.
ZHAI Heng, ZHU Yan‑fang, LU Yue‑wen, et al. Preparation and characteristics of CL‑20/AP composite energetic materials with zero oxygen balance[J]. Chinese Journal of Explosives & Propellants, 2018, 41(1):41-46.
- 15
刘子如, 阴翠梅, 孔扬辉, 等. 高氯酸铵的热分解[J]. 含能材料, 2000, 8(2): 75-79.
LIU Zi‑ru, YIN Cui‑mei, KONG Yang‑hui, et al. The thermal decomposition of ammonium perchlorate[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2000, 8(2): 75-79.
- 16
张腊莹, 刘子如, 王晓红, 等. 傅里叶红外光谱法研究AP的快速热分解[J]. 光谱学与光谱分析, 2010, 30(8):2098-2102.
ZHANG La‑ying, LIU Zi‑ru, WANG Xiao‑hong, et al. An investigation on fast thermolysis of ammonium perchlorate (AP) by FTIR spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(8):2098-2102.
- 17
刘子如, 施震灏, 阴翠梅, 等. 热红联用研究AP与RDX和HMX混合体系的热分解[J]. 火炸药学报, 2007, 30(5):57-61.
LIU Zi‑ru, SHI Zhen‑hao, YIN Cui‑mei, et al. Investigation on thermal decomposition of mixed systems of AP with RDX and HMX by DSC‑TG‑FTIR[J]. Chinese Journal of Explosives & Propellants, 2007, 30(5):57-61.
- 18
胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001:79-95.
HU Rong‑zu, SHI Qi‑zhen. Thermal analysis kinetic[M]. Beijing: Science Press, 2001:79-95.
- 19
Shimanouchi T. Tables of molecular vibrational frequencies part 10[J]. Journal of Physical & Chemical Reference Data, 1977, 6(3): 993-1102.
- 20
Land J E. A study of the decomposition of ammonium perchlorate[R]. AD 466956,1965.
- 21
Brill T B , Brush P J , Patil D G . Thermal decomposition of energetic materials 60. Major reaction stages of a simulated burning surface of ammonium perchlorate[J]. Combustion & Flame, 1993, 94(1-2):70-76.
- 22
LU Zhi‑peng, ZHANG Chao‑yang. Reversibility of the hydrogen transfer in TKX‑50 and its influence on impact sensitivity: an exceptional case from common energetic materials[J]. The Journal of Physical Chemistry C, 2017, 121(39): 21252-21261.
- 23
WANG Jun‑feng, CHEN Shu‑sen , JIN Shao‑hua , et al. The primary decomposition product of TKX‑50 under adiabatic condition and its thermal decomposition[J]. Journal of Thermal Analysis and Calorimetry, 2018, 134(3):2049-2055.
- 24
Manelis, G.B. Thermal decomposition and combustion of explosives and propellants[J]. Crc Press, 2003(6).
- 25
王小军, 张晓鹏, 宋磊, 等. 5, 5′‑联四唑‑1,1′‑二氧氨盐的合成、晶体结构及性能[J]. 火炸药学报, 2015, 38(4):35-38.
WANG Xiao‑jun, ZHANG Xiao‑peng, SONG Lei, et al. Synthesis, crystal structure and properties of the ammonia salt of 5,5′‑Bistetrazole‑1,1′‑diolate[J]. Chinese Journal of Explosives & Propellants, 2015, 38(4):35-38.
- 26
Gerd Fischer a, Gerhard Holl b, Thomas M. Klapötke,et al. A study on the thermal decomposition behavior of derivatives of 1,5‑diamino‑1 H‑tetrazole (DAT): A new family of energetic heterocyclic‑based salts[J]. Thermochimica Acta, 2005, 437(1):168-178.
- 1
摘要
为详细了解高氯酸铵(AP)对5,5'⁃联四唑⁃1,1'⁃二氧二羟铵(HATO)热分解影响的机制,采用热重⁃质谱⁃傅里叶红外光谱(TG⁃MS⁃FTIR)联用技术、差示扫描量热法(DSC)、傅里叶红外光谱(FTIR)方法,对HATO和HATO/AP共混物的热分解特性、气体产物以及凝聚相变化进行了研究。结果表明,HATO具有两个连续热分解阶段,HATO/AP共混物则有3个热分解阶段;HATO、AP共混后,HATO使得AP熔融峰消失,AP可使HATO的热分解初始温度提前,热分解时间延长且不影响分解完全性;HATO热分解气体产物有C
Abstract
To systematically understand the effect of ammonium perchlorate (AP) on the thermal decomposition mechanism of 5,5'‑bitetrazole‑1,1'‑dioxadihydroxyammonium(HATO), the thermal decomposition characteristics, gas products and condensed phase change of HATO and HATO/AP blends were analyzed by combination of thermogravimetry‑mass spectrometry‑Fourier transform infrared spectroscopy (TG‑MS‑FTIR), differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy (FTIR). HATO had two consecutive thermal decomposition stages,while HATO/AP blends had three. For HATO/AP blends, the melting profile of AP disappeared; the thermal decomposition of HATO showed an advanced initial temperature, prolonged decomposition time and unchanged completeness of HATO decomposition. The gas products from the thermal decomposition of HATO were C