CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
RossiC, Kaili Zhang, EsteveD, et al. Nanoenergetic materials for MEMS: A review [J]. Journal of Microelectro Mechanical Systems, 2007, 16(4) : 919-931.
参考文献 2
CometM, MartinC, SchnellF, et al. Nanothermites: A short review, factsheet for experimenters, present and future challenges [J]. Propellants Explosives Pyrotechnics,2018, 43: 1–20.
参考文献 3
Kaili Zhang, RossiC, PetrantoniM, et al. A nano initiator realized by integrating Al/CuO⁃based nanoenergetic materials with a Au/Pt/Cr microheater [J]. Journal of Microelectromechanical Systems, 2008, 17(4) : 832-837.
参考文献 4
XiangZhou, Ruiqi Shen, Yinghua Ye, et al. Influence of Al/CuO reactive multilayer films additives on exploding foil initiator [J], Journal of Applied Physics, 2011, 110(9) : 094505-1-094505-9.
参考文献 5
倪德彬,于国强,史胜楠,等. Al/CuO 二维多层薄膜点火药的制备与性能研究[J],火工品, 2018, 1: 28-32.
NIDe⁃bin, YUGuo⁃qiang, SHISheng⁃nan, et al. Synthesis and properties of multilayered Al/CuO thermite [J]. Initiators & Pyrotechnics, 2018, 1: 28-32.
参考文献 6
SwatiM, SchoenitzM, EdwardL D. Control of structural refinement and composition in Al‑MoO3 nanocomposites prepared by arrested reactive milling [J]. Propellants Explosives Pyrotechnics, 2006, 31(5): 382-340.
参考文献 7
ThompsonC V, ClevengerL A. Self propagating explosive reactions in Al/Ni multilayer thin films [J]. Applied Physics Letters, 1990, 57(12):1262-1264.
参考文献 8
GavensA J, HeerdenD V, MannA B, et al. Effect of intermixing on self⁃propagating exothermic reactions in Al/Ni nanolaminate foils [J]. Journal of Applied Physics, 2000, 87(3) : 1255-1263.
参考文献 9
PengZhu, Ruiqi Shen, FiadosenkaN N, et al. Dielectric structure pyrotechnic initiator realized by integrating Ti/CuO⁃based reactive multilayer films [J]. Journal of Applied Physics, 2011, 109(8) : 08452-1-094505-7.
参考文献 10
BarroS C, KellS T, KirchhoffJ, et al. Self⁃propagating reactions in Al/Zr multilayers: Anomalous dependence of reaction velocity on bilayer thickness [J]. Journal of Applied Physics, 2013, 114(22) : 223517-1- 223517-10.
参考文献 11
Zilong Zheng, Wenchao Zhang, Chunpei Yu, et al. Integration of the 3DOM Al/Co3O4 nanothermite film with a semiconductor bridge to realize a high output micro⁃energetic igniter [J]. RSC Adv,2018, 8:2552–2560.
参考文献 12
Yanjun Yin, Xueming Li, Yuanjie Shu, et al. Fabrication of electrophoretically deposited, self‑assembled three‑dimensional porous Al/CuO nanothermite films for highly enhanced energy output [J]. Materials Chemistry and Physics, 2017, 194: 82-187.
参考文献 13
李勇,王军,高泽志,等. 多晶硅与Al/CuO 复合薄膜集成的含能点火器件的点火性能[J]. 含能材料,2016,24(2):182-187.
LIYong, WANGJun, GAOZe⁃zhi, et al. Ignition performances of energetic igniters integrated by integrating polysilicon with Al /CuO multilayer films [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2016, 24(2) : 182-187.
参考文献 14
蔡志海, 牛庆银, 底月兰, 等. 调制周期对Cr/CrN纳米多层膜的结构与性能的影响[J],金属热处理, 2011, 36(1) : 29-32.
CAIZhi⁃hai, NIUQing⁃yin, DILan⁃yue, et al. Influence of modulation period on microstructure and properties of Cr/CrN nano⁃scale multilayer films [J]. Heat Treat of Metals, 2011, 36(1) : 29-32.
参考文献 15
BahramiM, TatonJ, ConédéraV, et al. Magnetron sputtered Al⁃CuO nanolaminates: effect of stoichiometry and layers thickness on energy release and burning rate [J]. Propellants Explosives Pyrotechnics, 2014, 39(3) : 365–373.
参考文献 16
EganG C, MilyE J, MariaJ P, et al. Probing the reaction dynamics of thermite nanolaminates [J]. The Journal of Physical Chemistry C, 2015, 119(35) : 20401–20408.
参考文献 17
YuTai, Jianbing Xu, FeiWang, et al. Experimental and modeling investigation on the self⁃propagating combustion behavior of Al⁃MoO3 reactive multilayer films [J]. Journal of Applied Physics, 123(23): 235302-1-235302-9.
参考文献 18
PengZhu, ZhenGuan, Shuai Fu, et al. Firing and initiation characteristics of energetic semiconductor bridge integrated with varied thickness of Al/MoO3 nanofilms [J]. Material Science, 2018, 24(2): 143-147.
参考文献 19
李东乐 ,朱朋, 付帅, 等. Al/Ni 和Al /Ti 纳米多层薄膜制备与表征[J], 含能材料, 2013, 27(6), 749-753
LIDong⁃le, ZHUPeng, FUShuai, et al. Fabrication and Characterization of Al /Ni and Al/Ti Multilayer Nanofilms [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2013, 27(6): 749-753;
参考文献 20
JinheeK, JeanM D, PierreA, et al. Interfacial chemistry in Al/CuO reactive nanomaterial and its role in Eexothermic reaction[J]. ACS Applied Materials & Interfaces, 2013,5(3): 605-613.
参考文献 21
OzawaT. A new method of analyzing thermogravimetric data [J]. Bulletin of the Chemical Society of Japan, 1965, 38: 1181-1186.
参考文献 22
Jianbing Xu, YuTai, Chengbo Ru, et al. Tuning the Ignition Performance of a Microchip Initiator by Integrating Various Al/MoO3 Reactive Multilayer Films on a Semiconductor Bridge [J]. ACS Appl Mater Interfaces ,2017, 9: 5580-5589
参考文献 23
Jun Wang, XiaojunJiang, LongZhang, et al. Design and fabrication of energetic superlattice like⁃PTFE/Al with superior performance and application in functional micro⁃initiator [J]. Nano Energy,2015, 12: 597–605
参考文献 24
张蕊,付东晓,白颖伟,等. 火工品感度实验用便携式计算装置[J].火工品, 2009(1):35-39.
ZHANGRui, FUDong⁃xiao, BAIYing⁃wei, et al. A calculate instrument for the sensitivity test of initiating explosive device [J]. Initiators and Pyrotechnics,2009(1):35-39 .
参考文献 25
袁俊明,张庆明,刘彦. 炸药感度测试兰利法与升降法比较研究[J]. 含能材料, 2008,16(2):86-89.
YUANJun⁃ming, ZHANGQing⁃ming, LIUYan. Comparison on study LangLi method and up‑and‑down method for sensitivity test of explosive [J]. Chinese Joural of Energetic Materials (Hanneng Cailiao), 2008, 16(2):86-89.
目录 contents

    摘要

    为了考察调制周期对反应薄膜性能的影响,采用磁控溅射技术制备了厚度为3 μm,调制周期为50,150 nm和300 nm的Al/MoO3反应薄膜,采用差示扫描量热仪(DSC)探索了调制周期对Al/MoO3反应薄膜放热过程和反应活化能的影响;使用高速摄影和激光点火技术研究了三种调制周期反应薄膜的燃烧速率,通过与半导体桥和桥丝融合形成含能点火器件,考察了调制周期对电流和电压发火感度的影响。结果显示调制周期由50 nm增加到300 nm时,Al/MoO3反应薄膜燃烧速率由5.35 m·s-1降低到1.75 m·s-1。三种调制周期(50,150,300 nm)Al/MoO3反应薄膜半导体桥点火器件的50%电流发火电流分别为1.44,1.74 A和1.87 A;Al/MoO3反应薄膜桥丝点火器件的50%发火电流分别为0.08,0.65 A和1.02 A;将Al/MoO3反应薄膜与半导体桥和桥丝换能元结合形成点火器件,在点火间隙为1 mm的情况下,能够点燃钝感点火药硼⁃硝酸钾(B⁃KNO3)药片,提升点火系统的点火能力和可靠性。

    Abstract

    In order to investigate the effects of modulation period on the thermal properties and firing properties of Al/MoO3 reactive films, Al/MoO3 reactive film with 3 μm thickness was deposited by magnetron sputtering. The modulation period of Al/MoO3 reactive film was 50 nm, 150 nm and 300 nm, respectively. The reaction process and energy of Al/MoO3 reactive films were measured by DSC. The combustion speed of Al/MoO3 reactive films were detected by high⁃speed camera. The initiators were integrated Al/MoO3 reactive film with semiconductor bridge and bridge wire, and the current⁃firing sensitivities and voltage⁃firing sensitivities were also explored by Langlie method. The combustion speed was decreased from 5.35 m·s-1 to 1.75 m·s-1 as the modulation period increased from 50 nm to 300 nm. The 50% firing current of semiconductor bridge initiators was 1.44 A, 1.74 A and 1.87 A, and the 50% firing current of bridge wire initiators was 0.08 A, 0.65 A and 1.02 A when the modulation period of Al/MoO3 reactive films was 50 nm, 150 nm and 300 nm, respectively. The bridge wire initiator can ignite the insensitive ignition composition of B⁃KNO3 tablet with 1 mm ignition gap. The excellent firing parameters and outstanding ignition ability can lead to a remarkable optimization for the traditional electronic initiators.

    Graphic Abstract

    图文摘要

    The Al/MoO3 reactive films with three modulation period were fabricated by magnetron sputtering, and the effect of modulation period on the voltage⁃firing and current⁃firing sensitivities were also investigated .

  • 1 引 言

    反应薄膜是采用沉积技术将两种或两种以上能够进行化学反应的材料,按照设计要求逐层进行沉积,具有规整纳米尺度结构的多层薄膜,该薄膜在外界(热、机械、光等)刺激作用下,能够发生自蔓延反应,并释放大量热量和固体颗[1,2]。常见的反应薄膜包括Al/CuO[3,4,5],Al/MoO3[6],Al/Ni[7,8],Ti/CuO[9],Al/Zr[10]等。该类薄膜具有能量密度高、反应速率快等优点,制备工艺能够与微机电系统相融合,而被用于微点火系统或微点火芯片以提高换能元点火能力和可靠[11,12,13]

    反应薄膜调制周期是指在反应薄膜中相邻两层薄膜厚度的总[14],在薄膜总厚度一定的情况下,调制周期对薄膜燃烧速率、燃烧温度、电爆特性有较大影响。Bahrami[15]发现Al/CuO调制周期为50 nm时,燃烧速率达到90 m·s-1,当调制周期增加到1500 nm时,燃烧速率仅为2 m·s-1。 Egan[16]探究了调制周期对Al/CuO反应薄膜点火温度的影响,当调制周期为900 nm时,点火温度约为1177 ℃;当调制周期为300 nm时,点火温度约为397 ℃,而调制周期小于300 nm时,点火温度仅有稍微降低。Yu Tai [17]发现,调制周期为50 nm的Al/MoO3反应薄膜燃烧速率约为(10±0.8) m·s-1,调制周期增加到150 nm时,燃烧速率降低到(6±0.9) m·s-1,而调制周期超过300 nm时,Al/MoO3反应薄膜燃不能维持续燃烧。Li Dongle[18,19]发现厚度为6 μm的Al/MoO3反应薄膜,能够点燃奥克托今⁃Al/MoO3,点火间隙达到了13.45 mm,有效提升了半导体桥的点火能力。另外,反应薄膜的制备工艺能够与微机电系统(MEMS)相兼容,已经应用于微点火和微推冲阵列中。由此可见,反应薄膜可根据使用环境要求,通过调整薄膜厚度和调制周期,调控材料的输出性能,这是传统点火药剂无法实现的。已报道的文献主要集中在反应薄膜的厚度和调制周期对薄膜热反应性能、燃烧速率、点火温度和点火能力的影响,薄膜调制周期对发火感度的影响则鲜有报道,而发火感度对点火器件的安全性和可靠性非常重要。

    因此,本研究采用磁控溅射技术,获得了厚度为3 μm,调制周期为50,100,150 nm的Al/MoO3反应薄膜,重点研究了调制周期对薄膜热反应性能、电流、电压发火感度及点火性能的影响。

  • 2 样品制备

  • 2.1 试剂与仪器

    Al靶材,直径10.8 mm,厚度7 mm,纯度99.99%;MoO3 靶材,直径10.8 mm,厚度7 mm,纯度99.99%,均为江西科泰新材料有限公司; 丙酮,乙醇均为分析纯,上海国药集团;去离子水,自制; 光刻胶,BP212,北京微电子科技有限公司; 硅片,直径13.3 cm,苏州新美光纳米科技有限公司。桥丝电极塞:电阻7 Ω,直径:Φ 4.2。

    KW⁃4A型匀胶机;扫描电镜(SEM,Hitachi,S‑4800);差示扫描量热仪(DSC,Netzsch,STA449C);高速摄影仪(Redlake HG‑100 K);HM1530⁃恒流脉冲电源;WYG⁃直流稳压电源;钽电容:100 μF。

  • 2.2 实验过程

    首先将半导体桥电极塞依次置于丙酮,乙醇和去离子水中超声清洗10 min,用氮气吹干,放置于溅射模具中。当腔室气压达到2.6×10-4 Pa时开始溅射,Ar流量20 mL·cm-3,冷却水温度20 ℃,旋转速率50 r·min-1; Al靶材溅射参数为: 直流溅射0.5 A,溅射速率15 nm·min-1; MoO3靶材溅射工艺:射频溅射功率200 W,溅射速率7 nm·min-1,溅射过程由电脑自动控制。Al/MoO3复合薄膜结构示意图见图1

    图1
                            Al/MoO3复合薄膜发火器件结构示意图

    图1 Al/MoO3复合薄膜发火器件结构示意图

    Fig.1 Structure of igniter with Al/MoO3 multilayer film

    热分析样品制备:将光刻胶均匀旋涂在硅片表面,110 ℃下烘干30 min,然后将Al/MoO3反应薄膜溅射在光刻胶表面。溅射结束之后,将硅片在丙酮中浸泡3 次,过滤,烘干,得到片状薄膜。测试温度: 室温~1000 ℃,升温速率为20 ℃·min-1 ,氮气保护,氮气流量为10 mL·min-1,制备流程如图2所示。

    图2
                            Al/MoO3复合薄膜制备过程示意图

    图2 Al/MoO3复合薄膜制备过程示意图

    Fig.2 Fabrication processes of Al/MoO3 multilayer film

  • 3 结果与讨论

  • 3.1 Al/MoO3 反应薄膜的形貌分析

    采用SEM 观察了Al/MoO3反应薄膜的横截面形貌,结果见图3。由图3可以看到,Al 层与MoO3层之间连接紧密,无断层,且与基底结合良好。调制周期为50 nm时,难以分清楚Al层和MoO3层,调制周期增大之后,能够清晰观察到层状结构,其中暗色层为MoO3层,明亮层为Al层。

    html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F004.png

    a. 20 nm/30 nm

    html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F005.png

    b. 60 nm/90 nm

    html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F006.png

    c. 120 nm/180 nm

    图3 Al/MoO3反应薄膜的SEM横截面图

    Fig.3 SEM images of the cross⁃section morphology for Al/MoO3 multilayer films

  • 3.2 调制周期对Al/MoO3热性能的影响

    采用DSC研究了Al/MoO3 反应薄膜调制周期对放热行为影响,结果如图4 所示。图4a是三种调制周期Al/MoO3复合薄膜在升温速率为20 ℃·min-1时的DSC曲线,可以直观的比较三种调制周期复合薄膜的不同放热行为。从图4b中可以看到,调制周期为50 nm时,整个放热曲线仅呈现出一个放热峰,起始反应温度为543.8 ℃,反应终止温度595.7 ℃,整个反应过程属于固相反应机理。整个放热过程与调制周期为150 nm(图4c)和300 nm(图4d)明显不同,在300~350 ℃没有出现微弱的放热峰,可能是由于Al层(20 nm)与MoO3层(30 nm)之间形成的预混层在溅射过程中已经发生反应引起[19]。另外,调制周期50 nm(图4b)的复合薄膜在543.8~595.7 ℃之间的放热峰要显著低于150 nm和300 nm调制周期,说明该调制周期下Al与MoO3之间更易发生反应,这也被该放热峰的活化能最小相互印证。

    html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F008.png

    a. Al/MoO3

    html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F009.png

    b. Al/ MoO3 with 50 nm

    html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F010.png

    c. Al/ MoO3 with 150 nm

    html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F011.png

    d. Al/ MoO3 with 300 nm

    图4 Al/MoO3反应薄膜的DSC分解曲线图

    Fig.4 The DSC curves of Al/MoO3 films

    当调制周期为150 nm(图4c)时,整个放热曲线有两个放热峰,第一个小放热峰起始反应温度为315.0 ℃,反应终止温度362.7 ℃,放热量为222.9 J·g-1,该放热峰是由于Al⁃Mo⁃O 界面在加热过程中结晶或者是低温下氧化还原反应释放热量引起[20];第二个放热峰起始反应温度为615.4 ℃,反应终止温度641.6 ℃,放热量为1557.1 J·g-1,该峰释放热量在整个放热过程中起主导作用,整个反应过程仍然属于固相反应机理。

    当调制周期为300 nm(图4d)时,整个放热曲线呈现出了三个明显的放热峰,第一反应放热峰与调制周期为150 nm的反应薄膜基本相同。第二个放热峰的起始反应温度达到了648.6 ℃,反应终止温度697.7 ℃放热量仅有757.3 J·g-1,显著低于调制周期为50 nm和150 nm反应薄膜在该处的放热量,该放热过程结束温度高于Al的熔点(660.4 ℃),因此该放热峰的反应属于固⁃液相反应机理;而第三个放热峰起始反应温度达到了802.8℃,反应终止温度910.2℃,放热量为379.8 J·g-1,在该放热过程中Al全部熔化,因此该放热峰经历的是液相反应过程,三个峰总放热量为1350.7 J·g-1,较调制周期为150 nm反应薄膜较低。

    采用Ozawa方[21]求解了3种Al/MoO3反应薄膜的反应活化能。调制周期为50 nm的Al/MoO3反应薄膜整个反应过程仅有一个显著的放热峰,该峰发生的反应活化能为212.9 kJ·mol-1,调制周期为150 nm和300 nm时,第二反应活化能分别为222.8 kJ·mol-1和230.1 kJ·mol-1,活化能随着调制周期的增加而逐渐升高,意味着需要更多输入能量才能引发该峰发生反应。调制周期为150 nm和300 nm反应薄膜的第一反应活化能分别为93.9 kJ·mol-1和175.6 kJ·mol-1,由于该放热峰是Al⁃Mo⁃O 界面反应引起的,而调制周期为50 nm时反应薄膜没有该放热峰,可能是在制备反应薄膜过程中已经完成了界面反应。调制周期为300 nm可反应薄膜的第三反应活化能为295.6 kJ·mol-1,显著高于第一反应活化能和第二反应活化能。

  • 3.3 调制周期对Al/MoO3反应薄膜燃烧速率的影响

    将厚度为3 μm 的Al/MoO3反应薄膜溅射在聚酰亚胺基底上进行燃烧速率测试。采用高速摄影和激光点火技术测得反应薄膜的燃烧速率,高速摄影拍照速率为25000 帧/s,结果如图5所示。由图5可知,Al/MoO3反应薄膜燃烧主要有三个阶段,首先Al/MoO3反应薄膜被激光点燃,此时并没有形成稳定的燃烧;其次,随着火焰向前传播,燃烧逐渐进入稳定阶段,燃烧速率趋于稳定;最后,当火焰前端传播到薄膜末端而逐渐熄灭。经计算,调制周期为50,150,300 nm的Al/MoO3反应薄膜燃烧速率依次为: 5.35, 2.51, 1.75 m·s-1,在薄膜厚度一定的条件下,随着调制周期的减小,单位质量的Al和MoO3层之间接触面积越多,反应时质量传递距离显著减小,反应速率显著提升,进而使得燃烧速率增加;另外,调制周期越小,复合薄膜反应所需的活化能越小,反应更易发生,使得反应区与未反应区的热量交换更快,燃烧速率则越[22,23]

    图5
                            Al/MoO3反应薄膜燃烧速度测试结果

    图5 Al/MoO3反应薄膜燃烧速度测试结果

    Fig. 5 The burning rate of Al/MoO3 multilayer films obtained with high speed camera

  • 3.4 调制周期对Al/MoO3反应薄膜点火器件发火感度的影响

    通过磁控溅射技术将Al/MoO3反应薄膜与半导体桥、桥丝换能元相结合,形成点火器件。采用兰利[24,25]测试了Al/MoO3反应薄膜点火器件的电压发火感度和电流发火感度,结果如表2。电压发火感度采用电容放电激励方式,电流发火感度采用恒流脉冲源为激励方式。由表2可知,调制周期为50,150 nm和300 nm的Al/MoO3反应薄膜半导体桥点火器件的50%发火电流分别为: 1.44, 1.74 A和1.87 A; 50%发火电压依次为7.31,7.29 V和11.25 V;而Al/MoO3反应薄膜桥丝点火器件的50%发火电流分别为: 0.08,0.65 A和1.02 A; 50%发火电压依次为2.30,6.19 V和9.62 V。表明随着调制周期的增加,不论是半导体桥还是桥丝发火器件,电流和电压发火感度均在降低。这可能是由于调制周期的增加,复合薄膜的活化能在升高,发生化学反应所需的能量越多,电流和电压的升高,会直接为换能元提供更多的能量,进而促使复合薄膜发生化学反应。在相同条件下,将斯蒂芬酸铅(LTNR)涂在半导体桥和桥丝换能元上,并测试了其发火感度。可以看到,当采用半导体桥为换能元时,LTNR的50%电流和电压发火感度为0.75 A和6.68V;而桥丝为换能元时LNTR的50%电流和电压发火感度为0.10 A和2.29 V,由此可以看到,当使用桥丝换能元时,调制周期为50 nm的Al/MoO3复合薄膜的发火感度与LTNR基本相同,说明Al/MoO3复合薄膜具备代替LTNR应用于桥丝式电火工品,并且可以根据电火工品的设计需求,通过调节复合薄膜的结构,达到调控电火工品发火感度的需求。其中基于半导体桥的Al/MoO3反应薄膜点火器件发火电流、电压柱状图如图6所示。

    表1 Al/MoO3反应薄膜DSC测试结果

    Table 1 The result data of Al/MoO3 films measured by DSC

    Al/MoO3 / nmTonset / ℃Tpeak / ℃Tend / ℃Q / J·g-1Qtotal / J·g-1E1 / kJ·mol-1E2 / kJ·mol-1E3 / kJ·mol-1
    20/30543.8559.0595.71144.01144.0-212.9-
    60/90315.0326.8362.7222.91780.093.9222.8-
    615.4628.5641.61557.1
    120/180312.1344.9386.6213.61350.7175.6230.1295.6
    648.6665.6697.7757.3
    802.8875.0910.2379.8

    NOTE: Tonset is the onset temperature. Tpeak is the peak temperature. Tend is the end temperature.Q is heat release.E1 is the first activation energy. E2 is the second activation energy.E3 is the third activation energy.

    表2 Al/MoO3反应薄膜半导体和桥丝点火器件电流和电压发火感度

    Table 2 The current and voltage sensitivities of the initiators based on Al/MoO3 film

    parametersensitivity/%20 nm/30 nm60 nm/90 nm120 nm/180 nmLTNR
    SCBcurrent/A50.01.441.741.870.75
    99.92.853.033.410.79
    voltage/V50.07.317.2911.256.68
    99.98.338.5812.239.26
    bridge wirecurrent/A50.00.080.651.020.10
    99.90.111.131.830.13
    voltage/V50.02.306.199.622.29
    99.92.566.8214.712.87
    html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F014.png

    a. firing⁃voltage of Al/MoO3 reactive film

    html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F015.png

    b. firing⁃current of Al/MoO3 reactive film

    图 6 Al/MoO3反应薄膜半导体发火器件的发火电压、电流柱状图

    Fig 6 The column graphs of firing sensitivities of the SCB initiators based on Al/MoO3 reactive film

  • 3.5 Al/MoO3反应薄膜点火器件的点火能力

    为了考察Al/MoO3反应薄膜点火器件的点火能力,选用钝感点火药B/KNO3药片为测试对象,密度为2 g·cm-3,采用100 μF钽电容放电,充电电压15.0 V,点火能力测试结果如表3表3表明,以半导体桥为换能元的Al/MoO3反应薄膜发火器件只有当B/KNO3药片与复合薄膜紧贴才能将其点燃;以桥丝为换能元Al/MoO3反应薄膜发火器件在点火间隙为1 mm的情况下,能够将B/KNO3药片点燃。因此,可以看到Al/MoO3反应薄膜可以提高换能元的点火能力。

    表3 Al/MoO3反应薄膜点火器件的点火能力测试结果

    Table 3 The firing results of Al/MoO3 initiator based on the B⁃KNO3 tablet

    modulation periodgap initiation/mm
    SCBbridge wire
    without Al/MoO3no fireno fire
    20 nm/30 nm01.02
    60 nm/90 nm01.04
    120 nm/180 nm01.01
  • 4 结 论

    采用磁控溅射技术制备了调制周期为50,150 nm和300 nm的三种Al/MoO3反应薄膜,研究了调制周期对反应薄膜的放热过程、活化能、燃烧速率的影响;并研究了调制周期对Al/MoO3反应薄膜点火器件的发火感度影响。

    (1)调制周期为50,150 nm和300 nm的三种Al/MoO3反应薄膜的第二反应活化能依次为:212.9,222.8 kJ·mol-1和230.1 kJ·mol-1

    (2)调制周期越小,燃烧速率越快,调制周期为50 nm的反应薄膜燃烧速率为5.35 m·s-1

    (3)以桥丝为换能元时,调制周期为50 nm的Al/MoO3复合薄膜的50%和99.9%发火电流分别为0.08 A和0.11 A,50%和99.9%发火电压分别为2.30 V和2.56V;与相同条件下LTNR的发火电流、电压基本相同,具备代替LTNR的潜力。

    (4)Al/MoO3反应薄膜与桥丝桥形成的点火器件在点火间隙为1 mm时能够点燃B/KNO3药片,提升了桥丝换能元的点火能力,有望应用于微点火芯片中提升点火的安全性。

    (责编: 张 琪)

  • 参考文献

    • 1

      Rossi C, Kaili Zhang, Esteve D, et al. Nanoenergetic materials for MEMS: A review [J]. Journal of Microelectro Mechanical Systems, 2007, 16(4) : 919-931.

    • 2

      Comet M, Martin C, Schnell F, et al. Nanothermites: A short review, factsheet for experimenters, present and future challenges [J]. Propellants Explosives Pyrotechnics,2018, 43: 1–20.

    • 3

      Kaili Zhang, Rossi C, Petrantoni M, et al. A nano initiator realized by integrating Al/CuO⁃based nanoenergetic materials with a Au/Pt/Cr microheater [J]. Journal of Microelectromechanical Systems, 2008, 17(4) : 832-837.

    • 4

      Xiang Zhou, Ruiqi Shen, Yinghua Ye, et al. Influence of Al/CuO reactive multilayer films additives on exploding foil initiator [J], Journal of Applied Physics, 2011, 110(9) : 094505-1-094505-9.

    • 5

      倪德彬,于国强,史胜楠,等. Al/CuO 二维多层薄膜点火药的制备与性能研究[J],火工品, 2018, 1: 28-32.

      NI De⁃bin, YU Guo⁃qiang, SHI Sheng⁃nan, et al. Synthesis and properties of multilayered Al/CuO thermite [J]. Initiators & Pyrotechnics, 2018, 1: 28-32.

    • 6

      Swati M, Schoenitz M, Edward L D. Control of structural refinement and composition in Al‑MoO3 nanocomposites prepared by arrested reactive milling [J]. Propellants Explosives Pyrotechnics, 2006, 31(5): 382-340.

    • 7

      Thompson C V, Clevenger L A. Self propagating explosive reactions in Al/Ni multilayer thin films [J]. Applied Physics Letters, 1990, 57(12):1262-1264.

    • 8

      Gavens A J, Heerden D V, Mann A B, et al. Effect of intermixing on self⁃propagating exothermic reactions in Al/Ni nanolaminate foils [J]. Journal of Applied Physics, 2000, 87(3) : 1255-1263.

    • 9

      Peng Zhu, Ruiqi Shen, Fiadosenka N N, et al. Dielectric structure pyrotechnic initiator realized by integrating Ti/CuO⁃based reactive multilayer films [J]. Journal of Applied Physics, 2011, 109(8) : 08452-1-094505-7.

    • 10

      Barro S C, Kell S T, Kirchhoff J, et al. Self⁃propagating reactions in Al/Zr multilayers: Anomalous dependence of reaction velocity on bilayer thickness [J]. Journal of Applied Physics, 2013, 114(22) : 223517-1- 223517-10.

    • 11

      Zilong Zheng, Wenchao Zhang, Chunpei Yu, et al. Integration of the 3DOM Al/Co3O4 nanothermite film with a semiconductor bridge to realize a high output micro⁃energetic igniter [J]. RSC Adv,2018, 8:2552–2560.

    • 12

      Yanjun Yin, Xueming Li, Yuanjie Shu, et al. Fabrication of electrophoretically deposited, self‑assembled three‑dimensional porous Al/CuO nanothermite films for highly enhanced energy output [J]. Materials Chemistry and Physics, 2017, 194: 82-187.

    • 13

      李勇,王军,高泽志,等. 多晶硅与Al/CuO 复合薄膜集成的含能点火器件的点火性能[J]. 含能材料,2016,24(2):182-187.

      LI Yong, WANG Jun, GAO Ze⁃zhi, et al. Ignition performances of energetic igniters integrated by integrating polysilicon with Al /CuO multilayer films [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2016, 24(2) : 182-187.

    • 14

      蔡志海, 牛庆银, 底月兰, 等. 调制周期对Cr/CrN纳米多层膜的结构与性能的影响[J],金属热处理, 2011, 36(1) : 29-32.

      CAI Zhi⁃hai, NIU Qing⁃yin, DI Lan⁃yue, et al. Influence of modulation period on microstructure and properties of Cr/CrN nano⁃scale multilayer films [J]. Heat Treat of Metals, 2011, 36(1) : 29-32.

    • 15

      Bahrami M, Taton J, Conédéra V, et al. Magnetron sputtered Al⁃CuO nanolaminates: effect of stoichiometry and layers thickness on energy release and burning rate [J]. Propellants Explosives Pyrotechnics, 2014, 39(3) : 365–373.

    • 16

      Egan G C, Mily E J, Maria J P, et al. Probing the reaction dynamics of thermite nanolaminates [J]. The Journal of Physical Chemistry C, 2015, 119(35) : 20401–20408.

    • 17

      Yu Tai, Jianbing Xu, Fei Wang, et al. Experimental and modeling investigation on the self⁃propagating combustion behavior of Al⁃MoO3 reactive multilayer films [J]. Journal of Applied Physics, 123(23): 235302-1-235302-9.

    • 18

      Peng Zhu, Zhen Guan, Shuai Fu, et al. Firing and initiation characteristics of energetic semiconductor bridge integrated with varied thickness of Al/MoO3 nanofilms [J]. Material Science, 2018, 24(2): 143-147.

    • 19

      李东乐 ,朱朋, 付帅, 等. Al/Ni 和Al /Ti 纳米多层薄膜制备与表征[J], 含能材料, 2013, 27(6), 749-753

      LI Dong⁃le, ZHU Peng, FU Shuai, et al. Fabrication and Characterization of Al /Ni and Al/Ti Multilayer Nanofilms [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2013, 27(6): 749-753;

    • 20

      Jinhee K, Jean M D, Pierre A, et al. Interfacial chemistry in Al/CuO reactive nanomaterial and its role in Eexothermic reaction[J]. ACS Applied Materials & Interfaces, 2013,5(3): 605-613.

    • 21

      Ozawa T. A new method of analyzing thermogravimetric data [J]. Bulletin of the Chemical Society of Japan, 1965, 38: 1181-1186.

    • 22

      Jianbing Xu, Yu Tai, Chengbo Ru, et al. Tuning the Ignition Performance of a Microchip Initiator by Integrating Various Al/MoO3 Reactive Multilayer Films on a Semiconductor Bridge [J]. ACS Appl Mater Interfaces ,2017, 9: 5580-5589

    • 23

      Jun Wang, XiaojunJiang, LongZhang, et al. Design and fabrication of energetic superlattice like⁃PTFE/Al with superior performance and application in functional micro⁃initiator [J]. Nano Energy,2015, 12: 597–605

    • 24

      张蕊,付东晓,白颖伟,等. 火工品感度实验用便携式计算装置[J].火工品, 2009(1):35-39.

      ZHANG Rui, FU Dong⁃xiao, BAI Ying⁃wei, et al. A calculate instrument for the sensitivity test of initiating explosive device [J]. Initiators and Pyrotechnics,2009(1):35-39 .

    • 25

      袁俊明,张庆明,刘彦. 炸药感度测试兰利法与升降法比较研究[J]. 含能材料, 2008,16(2):86-89.

      YUAN Jun⁃ming, ZHANG Qing⁃ming, LIU Yan. Comparison on study LangLi method and up‑and‑down method for sensitivity test of explosive [J]. Chinese Joural of Energetic Materials (Hanneng Cailiao), 2008, 16(2):86-89.

倪德彬

机 构:陕西应用物理化学研究所 应用物理化学重点实验室, 陕西 西安 710061

Affiliation:Science and Technology on Applied Physical Chemistry Laboratory, Shaanxi Applied Physicsand Chemistry Research Institute, Xi′an 710061,China

邮 箱:nidebin@alumni.hust.edu.cn

作者简介:倪德彬(1987-),男,高级工程师,主要从事纳米复合含能薄膜材料研究。e⁃mail:nidebin@alumni.hust.edu.cn

党鹏阳

机 构:陕西应用物理化学研究所 应用物理化学重点实验室, 陕西 西安 710061

Affiliation:Science and Technology on Applied Physical Chemistry Laboratory, Shaanxi Applied Physicsand Chemistry Research Institute, Xi′an 710061,China

徐栋

机 构:陕西应用物理化学研究所 应用物理化学重点实验室, 陕西 西安 710061

Affiliation:Science and Technology on Applied Physical Chemistry Laboratory, Shaanxi Applied Physicsand Chemistry Research Institute, Xi′an 710061,China

于国强

机 构:陕西应用物理化学研究所 应用物理化学重点实验室, 陕西 西安 710061

Affiliation:Science and Technology on Applied Physical Chemistry Laboratory, Shaanxi Applied Physicsand Chemistry Research Institute, Xi′an 710061,China

陈利魁

机 构:陕西应用物理化学研究所 应用物理化学重点实验室, 陕西 西安 710061

Affiliation:Science and Technology on Applied Physical Chemistry Laboratory, Shaanxi Applied Physicsand Chemistry Research Institute, Xi′an 710061,China

朱雅红

机 构:陕西应用物理化学研究所 应用物理化学重点实验室, 陕西 西安 710061

Affiliation:Science and Technology on Applied Physical Chemistry Laboratory, Shaanxi Applied Physicsand Chemistry Research Institute, Xi′an 710061,China

解战锋

机 构:陕西应用物理化学研究所 应用物理化学重点实验室, 陕西 西安 710061

Affiliation:Science and Technology on Applied Physical Chemistry Laboratory, Shaanxi Applied Physicsand Chemistry Research Institute, Xi′an 710061,China

褚恩义

机 构:陕西应用物理化学研究所 应用物理化学重点实验室, 陕西 西安 710061

Affiliation:Science and Technology on Applied Physical Chemistry Laboratory, Shaanxi Applied Physicsand Chemistry Research Institute, Xi′an 710061,China

html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F001.png
html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F002.png
html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F004.png
html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F005.png
html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F006.png
html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F008.png
html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F009.png
html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F010.png
html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F011.png
html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F012.png
Al/MoO3 / nmTonset / ℃Tpeak / ℃Tend / ℃Q / J·g-1Qtotal / J·g-1E1 / kJ·mol-1E2 / kJ·mol-1E3 / kJ·mol-1
20/30543.8559.0595.71144.01144.0-212.9-
60/90315.0326.8362.7222.91780.093.9222.8-
615.4628.5641.61557.1
120/180312.1344.9386.6213.61350.7175.6230.1295.6
648.6665.6697.7757.3
802.8875.0910.2379.8
parametersensitivity/%20 nm/30 nm60 nm/90 nm120 nm/180 nmLTNR
SCBcurrent/A50.01.441.741.870.75
99.92.853.033.410.79
voltage/V50.07.317.2911.256.68
99.98.338.5812.239.26
bridge wirecurrent/A50.00.080.651.020.10
99.90.111.131.830.13
voltage/V50.02.306.199.622.29
99.92.566.8214.712.87
html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F014.png
html/hncl/CJEM2019139/alternativeImage/4cc5bb1c-a61d-4e0e-9af7-c85287e0be5b-F015.png
modulation periodgap initiation/mm
SCBbridge wire
without Al/MoO3no fireno fire
20 nm/30 nm01.02
60 nm/90 nm01.04
120 nm/180 nm01.01

图1 Al/MoO3复合薄膜发火器件结构示意图

Fig.1 Structure of igniter with Al/MoO3 multilayer film

图2 Al/MoO3复合薄膜制备过程示意图

Fig.2 Fabrication processes of Al/MoO3 multilayer film

图3 Al/MoO3反应薄膜的SEM横截面图 -- a. 20 nm/30 nm

Fig.3 SEM images of the cross⁃section morphology for Al/MoO3 multilayer films -- a. 20 nm/30 nm

图3 Al/MoO3反应薄膜的SEM横截面图 -- b. 60 nm/90 nm

Fig.3 SEM images of the cross⁃section morphology for Al/MoO3 multilayer films -- b. 60 nm/90 nm

图3 Al/MoO3反应薄膜的SEM横截面图 -- c. 120 nm/180 nm

Fig.3 SEM images of the cross⁃section morphology for Al/MoO3 multilayer films -- c. 120 nm/180 nm

图4 Al/MoO3反应薄膜的DSC分解曲线图 -- a. Al/MoO3

Fig.4 The DSC curves of Al/MoO3 films -- a. Al/MoO3

图4 Al/MoO3反应薄膜的DSC分解曲线图 -- b. Al/ MoO3 with 50 nm

Fig.4 The DSC curves of Al/MoO3 films -- b. Al/ MoO3 with 50 nm

图4 Al/MoO3反应薄膜的DSC分解曲线图 -- c. Al/ MoO3 with 150 nm

Fig.4 The DSC curves of Al/MoO3 films -- c. Al/ MoO3 with 150 nm

图4 Al/MoO3反应薄膜的DSC分解曲线图 -- d. Al/ MoO3 with 300 nm

Fig.4 The DSC curves of Al/MoO3 films -- d. Al/ MoO3 with 300 nm

图5 Al/MoO3反应薄膜燃烧速度测试结果

Fig. 5 The burning rate of Al/MoO3 multilayer films obtained with high speed camera

表1 Al/MoO3反应薄膜DSC测试结果

Table 1 The result data of Al/MoO3 films measured by DSC

表2 Al/MoO3反应薄膜半导体和桥丝点火器件电流和电压发火感度

Table 2 The current and voltage sensitivities of the initiators based on Al/MoO3 film

图 6 Al/MoO3反应薄膜半导体发火器件的发火电压、电流柱状图 -- a. firing⁃voltage of Al/MoO3 reactive film

Fig 6 The column graphs of firing sensitivities of the SCB initiators based on Al/MoO3 reactive film -- a. firing⁃voltage of Al/MoO3 reactive film

图 6 Al/MoO3反应薄膜半导体发火器件的发火电压、电流柱状图 -- b. firing⁃current of Al/MoO3 reactive film

Fig 6 The column graphs of firing sensitivities of the SCB initiators based on Al/MoO3 reactive film -- b. firing⁃current of Al/MoO3 reactive film

表3 Al/MoO3反应薄膜点火器件的点火能力测试结果

Table 3 The firing results of Al/MoO3 initiator based on the B⁃KNO3 tablet

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

Tonset is the onset temperature. Tpeak is the peak temperature. Tend is the end temperature.Q is heat release.E1 is the first activation energy. E2 is the second activation energy.E3 is the third activation energy.

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Rossi C, Kaili Zhang, Esteve D, et al. Nanoenergetic materials for MEMS: A review [J]. Journal of Microelectro Mechanical Systems, 2007, 16(4) : 919-931.

    • 2

      Comet M, Martin C, Schnell F, et al. Nanothermites: A short review, factsheet for experimenters, present and future challenges [J]. Propellants Explosives Pyrotechnics,2018, 43: 1–20.

    • 3

      Kaili Zhang, Rossi C, Petrantoni M, et al. A nano initiator realized by integrating Al/CuO⁃based nanoenergetic materials with a Au/Pt/Cr microheater [J]. Journal of Microelectromechanical Systems, 2008, 17(4) : 832-837.

    • 4

      Xiang Zhou, Ruiqi Shen, Yinghua Ye, et al. Influence of Al/CuO reactive multilayer films additives on exploding foil initiator [J], Journal of Applied Physics, 2011, 110(9) : 094505-1-094505-9.

    • 5

      倪德彬,于国强,史胜楠,等. Al/CuO 二维多层薄膜点火药的制备与性能研究[J],火工品, 2018, 1: 28-32.

      NI De⁃bin, YU Guo⁃qiang, SHI Sheng⁃nan, et al. Synthesis and properties of multilayered Al/CuO thermite [J]. Initiators & Pyrotechnics, 2018, 1: 28-32.

    • 6

      Swati M, Schoenitz M, Edward L D. Control of structural refinement and composition in Al‑MoO3 nanocomposites prepared by arrested reactive milling [J]. Propellants Explosives Pyrotechnics, 2006, 31(5): 382-340.

    • 7

      Thompson C V, Clevenger L A. Self propagating explosive reactions in Al/Ni multilayer thin films [J]. Applied Physics Letters, 1990, 57(12):1262-1264.

    • 8

      Gavens A J, Heerden D V, Mann A B, et al. Effect of intermixing on self⁃propagating exothermic reactions in Al/Ni nanolaminate foils [J]. Journal of Applied Physics, 2000, 87(3) : 1255-1263.

    • 9

      Peng Zhu, Ruiqi Shen, Fiadosenka N N, et al. Dielectric structure pyrotechnic initiator realized by integrating Ti/CuO⁃based reactive multilayer films [J]. Journal of Applied Physics, 2011, 109(8) : 08452-1-094505-7.

    • 10

      Barro S C, Kell S T, Kirchhoff J, et al. Self⁃propagating reactions in Al/Zr multilayers: Anomalous dependence of reaction velocity on bilayer thickness [J]. Journal of Applied Physics, 2013, 114(22) : 223517-1- 223517-10.

    • 11

      Zilong Zheng, Wenchao Zhang, Chunpei Yu, et al. Integration of the 3DOM Al/Co3O4 nanothermite film with a semiconductor bridge to realize a high output micro⁃energetic igniter [J]. RSC Adv,2018, 8:2552–2560.

    • 12

      Yanjun Yin, Xueming Li, Yuanjie Shu, et al. Fabrication of electrophoretically deposited, self‑assembled three‑dimensional porous Al/CuO nanothermite films for highly enhanced energy output [J]. Materials Chemistry and Physics, 2017, 194: 82-187.

    • 13

      李勇,王军,高泽志,等. 多晶硅与Al/CuO 复合薄膜集成的含能点火器件的点火性能[J]. 含能材料,2016,24(2):182-187.

      LI Yong, WANG Jun, GAO Ze⁃zhi, et al. Ignition performances of energetic igniters integrated by integrating polysilicon with Al /CuO multilayer films [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2016, 24(2) : 182-187.

    • 14

      蔡志海, 牛庆银, 底月兰, 等. 调制周期对Cr/CrN纳米多层膜的结构与性能的影响[J],金属热处理, 2011, 36(1) : 29-32.

      CAI Zhi⁃hai, NIU Qing⁃yin, DI Lan⁃yue, et al. Influence of modulation period on microstructure and properties of Cr/CrN nano⁃scale multilayer films [J]. Heat Treat of Metals, 2011, 36(1) : 29-32.

    • 15

      Bahrami M, Taton J, Conédéra V, et al. Magnetron sputtered Al⁃CuO nanolaminates: effect of stoichiometry and layers thickness on energy release and burning rate [J]. Propellants Explosives Pyrotechnics, 2014, 39(3) : 365–373.

    • 16

      Egan G C, Mily E J, Maria J P, et al. Probing the reaction dynamics of thermite nanolaminates [J]. The Journal of Physical Chemistry C, 2015, 119(35) : 20401–20408.

    • 17

      Yu Tai, Jianbing Xu, Fei Wang, et al. Experimental and modeling investigation on the self⁃propagating combustion behavior of Al⁃MoO3 reactive multilayer films [J]. Journal of Applied Physics, 123(23): 235302-1-235302-9.

    • 18

      Peng Zhu, Zhen Guan, Shuai Fu, et al. Firing and initiation characteristics of energetic semiconductor bridge integrated with varied thickness of Al/MoO3 nanofilms [J]. Material Science, 2018, 24(2): 143-147.

    • 19

      李东乐 ,朱朋, 付帅, 等. Al/Ni 和Al /Ti 纳米多层薄膜制备与表征[J], 含能材料, 2013, 27(6), 749-753

      LI Dong⁃le, ZHU Peng, FU Shuai, et al. Fabrication and Characterization of Al /Ni and Al/Ti Multilayer Nanofilms [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2013, 27(6): 749-753;

    • 20

      Jinhee K, Jean M D, Pierre A, et al. Interfacial chemistry in Al/CuO reactive nanomaterial and its role in Eexothermic reaction[J]. ACS Applied Materials & Interfaces, 2013,5(3): 605-613.

    • 21

      Ozawa T. A new method of analyzing thermogravimetric data [J]. Bulletin of the Chemical Society of Japan, 1965, 38: 1181-1186.

    • 22

      Jianbing Xu, Yu Tai, Chengbo Ru, et al. Tuning the Ignition Performance of a Microchip Initiator by Integrating Various Al/MoO3 Reactive Multilayer Films on a Semiconductor Bridge [J]. ACS Appl Mater Interfaces ,2017, 9: 5580-5589

    • 23

      Jun Wang, XiaojunJiang, LongZhang, et al. Design and fabrication of energetic superlattice like⁃PTFE/Al with superior performance and application in functional micro⁃initiator [J]. Nano Energy,2015, 12: 597–605

    • 24

      张蕊,付东晓,白颖伟,等. 火工品感度实验用便携式计算装置[J].火工品, 2009(1):35-39.

      ZHANG Rui, FU Dong⁃xiao, BAI Ying⁃wei, et al. A calculate instrument for the sensitivity test of initiating explosive device [J]. Initiators and Pyrotechnics,2009(1):35-39 .

    • 25

      袁俊明,张庆明,刘彦. 炸药感度测试兰利法与升降法比较研究[J]. 含能材料, 2008,16(2):86-89.

      YUAN Jun⁃ming, ZHANG Qing⁃ming, LIU Yan. Comparison on study LangLi method and up‑and‑down method for sensitivity test of explosive [J]. Chinese Joural of Energetic Materials (Hanneng Cailiao), 2008, 16(2):86-89.