摘要
从力学性能、防护结构应用研究、吸能机理三个方面综述了聚脲弹性体在爆炸防护中的研究进展。聚脲弹性体的静/动态力学性能优异,断裂伸长率高、应变率效应强,在增强墙体、金属及复合材料等多种防护结构抗冲击性能方面的研究取得了重要进展,获得了一些规律性认识,包括聚脲弹性体在防护结构中的位置、质量比重等因素对抗爆性能的影响以及聚脲弹性体在墙体、金属、复合材料等不同结构中增强抗爆性能的机理。分析认为聚脲弹性体在爆炸防护中具有很大的应用潜力,指出未来需进一步研究聚脲弹性体的本构关系、影响聚脲弹性体抗爆性能的因素、防护结构尺寸效应与聚脲弹性体的微观吸能机理。
近年来,国内外爆炸恐怖活动时有发生,对人民的生命财产安全造成了严重威
为此,国内外研究者不断开发和应用新材料用于提高现有及新设计防护结构的抗爆能力,为防护结构设计提供新思路,逐渐发现具有优异理化性能的新型材料——聚脲弹性体(以下简称聚脲)防爆抗冲击性能较好,在防护领域中的应用日渐广泛。20世纪80年代以来,人们开始关注泡沫材料和纤维复合材料的冲击防护性能,并对泡沫铝、聚氨酯泡沫塑料、纤维复合材料及组成的复合结构的动态力学性能进行了研究,探索了其在爆炸防护领域中的应
本文结合国内外聚脲在爆炸防护中的研究进展,梳理了聚脲的力学性能、聚脲在墙体、金属及复合材料等不同结构中的防护性能和聚脲的吸能机理三个方面的研究热点,指出了聚脲在爆炸防护领域应用的研究方向和发展趋势。
聚脲是国外近年来刚刚兴起的一种新型环保材料,由异氰酸酯组分(R—N=C=O)和氨基化合物(R—NH2)反应而成,分子结构如

图1 聚脲分子结构
Fig.1 A schematic of the simplified molecular⁃level structure of segmented polyure

图2 原子力显微镜下包含软段和硬段的聚脲微观结构
Fig.2 A typical tapping⁃mode AFM phase image of polyurea showing its micro⁃segregated structure consisting of hard domains and a soft matri
聚脲高度复杂的内部微结构使得聚脲在宏观上表现出优异的综合力学性能。在静态和准静态拉伸或压缩作用下,聚脲表现出超弹性材料的性质,拉伸强度高达28 MPa,断裂伸长率最高可达1000%,撕裂强度达44~105 [

a. Uniaxial tension stress⁃strain of polyurea at strain rates ranging from 1

b. Uniaxial compression stress⁃strain of polyurea at strain rates ranging from 1
图3 聚脲在动态加载下的应力⁃应变曲
Fig.3 The dynamic compression and tension stress‑strain behavio
聚脲的这些性质极大地加大了建立精确描述聚脲本构关系的难度,但这也是发展准确预测聚脲材料动态响应分析计算模型的基础。在进行准静态计算时,常常忽略聚脲微相分离材料的微观特性,将聚脲看作内部材质均匀、各相同性材料,采用Mooney⁃Rivlin(MR)模型可获得与实验符合很好的结果,描述不可压缩材料的MR本构方程如
(1) |
式中,W为橡胶应变能密度函数;为材料常数,为第一应变不变量;为第二应变不变量。
为进一步描述嵌段高分子材料微相分离特性,Qi H J
(2) |
式中,表示柯西应力张量,MPa;,为Boltzmann常数,;为绝对温度,K;为单位体积内分子链数目;,为软段基体引起的变形梯度,其中det( )表示矩阵的行列式值;N为两交联分子间刚性联接数目;为左柯西⁃格林张量;为八链网络中每链的伸长率L( )为朗之万函数;为硬组分的体积分率;为弹性模量张量;为右伸长张量;左伸长张量。
然而,上述本构关系均未体现出聚脲的应变率效应。为此,Amirkhizi A V
(3) |
式中,为应变率张量;为柯西应力张量,MPa;为四阶松弛模量张量,MPa。
(4) |
(5) |
式中,,为工程应变;为第二应变不变量; 为伸长率;,,和为模型参数,可通过低应变率下的应力应变数据拟合获得。
上述本构方程虽然可以描述聚脲的应变率效应,但是其形式复杂,模型参数众多,对于工程应用来说过于复杂。为此,Mohotti D
(6) |
式中,,为名义应变率,为参考应变率;为模型参数。
(7) |
式中,,为当前应变率,为参考应变率;、为模型参数。
通过上述研究者的努力,对聚脲的力学性能有了初步的认识,但对于复杂应力条件下的结果不是很好,要获得更精确、广泛适用的结果,不仅需要进一步综合研究聚脲在多轴、多因素(包括应变率、压力、温度等)加载下的动态响应机理与失效模式,还需要获得材料组分对聚脲力学性能的影响。目前,已有研究表明,聚脲的力学行为主要与其软硬段配比相
在没有加固的情况下,混凝土砌体墙结构脆性大,抗弯强度低,基本不能吸收应变能,一旦遇到恐怖袭击,后果极其严重。为此,美国空军实验室(Air Force Research Laboratory, AFRL)从1995年开始选择使用碳纤维和芳纶纤维试验增强混凝土砌体墙的抗爆性能,但纤维复合材料生产成本高、施工程序复杂,不利于大面积使

图4 聚脲涂层对墙体的抗爆性能影
Fig.4 Comparison of failure of masonry wall with and without polyurea elastome
此后,陆续有不少学者针对聚脲及其复合结构增加墙体抗爆性能进行了研究。美国陆军工程大学的研究者分别采用1 mm厚的纤维复合材料、1 mm镀锌钢板和3.2 mm聚脲涂层置于墙体背爆面用于加固砌体墙。在试验的爆炸载荷下,尽管三种加固方式的墙体均发生了失效,但纤维复合材料和聚脲涂层加固的墙体能够保持更好的完整性,成功将破片和飞屑包覆在结构体内,避免屋内人员受
相对于试验研究,理论分析和数值计算可以以更低的成本、更高的效率获得更详细的参数,预测结构的动态响应与失效模式。Hoo Fatt M S
在金属结构防护领域,聚脲弹性体不仅可喷涂在普通民用防护结构表层起防腐耐磨功效,更重要的是可涂覆在装甲车辆、海军舰船等军用装备中起爆炸与冲击防护功能。为此,美国、澳大利亚的高校和国防机构对聚脲增强钢板抗冲击性能进行了大量的研究。早在2006年,加州理工大学Amini M R

a. Bilayer plate loaded on the steel side

b. Bilayer plate loaded on the polyuria side

c. Monolithic steel plate

d. Monolithic steel plate
图5 聚脲层位置对钢板抗冲击性能的影
Fig. 5 Influence of the position of polyurea layer on shock resistance of steel plat
Amini M R
1) a is ratio of thickness and defined as d/D, where d and D are represented of thickness of polyurea and thickness of steel respectively; 2)r is scaled distance and defined as R/(W
硬/软/硬的三明治夹芯结构是一种常见的轻质抗冲击结构。聚脲具有质量轻、抗冲击能力强的特点,根据复合结构设计的普遍认识,将其放置在两块钢板之间,可能具有较好的抗爆炸冲击效果。宋彬
一般来说,爆炸事故经常伴随着高速破片的产生,这也对爆炸防护结构的设计提出了更高的要求,不仅要防护冲击波,还需要防护破片的侵彻。并且,目前已有一部分试验证明聚脲作为一种高应变率相关的粘弹性高分子材料,运用在金属结构中,对破片的侵彻也具有较好的防护作

图6 不同复合结构中单位面密度聚脲材料的对子弹速度的减少
Fig. 6 Velocity reduction per unit areal density of polyurea coating for configuration
上述研究表明,采用聚脲涂层可以增强钢结构的抗爆性能,有效降低复合防护结构的变形。对于冲击波的防护,聚脲位于背爆面的抗爆效果较好;对于破片侵彻的防护,聚脲位于迎弹面的抗爆效果较好。当聚脲作为夹层时,钢板/聚脲/钢板复合结构具有更好的抗爆性能。此外,影响聚脲⁃钢板复合防护结构抗爆性能的因素还有厚度比、比例距离、冲击加载方式和界面粘接强度等影响,但目前的研究尚不构成体系,未完全揭示影响规律,难以形成指导性的设计方法与标
纤维复合材料质量轻、强度高,泡沫材料平台应力区域长,缓冲吸能效果好,将纤维复合材料作为面板,泡沫材料作为夹芯组成的三明治夹芯结构兼具两种材料的性能,具有很好的抗爆、抗冲击性能,在冲击防护领域得到广泛应用。近年来人们发现,在纤维复合材料泡沫夹芯结构中引入聚脲层能够进一步增强复合结构的抗爆能力。
早在2006年,Bahei⁃EI⁃Din Y A

a. Conventional design

b. Modified design
图7 传统三明治复合结构和改进三明治复合结构截
Fig. 7 Cross⁃sections of conventional and modified designs of sandwich plate
随后,Gardner N

a. Configuration 1 (PU/A300/A500/A300)

b. Configuration 1 (A300/A500/A300/PU)
图8 不同复合结构在冲击作用下的破坏模
Fig. 8 Comparison of failure of different composite structures after being subjected to high intensity blast loa
2011年,Tekalur S A
爆炸冲击波在水介质中的衰减速度远远低于在空气介质中的衰减速度,水下结构的冲击防护更加困难,这也是舰船、潜艇等水中军事装备急需解决的困难。为提升舰船、潜艇等水中结构的防护性能,2013年,Leblanc J

图9 复合结构的位移场演
Fig. 9 Full⁃field deformation evolution of composite structur
相对于掩体、船体和装甲板等防护结构来说,个人穿戴防护产品对结构的轻质高强性能要求更高。在战斗中,头盔是最重要的个人防护产品,为减轻作战人员的头部负载,多采用非金属复合结构设计,其中纤维复合材料常被选择作为外壳材料,EVA(乙烯/乙酸乙烯酯共聚物)作为缓震内衬材料。为进一步提高头盔的防护性能,美国克莱姆森大学的Grujicic M

a. EVA liner

b. PU liner
图10 冲击波作用下不同内衬头盔保护下大脑中心截面压力分布(作用时间:0.82 ms
Fig. 10 Pressure distribution over the mid⁃coronal section in brain upon protection of different helmets (after 0.82 ms
上述多种应用场景的研究发现,在纤维/树脂复合材料结构中引入聚脲形成复合结构,有利于防护结构抗爆性能的提高,可进一步提高防护结构的轻质高强特性。对于层状复合材料防护结构来说,聚脲位于背爆面和迎爆面均能提高复合材料结构的抗爆性能,但聚脲层的位置影响复合结构抗爆性能的增加和纤维/树脂复合材料的失效模式,位于背爆面对防护结构的提升明显优于迎爆面。同时,现有研究表明,相比于等面密度的层状复合防护结构,聚脲层位于中间的夹层复合防护结构具有更好的抗爆性能。然而,由于纤维/树脂复合材料、聚脲以及泡沫等新型轻质防护材料本构模型复杂,目前的研究多集中于对于试验现象的定性描述,缺少对试验过程的定量描述,未来需要建立爆炸冲击作用下含聚脲、复合材料的复合防护结构的数学模型与数值计算模型,定量描述复合防护结构在爆炸冲击作用的动态响应过程。
上述研究证明,在进行结构设计时,合理应用聚脲弹性体能够增加结构的防爆抗冲击性能,但如果应用不合理,反而会减弱防护结构的抗爆性能。因此,获得聚脲弹性体衰减冲击波和防破片侵彻的机理,用于科学的指导含聚脲材料复合防护结构的设计是非常必要的。Grujicic
一般来说,与小分子材料和无机材料不同,高分子材料因其分子结构、成型工艺、玻璃态温度(Tg)和熔融温度(Tm)不同,具有不同的结晶程度。当高分子材料处在Tg~Tm温度范围内,分子能量超过结晶活化能时,高分子材料趋向于结晶硬
如

图11 分子链段之间的氢键连
Fig. 11 Hydrogen bonding within the urea linkages in polyure
与其他工程材料不同,常温下聚脲的应力⁃应变曲线与加载时间相关,是一种典型的粘弹性材料。聚脲材料的粘性特性一方面使其具有高应变率效应;另一方使得聚脲在加卸载过程产生粘性耗散,吸收冲击能量,这在聚脲的循环加载试验中可以明显看出相邻两次加卸载曲线之间的滞回面积,该面积与材料能量吸收能力成正
爆炸冲击属于高速动态应力加载过程,是以应力波的形式在介质中进行传播的。在此过程中,有加载就必然有卸载。在均质材料的弹性加载过程中,加载波和卸载波均以弹性波速进行传播,且卸载波发生于加载波之后,卸载波不与加载波发生相互作用。在均质材料的弹塑性加载过程中,卸载波速大于加载波速,在距离加载端一段距离后,卸载波追赶上加载波,对加载波进行削

图12 卸载波与加载波的相对运动与相互作用过
Fig. 12 Shockwave capture and neutralization in phase separated material
综上,目前主要从宏观和微观两个层面研究聚脲弹性体的吸能机理。宏观吸能机理比较明确,普遍认为是应力波在聚脲与结构表面透反射和聚脲材料应变率效应形成的;但对于微观吸能机理还未达成一致,未来需要应用更先进的测试手段,定量研究聚脲在爆炸冲击作用下材料状态变化及应力波传播规律,明确聚脲的微观吸能机理,为优化材料设计提供指导。
基于材料力学性能、防护结构应用研究和吸能机理三个方面总结了国内外聚脲弹性体在爆炸防护中应用的研究进展,重点讨论了聚脲应用在墙体、金属和纤维复合材料防护结构中对抗爆性能的影响。获得了一些基础认识,达成聚脲在爆炸防护中具有很好的应用潜力的共识,但由于各自研究体系差异、现有测试手段不足、研究深度有限等原因,目前对聚脲在爆炸冲击防护中应用的研究还缺乏体系性,不能准确指导防护结构设计。基于现状,建议未来对聚脲弹性体增强抗爆性能的研究重点包括以下几个方面:
(1)获得基于软硬段含量配比的聚脲动态力学行为及本构关系,精确描述聚脲在静/动态加载下的力学行为。
(2)系统研究聚脲层位置、聚脲层相对厚度、界面粘接强度和冲击载荷性质等因素对防护结构抗爆性能的影响规律。
(3)应用更先进的检测手段,观察聚脲在冲击加载下材料状态的变化及应力波的传播规律,进一步明确聚脲的微观吸能机理。
(4)未来还需重点关注防护结构的尺寸效应,确保防护结构设计的可靠性。
(责编: 高 毅)图文摘要:

The research progress in using polyurea elastomer for enhanced structural protective performance under blast and impact loading was reviewed. It is pointed out that present research is scattered and lacks unsystematic. In the future, more precise constitutive model, the factors affecting the blast resistance, the micro⁃energy mitigation mechanism of polyurea elastomer and the dimensional effect of protective structure are needed to be studied further.
参考文献
蔡桂杰. 弹性体涂覆钢筋混凝土板抗爆作用设计方法[D]. 太原:中北大学, 2015 [百度学术]
CAI Gui⁃jie. The design method of the reinforced concrete plate coated polyurea under the action of explosion [D]. Taiyuan: North University of China, 2015. [百度学术]
Raman S N, Ngo T, Mendis P. A reviw on the use of polymeric coatings for retrofitting of structural elements against blast effects [J]. Electronic Journal of Structural Engineering, 2011(11): 69-80. [百度学术]
鲁向辉,周春桂,王志军等. 爆炸载荷下装甲车辆的动态响应分析[J]. 含能材料, 2013, 21(5):624-628. [百度学术]
LU Xiang⁃hui, ZHOU Chun⁃gui, WANG Zhi⁃jun, et al. Dynamic response analysis of an armored vehicle under explosive loading [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao). 2013, 21(5): 624-628. [百度学术]
Chen J, Dawe D J, Wang J. Nonlinear transient analysis of rectangular composite laminated plates [J]. Composite Structures. 2000, 49(2):129-139. [百度学术]
Zhang X T, Wang R Q, Li Q M. Modeling of hypervelocity impact of sandwiched open cell aluminum foam [J]. Procedia Engineering. 2017, 204: 262-269. [百度学术]
周佩杰, 王坚, 陶钢, 等. 泡沫材料对冲击波的衰减特性 [J]. 爆炸与冲击, 2015, 35(5): 675-681. [百度学术]
ZHOU Pei⁃Jie, WANG Jian, TAO Gang, et al. Attenuation characteristics of shock waves interacting with open and closed foams [J]. Explosion and Shock Waves. 2015, 35(5): 675-681. [百度学术]
Liu H, Cao Z K, Yao G C, et al. Performance of aluminum foam⁃steel panel sandwich composites subjected to blast loading [J]. Materials and Design. 2013(47):483-488. [百度学术]
Yun N R, Shin D H, Ji S W, et al. Experiments on blast protective systems using aluminum foam panels [J], KSCE Journal of Civil Engineering. 2014,18(7): 2153-2161. [百度学术]
Mosalam K M, Mosalam A. Nonlinear transient analysis of reinforced concrete slabs subjected to loading and retrofitted with CFRP composites [J]. Composites Part B: Engineering. 2001, 32: 623-636. [百度学术]
翟文,陈强,甄建军,等. 喷涂聚脲弹性体技术及其在军事领域的应用 [J]. 工程塑料应用: 2012, 40(10): 28-32. [百度学术]
ZHAI Wen, CHEN Qiang, ZHEN Jian⁃jun, et la. Spray Polyurea elastomer technology and its application in military field [J]. Engineering Plastics Appication. 2012, 40(10): 28-30. [百度学术]
Lqbal N, Tripathi M, Parthasarathy S, et al. Polyurea coating for enhanced blast⁃mitigation: a review [J]. The Royal of Chemistry. 2016, 6:109706-109717. [百度学术]
高志亮, 范晓东, 田威, 等. 喷涂聚脲弹性体的研究进展 [J]. 中国胶粘剂. 2008, 17(5): 44-48. [百度学术]
GAO Zhi⁃liang, FAN Xiao⁃dong, TIAN Wei, et al. Recent development of spray polyurea elastomer [J]. China Adhesives. 2008, 17(5): 44-48. [百度学术]
Grujicic M, Pandurangan B, Bell W C, et al. Molecular⁃level simulation of shock generation and propagation in polyurea [J]. Materials Science and Engineering A. 2011, 528: 3799-3808. [百度学术]
Grujicic M, He T, Pandurangan B, et al. Experimental characterization and material⁃model development for microphase⁃segregated polyurea: an overview [J]. Journal of Materials Engineering and Performance. 2012, 21(1): 2-14. [百度学术]
Rivera H K D. Nanoenhanced polyurea as a blast resistant coating for concrete masonry walls [D]. Mississippi: The University of Mississippi, 2013. [百度学术]
Grujicic M, Entremont B P, Pandurangan B, et al. Concept⁃level analysis and design of polyurea for enhanced blast⁃mitigation performance [J]. Jounal of Materials Engineering and Performance. 2012, 21(10): 2012-2025. [百度学术]
Castagna A M, Pangon A, Choi T, et al. The role soft segment molecular weight on microphase separation and dynamics of bulk polymerized polyureas [J]. Macromolecules. 2012, 45: 8438-8444. [百度学术]
黄微波, 杨宇润, 王宝柱. 喷涂聚脲弹性体技术 [J]. 聚氨酯工业. 1999, 14(4): 7-11. [百度学术]
HUANG Wei⁃bo, YANG Yu⁃run, WANG Bao⁃zhu. Spray polyurea elastomer technology [J]. Polyureathane Industry. 1999, 14(4): 7-11. [百度学术]
Roland C M, Twigg J N, Vu Y, et a. High strain rate mechanical behavior of polyurea [J]. Polymer. 2007, 48: 574-578. [百度学术]
Sarva S S, Deschanel S, Boyce M C, et al. Stress⁃strain behavior of a polyurea and a polyurethane from low to high strain rates [J]. Polymer. 2007(48): 2208-2213. [百度学术]
Barsoum R G. Elastomeric polymers with high rate sensitivity [M]. ISBN: 978⁃0⁃323⁃35400⁃4 [百度学术]
Iqbal N, Sharma P K, Kumar D, et al. Protective polyurea coating for enhanced blast survivability of concrete [J]. Construction and Building Materials. 2018(175): 682-690. [百度学术]
Yi J, Boyce M C, Lee G F, et al. Large deformation rate⁃dependent stress⁃strain behavior of polyurea and polyureathanes [J]. Polymer. 20016(47): 319-329. [百度学术]
Grujicic M, Pandurangan B, He T, et al. Computational investigation of impact energy absorption capability of polyurea coating via deformation⁃induced glass transition [J]. Materials Science and Engineering A. 2010(527): 7741-7751. [百度学术]
Rivlin R S. Large elastic deformation of isotropic materials [J]. Fundamental concepts. Phil Trans Roy Soc Lond, 1997, 240(822): 459-490. [百度学术]
Qi H J, Boyce M C. Stress⁃strain behavior of thermoplastic polyurethans [J]. Mechanics of Materials. 20015(37): 817-839. [百度学术]
Amirkhizi A V, Isaaca J, Mcgee J, et al. An experimentally⁃based viscoelastic constitutive model for polyurea including pressure and temperature effects [J]. Philosophical Magazine. 2006, 86(26): 5847-5866. [百度学术]
Jiao T, Clifton R J, Grunschel S E. Pressure –sensitivity and constitutive modeling of an elastomer at high strain rates [C]//16th APS Topical Conference on shock Compression of Condensed Matter, 2009. [百度学术]
Sayed El T M. Constitutive models for polyurea and soft biological tissues [D]. Ph. D. Thesis, California Institute of Technology, 2008. [百度学术]
Guo H, Guo W G, Amirkhizi A V, et al. Experimental investigation and modeling of mechanical behaviors of polyurea over wide ranges of strain rates and temperatures [J]. Polymer Testing. 2016(53): 234-244. [百度学术]
Guo H, Guo W G, Amirkhizi A V. Constitutive modeling of the tensile and compressive deformation behavior of polyurea over a wide range of strain rates [J]. Construction and Building Materials. 2017(150): 851-859. [百度学术]
Li C, Lua J. A hyper⁃viscoelastic constitutive model for polyurea [J], Materials Letters, 2009, 63(11): 877-880. [百度学术]
代利辉,吴成,安丰江,等. 水下爆炸载荷作用下聚脲材料对钢结构防护效果研究 [J], 中国测试. 2018, 44(10): 157-163. [百度学术]
DAI Li⁃hui, WU Cheng, AN Feng⁃jiang, et al. Investigation on the protection effect of polyurea⁃coated steel plates at underwater explosive loading [J]. China Measurement & Test, 2018, 44(10): 157-163. [百度学术]
Mohotti D, Ali M, Ngo T, et al. Strain rate dependent constitutive model for predicting the material behavior of polyurea under high strain rate tensile loading [J]. Material and Design. 2014(53): 830-837. [百度学术]
Wang H, Deng X, Wu H, et al. Investigating the dynamic mechanical behavior of polyurea through experimentation and modeling [J]. Defence Technology. https://doi.org/10.1016/j.dt.2019.04.016 [百度学术]
Mohotti D, Ngo T, Raman S N, et al. Analytical and numerical investigation of polyurea layered aluminium plates subjected to high velocity projectile impact [J]. Materials and Design. 2015(82): 1-17. [百度学术]
Davidson J S, Porter J R, Dinan R J, et al. Explosive testing of polymer retrofit masonry walls [J]. Journal of Performance of Constructed Facilities. 2004, 18(2): 2-7. [百度学术]
Davidson J S, Fisher J W, Hammons M I, et al. Failure mechanisms of polymer⁃reinforced concrete masonry walls subjected to blast [J]. Journal of Structural Engineering. 2005, 131(5):8-14. [百度学术]
Moradi L G, Davidson J S, Dinan R J. Resistance of membrane retrofit concrete masonry walls to pressure [J]. Journal of Performance of Constructed Facilities. 2008, 22(3):131-142. [百度学术]
Moradi L G, Davidson J S, Dinan R J. Response of bonded membrane retrofit concrete masonry walls to dynamic pressure [J]. Journal of Performance of Constructed Facilities. 2009, 23(2): 72-80. [百度学术]
F.Asce J T, M.Asce B B, M.Asce T R, et al. Blast response of lightly attached concrete masonry unit walls [J]. Journal of Structural Engineering. 2005, 131(8): 1186-1193. [百度学术]
Ha J H, Yi N H, Choi J K, et al. Experimental study on hybrid CFRP⁃PU strengthening effect on RC panels under blast loading [J]. Composite Structures. 2011, 93:2070-2082. [百度学术]
Hoo Fatt M S, Ouyang X, Dinan R J. Blast response of walls retrofitted with elastomer coating [J]. Structures Under Shock and Impact VIII. 2004:129-138. [百度学术]
Ghaderi M, Maleki V A, Andalibi K. Retrofitting of unreinforced masonry walls under blast loading by FRP and spay on polyurea [J]. Cumhuriyet University Faculty of Science. 2015, 36(4): 462-477. [百度学术]
Amini M R, Isaacs J B, Nemat⁃Nasser S. Effect of polyurea on the response of steel plates [C]//Proceeding of the 2006 SEM Annual Conference and Experimental and Applied Mechanics. St. Louis. MO. 2006 [百度学术]
Amini M R. Effect of polyurea on dynamic response and fracture resistance of steel plates under impulsive loads [D]. San Diego: University of California, San Diego, 2007. [百度学术]
Amini M R, Amirkbizi A V, Nemat⁃Nasser S. Numerical modeling of response monolithic and bilayer plates to impulsive loads [J]. International Journal of Impact Engineering. 2010, 37: 90-102. [百度学术]
Amini M R, Isaacs J B, Nemat⁃Nasser S. Experimental investigation of response of monolithic and bilayer plates to impulsive loads [J]. International Journal of Impact Engineering, 2010, 37: 82-89. [百度学术]
Amini M R, Isaacs J B, Nemat⁃Nasser S. Investigation of effect of polyurea on response of steel plates to impulsive loads in direct pressure⁃pulse experiments [J]. Mechanics of Materials. 2010, 42: 628-639. [百度学术]
赵鹏铎, 张鹏, 张磊, 等. 聚脲涂覆钢板结构抗爆性能试验研究[J]. 北京理工大学学报. 2018, 38(2): 118-123. [百度学术]
ZHAO Peng⁃duo, ZHANG Peng, ZHANG Lei, et al. Experimental investigation on the performance of polyurea⁃coated structure under blast loads [J]. Transactions of Beijing Institute of Technology. 2018, 38(2): 118-123. [百度学术]
Rotariu A, Bucur F, Toader G, et al. Experimental study on polyurea coating effects on deformation of metallic plates subjected to air blast loads [J]. Material Plastic. 2016, 53(4): 670-674. [百度学术]
Chen C C, Linzell D G, Alpman E, et al. Effectiveness of advanced coating systems for mitigating blast effects on steel components [C]//The Tenth International Conference on Structures Under Shock and Impact. Algarve, Portugal. 2008. [百度学术]
甘云丹, 宋力, 杨黎明. 弹性体涂覆钢板抗冲击性能的数值模拟[J]. 兵工学报. 2009, 30(2): 15-18. [百度学术]
GAN Yun⁃dan, SONG Li, YANG Li⁃ming. Numerical simulation for anti⁃blast performances of steel plate coated with elastomer [J]. Acta Armamentar II, 2009, 30(2): 15-18. [百度学术]
Samiee A, Amirkhizi A V, Nemat⁃Nasser A. Numerical study of the effect of polyurea on the performance of steel plates under blast loads [J]. Mechanics of Materials. 2013, 64: 1-9. [百度学术]
Ackland K, Anderson C, Ngo T D, Deformation of polyurea⁃coated steel plates under localised blast loading [J[. International Journal of Impact Engineering, 2013, 51(1): 13-22. [百度学术]
宋彬, 黄正详, 翟文, 等. 聚脲弹性体夹芯防爆罐抗爆性能研究 [J]. 振动与冲击. 2016, 35(7): 138-144. [百度学术]
SONG Bin, HUANG Zheng⁃xiang, ZHAI Wen, et al. Anti⁃detonation properties of explosion⁃proof pots made of sandwich structures with polyurea elastomer [J]. Journal of Vibration and Shock. 2016, 35(7): 138-144. [百度学术]
王小伟, 何金迎, 祖旭东, 等. 聚脲弹性体复合夹层结构的防爆性能 [J]. 工程塑料应用. 2017, 45(5): 65-70. [百度学术]
WANG Xiao⁃wei, HE Jin⁃ying, ZU Xu⁃dong, et al. Antidetonation properties on composite sandwich structure with polyurea elastomer [J]. Engineering Plastics Application. 2017, 45(5): 65-70. [百度学术]
翟文, 戴平仁,何金迎,等. 聚脲⁃钢板夹层结构抗爆性能研究 [J]. 兵工自动化, 2018, 37(10): 65-69. [百度学术]
ZHAI Wen, DAI Ping⁃ren, HE Jin⁃ying, et al. Study on anti⁃detonation performance of polyurea steel sandwich structure [J]. Ordnance Industry Automation, 2018, 37(10): 65-69. [百度学术]
戴平仁,黄正详,祖旭东,等. 聚脲弹性体“三明治”夹层结构抗爆性能 [J]. 2017,45(12): 70-74. [百度学术]
DAI Ping⁃ren, HUANG Zheng⁃xiang, ZU Xu⁃dong, et al. Anti⁃detonation property of sandwich structure with polyurea elastomer [J]. Engineering Plastics Application, 2017, 45(12): 70-74. [百度学术]
Mohotti D, Ngo T, Raman S N, et al. Plastic deformation of polyurea coated composite aluminium plates subjected to low velocity impact [J]. Materials and Design. 2014, 56: 696-714. [百度学术]
Mohotti D, Ngo T, Mendis Pet al. Polyurea coated composite aluminium plates subjected to high velocity projectile impact [J]. Materials and Design. 2013, 52: 1-16. [百度学术]
张鹏,赵鹏铎,王志军,等. 高硬度聚脲涂层抗侵性能与断裂机制研究 [J]. 爆炸与冲击,2019,39(1): 015101(1)-015101(10). [百度学术]
ZHANG Peng, ZHAO Peng⁃duo, WANG Zhi⁃jun, et al. Penetration resistance and fracture mechanism of high⁃hardness po;yurea coating [J]. Explosion and Shock Waves, 2019, 39(1): 015101(1)-015101(10). [百度学术]
赵鹏铎,黄阳洋,王志军,等. 聚脲涂层复合结构破片侵彻效能研究 [J]. 兵器装备工程学报,2018, 39(8): 1-7. [百度学术]
ZHAO Peng⁃duo, HUANG Yang⁃yang , WANG Zhi⁃jun, et al. Study on penetration effectiveness of polyurea coated composite structures against fragments [J]. Journal of Ordnance Equipment Engineering, 2018, 39(8) 1-7. [百度学术]
许帅. 聚脲弹性体复合结构抗冲击防护性能研究[D]. 北京, 北京理工大学, 2015 [百度学术]
XU Shuai. The impact resistance study of polyurea composite structures [J]. Beijing, Beijing Institute of Technology, 2015. [百度学术]
黄阳洋,王志军,赵鹏铎,等. 聚脲涂层复合结构防护性能研究现状 [J]. 兵器装备工程学报,2018, 39(4) 57-60. [百度学术]
HUANG Yang⁃yang, WANG Zhi⁃jun, ZHAO Pengduo, et al. Research status of protective properties of polyurea coating composite structures [J]. Journal of Ordnance Equipment Engineering, 2018, 39(4) 57-60. [百度学术]
Bahei⁃El⁃Din Y A, Dvorak G J, Fredricksen O J. A blast⁃tolerant sandwich plate design with a polyurea interlayer [J]. International Journal of Solids and Structure. 2006, 43: 7644-7658. [百度学术]
Bahei⁃El⁃Din Y A, Wave propagation and dispersion in sandwich plates subjected to blast loads [J]. Mechanics of Advanced Materials and Structures. 2007, 14: 465-475. [百度学术]
Bahei⁃El⁃Din Y A, Dvorak G J. Behavior of sandwich plates reinforced with polyurethane/polyurea interlayers under blast loads [J]. Journal of Sandwich Structure and Materials. 2007, 9: 261-281. [百度学术]
Gardner N, Wang E, Kumar P, et al. Blast mitigation in a sandwich composite using graded core and polyurea interlayer [J]. Experimental Mechanics. 2012, 52: 119-133. [百度学术]
Gardner N. Novel composite materials and sandwich structures for blast migigation [D]. University of Rhode Island. 2012 [百度学术]
Tekalur S A, Shukla A, Shivakumar K. Blast resistance of polyurea based layered composite materials [J]. Composite Structures. 2008, 84: 271-281. [百度学术]
LeBlanc J, Gardner N, Shukla A. Effect of polyurea coating on the response of curved E⁃Glass/Vinyl ester composite panels to underwater explosive loading [J]. Composites: Part B. 2013, 44: 565-574. [百度学术]
Gauch E, LeBlanc J, Shillings C, et al. Response of composite cylinders subjected to near field underwater explosion [J]. Conference Proceedings of the Society for Experimental Mechanics Series. 2017, 2: 153-157. [百度学术]
Grujicic M, Bell W C, Pandurangan B, et al. Blast⁃wave impact⁃mitigation capability of polyurea when used as helmet suspension⁃pad material [J]. Materials and Design. 2010, 31: 4050-4065. [百度学术]
Grujicic M, Ramaswami S, Snipes J S, et al. Experimental and computational investigations of the potential improvement in helmet blast⁃protection through the use of a polyurea⁃based external coating [J]. Multidiscipline Modeling in Materials and Structures. 2016, 12(1): 33-72. [百度学术]
Ramirez B J, Gupta V. Evaluation of novel temperature⁃stable viscoelastic polyurea foams as helmet liner materials [J]. Materials and Design. 2018, 137:298-304. [百度学术]
Grujicic M, Snipes J S, Ramaswami Set al. All⁃atom molecular⁃level analysis of the ballistic⁃impact induced densification and devitrification of fused silica [J]. Journal of Materials Engineering and Performance. 2015, 24(8): 2970-2983. [百度学术]
Bogoslovov R B, Roland C M, Gamache R M. Impact⁃induced glass transition in elastomeric coatings [J]. Applied Physics Letters. 2008, 90(22): 221910/1-221910/3. [百度学术]
Grujicic M, Entremont B P, Pandurangan B, et al. Concept⁃level analysis and design of polyurea for enhanced blast⁃mitigation performance [J]. Journal of Materials Engineering and Performance. 2012, 21(10): 2024-2037. [百度学术]
Curgul S, Yilgor I, Erman, B, et al. Effect of chemical composition on large deformation mechanooptical properties of high strength poly(urethane urea)s [J]. Macromolecules, 2004, 37: 8676-8685. [百度学术]
Yeh F, Hsiao B S, Sauer B B, et al. In⁃situ studies of structure development during deformation of a segmented poly(urethane urea) elastomer [J]. Macromolecules, 2003, 36: 1940-1954. [百度学术]
Sheth J P, Aneja A, Wilkes G L, et al. Influence of system variables on the morphology and dynamic polyureathane and polyurea copolymers: a comparative perspective [J]. Polymer, 2004, 45: 6919-6932. [百度学术]
Sheth J P, Klinedinst D B, Wilkes G L, et al. Role of chain symmetry and hydrogen bonding in segmented copolymers with monodisperse hard segments [J]. Polymer, 2005, 43: 7317-7322. [百度学术]
Grujicic M, Pandurangan B. Mesoscale analysis of segmental dynamics in microphase⁃segregated polyurea [J]. Journal of Material Scicence, 2012, 47: 3876-3889. [百度学术]
张天锡. 工程爆破中卸载波与加载波互相作用的初步讨论 [J]. 爆破, 2010, 27(2): 18-23. [百度学术]
ZHANG Tian⁃xi. Discussion on interaction between unloading wave and loading wave in blasting [J]. Blasting, 2010, 27(2): 18-23. [百度学术]
Grujicic M, Snipes J S, Ramaswami S, et al. Meso⁃scale computional investigation of shock⁃wave attenuation by trailing release wave in different grades of polyurea [J]. Journal of Materials Engineering and Performance, 2014, 23: 29-44. [百度学术]