CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
RastogiR P, KishoreK. Polymers as fuel binders in composite solid propellants[J]. Journal of Scientific & Industrial Research, 1973, 32: 279-299.
参考文献 2
庞爱民, 黎小平. 固体推进剂技术的创新与发展规律[J]. 含能材料, 2015, 23(1): 3-6.
PANGAi⁃min, LIXiao⁃ping. Innovation and development law of solid propellant technology[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(1): 3-6.
参考文献 3
JainS R. Solid propellant binders[J]. Journal of Scientific & Industrial Research, 2002, 61(11): 899-911.
参考文献 4
TalawarM B, SivabalanR, AnniyappanM, et al. Emerging trends in advanced high energy materials[J]. Combustion Explosion and Shock Waves, 2007, 43(1): 62-72.
参考文献 5
陈沛, 赵凤起, 李上文, 等. 国外对高能量密度材料CL⁃20在固体推进剂中的应用研究[J]. 飞航导弹, 2002, 2(2): 57-60.
CHENPei, ZHAOFeng⁃qi, LIShang⁃wen, et al. Application of high energy density materials CL⁃20 in solid propellants abroad[J]. Winged Missiles Journal, 2002, 2(2): 57-60.
参考文献 6
代志高, 宋琴, 吴京汉, 等. 单室双推力固体火箭发动机用NEPE低燃速推进剂的燃烧性能[J]. 固体火箭技术, 2018, 41(1): 47-52.
DAIZhi⁃gao, SONGQin, WUJing⁃han, et al. Combustion property of low burning rate of NEPE propellant applied to single chamber dual thrust rocket motor[J]. Journal of Solid Rocket Technology, 2018, 41(1): 47-52.
参考文献 7
GeH, ShenL, GuH, et al. Effect of co⁃precipitation and impregnation on K⁃decorated Fe2O3/Al2O3 oxygen carrier in chemical looping combustion of bituminous coal[J].Chemical Engineering Journal, 2015, 262: 1065-1076.
参考文献 8
WangY, XiaX, ZhuJ, et al. Catalytic activity of nanometer⁃sized Cuo/Fe2O3 on thermal decomposition of AP and combustion of AP⁃based propellant[J]. Combustion Science and Technology, 2010, 183(2): 154-162.
参考文献 9
周晓杨, 唐根, 庞爱民, 等. GAP/CL⁃20高能固体推进剂燃烧性能影响因素[J]. 固体火箭技术, 2017, 40(5): 592-595.
ZHOUXiao⁃yang, TANGGen, PANGAi⁃min, et al. Study on combustion performances of GAP/CL⁃20 high⁃energy solid propellants [J]. Journal of Solid Rocket Technology, 2017, 40(5): 592-595.
参考文献 10
宋振伟, 李笑江, 严启龙, 等. CL⁃20基交联改性双基推进剂的燃烧性能[J]. 火炸药学报, 2012, 35(1): 52-54.
SONGZhen⁃wei, LIXiao⁃jiang, YANQi⁃long, et al. Combustion properties of cross⁃linking modified double⁃base propellant with CL⁃20[J]. Chinese Journal of Explosives and Propellants, 2012, 35(1): 52-54.
参考文献 11
焦清介, 李江存, 任慧, 等. RDX粒度对改性双基推进剂性能影响[J]. 含能材料, 2007, 15(3): 220-223.
JIAOQing⁃jie, LIJiang⁃cun, RENHui, et al. Effects of RDX particle size on properties of CMDB propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007, 15(3): 220-223.
参考文献 12
DreizinE L. Metal⁃based reactive nanomaterials[J]. Progress in Energy & Combustion Science, 2009, 35(2): 141-167.
参考文献 13
SurvaseD V, GuptaM, AsthanaS N. The effects of Nd2O3 on thermal and ballistic properties of ammonium perchlorate (AP) based composite propellants[J]. Progress in Crystal Growth & Characterization Mater, 2002, 45(1-2): 161-165.
参考文献 14
TersoffJ. New empirical model for the structural properties of silicon[J]. Physical Review Letters, 1986, 56(6): 632-635.
参考文献 15
KohgaM. Burning characteristics of AP/HTPB composite propellants prepared with fine porous or fine hollow ammonium perchlorate[J]. Propellants Explosives Pyrotechnics, 2010, 31(1): 50-55.
参考文献 16
ZhaoW Y, ZhangT L, ZhangL N, et al. Large⁃scale production of (2,4⁃DHB)nM micro⁃nano sphere by spray drying and their application as catalysts for ammonium perchlorate[J]. Journal of Scientific & Industrial Research, 2016, 38: 73-81.
参考文献 17
ZhaoW, ZhangT, SongN, et, al. Assembly of composites into a core⁃shell structure using ultrasonic spray drying and catalytic application in the thermal decomposition of ammonium perchlorate[J]. Royal Society of Chemistry Advances, 2016, 6(75): 71223-71231.
参考文献 18
SongN M, YangLi. Catalytic study on thermal decomposition of Cu⁃en/(AP, CL⁃20, RDX and HMX) composite microspheres prepared by spray drying[J]. Royal Society of Chemistry, 2018, 42(23): 19062-19069.
参考文献 19
SongN M, LiuJ C, ZhangG Y, et al. Catalytic action of submicron spherical Ta/Ph⁃Fe on combustion of AP/HTPB[J]. Propellant, Explosives, Pyrotechnics, 2018, 43(7): 637-641.
参考文献 20
南焕杰, 王许力, 刘所恩,等. 鞣酸铅制造工艺改进及其在推进剂中的应用研究[J]. 含能材料, 2004, 12(z1): 197-200.
Huan⁃jieNan, WangXu⁃li, LiuSuo⁃en, et al. Modify the technology of lead tannin and study to propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2004, 12(z1): 197-200.
参考文献 21
OzawaT. Estimation of activation energy by isoconversion methods[J]. Thermochimica Acta, 1992, 203(2): 159-165.
参考文献 22
KissingerH E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706.
目录 contents

    摘要

    为了研究鞣酸铁催化剂对固体推进剂中常见组分热分解性能的影响,采用超声喷雾干燥法制得三种亚微米复合微球(鞣酸铁(Ta⁃Fe)/六硝基六氮杂异伍兹烷(CL⁃20)、鞣酸铁/黑索今(RDX)、鞣酸铁/奥克托今(HMX))。利用扫描电镜(SEM)和粒度分析等方法分别对复合微球的形貌、粒度和组分进行表征。采用差示扫描量热法(DSC)研究复合微球中鞣酸铁对CL⁃20、RDX、HMX热分解的催化过程及动力学参数的影响。结果表明,鞣酸铁分布均匀,样品均呈球状颗粒,且流散性好,粒度为500~1000 nm;鞣酸铁能有效促进CL⁃20、RDX、HMX的热分解,使得CL⁃20、RDX、HMX的热分解峰温分别提前了17.2,8.2,11.5 ℃,其中鞣酸铁对CL⁃20的热分解催化效果最佳,Ta⁃Fe/CL⁃20复合微球的活化能与原料CL⁃20相比降低了9.6 kJ·mol-1

    Abstract

    In order to study the effect of iron tannate catalyst on thermal decomposition properties of common components in solid propellants, three submicron composite microspheres,tannic acid and iron (Ta⁃Fe)/ hexanitrohexaazaisowurtzitane (CL⁃20), Ta⁃Fe/ cyclotrimethylenetrinitramine (RDX) and Ta⁃Fe/ cyclotetramethylene tetranitramine (HMX), were prepared by ultrasonic spray drying. The morphology, particle size and composition of these composites were characterized by SEM and granulometer analyser. The effect of Ta⁃Fe on the thermal decomposition catalytic properties and kinetic parameters of CL⁃20, RDX and HMX were studied by differential scanning caloriometry (DSC). Results show that Ta⁃Fe distributes evenly with spherical particles and good dispersibility, and the particle size distribution range is 500-1000 nm. Ta⁃Fe effectively promotes the thermal decomposition of CL⁃20, RDX and HMX, whose peak thermal decomposition temperatures decrease by 17.2,8.2 ℃ and 11.5 ℃,respectively. Especially, Ta⁃Fe/CL⁃20 has the best catalytic effect, whose activation energy is 9.6 kJ·mol-1 lower than raw CL⁃20.

    Graphic Abstract

    图文摘要

    Three submicron composite microspheres, tannic acid and iron (Ta⁃Fe)/CL⁃20, Ta⁃Fe/RDX and Ta⁃Fe/HMX, were prepared by ultrasonic spray drying to study the effect of iron tannate catalyst on thermal decomposition properties of common components in solid propellants.

  • 1 引 言

    现代高新武器系统对推进剂提出了高燃速、高能、大推力等要[1,2,3,4],燃速对推进剂燃气生成量、发动机产生的推力等起着决定性作[5,6]。以高能量密度材料为主体的推进剂配方是实现推进剂高能化的有效手段。目前可应用于推进剂的催化剂类型与种类繁多,微纳米催化剂的粒度小、比表面积大等特点大大提高其催化性能,微纳米催化剂的制备成为研究的热[7,8,9,10,11]

    喷雾干燥法是一种操作简单、成本较低并且易于扩展的技术,常用于制备超细的微纳米尺寸的球状材[12,13,14]。2006年Makoto Kohga[15]利用喷雾干燥技术制备得到了具有微孔结构的高氯酸铵(AP)颗粒,发现这种具有微孔结构的AP对HTPB推进剂燃烧性能具有积极影响。2016年赵文[16,17]制备了微纳米球形2,4⁃二羟基苯甲酸铅、铜、铁、镍以及双金属复合盐,研究了这些催化剂对AP热分解催化效果,表明双金属复合盐的催化效果均比单一金属催化效果强,具有协同催化作用。宋乃孟[18,19]制备了乙二胺铜/AP等复合微球,并对其催化机理进行了研究。表明喷雾干燥技术可以使超细的金属有机物粉末和AP等均匀复合,使催化剂与其他组分的接触位点增多,从而比单纯的物理混合起到更好的催化效果。由此可见,微纳米球形化催化剂对于推进剂具有很好的催化效果。而鞣酸铁是目前推进剂配方中常见的催化[20],但其晶体形貌、粒度等方面对于推进剂的影响尚未见于报道。

    因此,本研究结合超声喷雾干燥法制备了鞣酸铁(Ta⁃Fe)/六硝基六氮杂异伍兹烷(CL⁃20)、鞣酸铁/黑索今(RDX)、鞣酸铁/奥克托今(HMX)等三种亚微米复合微球,并利用扫描电镜(SEM)和粒度分析仪等研究了其形貌和元素分布,利用差示扫描量热法(DSC)研究了复合微球中鞣酸铁对CL⁃20、RDX、HMX热分解性能的影响。

  • 2 实验部分

  • 2.1 试剂与仪器

    试剂:鞣酸(纯度≥99.0%),硝酸铁(化学纯),上海沪试实验室器材股份有限公司;丙酮(分析纯),北京市通广精细化工公司;CL⁃20,北京理工大学;黑索今(纯度为97%)、奥克托今(纯度为97%),山西北方兴安化学工业有限公司。

    仪器:日本HITACHI公司S4800冷场发射扫描电子显微镜(FM⁃SEM);能谱仪(EDS);上海精密科学仪器有限公司CDR⁃4P差示热分析仪(DSC);济南微纳颗粒仪器股份有限公司WINNER⁃801纳米激光粒度仪;北京理工大学爆炸科学与技术国家重点实验室自制喷雾干燥装置。

  • 2.2 球形鞣酸铁/硝胺炸药复合微球的制备

    采用超声喷雾干燥装置分别对鞣酸铁(Ta⁃Fe)、CL⁃20、RDX、HMX 4种物质进行亚微米球形化处理,用于实验数据的对比。

    以鞣酸和硝酸铁为原料制备鞣酸铁(Ta⁃Fe),分别将0.30 g Ta⁃Fe、10 g CL⁃20与100 mL乙酸乙酯配成溶液,0.15 g Ta⁃Fe、5 g RDX与100 mL丙酮配成溶液,以及0.06 g Ta⁃Fe、2 g HMX与100 mL丙酮配成溶液。然后分别将各自分散均匀的混合溶液投入喷雾干燥装置中,根据溶剂沸点设置乙酸乙酯为溶剂的干燥温度为80 ℃、丙酮为溶剂的干燥温度为60 ℃,进料速率均为1.30 mL·min-1,制备Ta⁃Fe/CL⁃20、Ta⁃Fe/RDX、Ta⁃Fe/HMX复合微球。

    此外,为进一步对比复合微球的催化性能,分别取0.30 g Ta⁃Fe、10 g CL⁃20,0.15 g Ta⁃Fe、5 g RDX,以及0.06 g Ta⁃Fe、2 g HMX进行机械研磨混合得到细化的Ta⁃Fe与硝胺炸药的混合粉末。

  • 3 结果与讨论

  • 3.1 形貌和粒度分析

  • 3.1.1 Ta⁃Fe和硝胺炸药的形貌和粒径分析

    Ta⁃Fe和硝胺炸药的SEM图和粒度分布分别如图1图2所示。从图1可以看出,制备的Ta⁃Fe为规则球形;硝胺炸药(CL⁃20、RDX、HMX)也近为圆球形。从图2可以看出,Ta⁃Fe、CL⁃20、RDX、HMX的粒度分布均符合正态分布规律,其粒度D50分别为273.56,943.91,518.38,528.82 nm。

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F002.png

    a. Ta⁃Fe

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F003.png

    b. CL⁃20

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F004.png

    c. RDX

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F005.png

    d. HMX

    图1 Ta⁃Fe和硝胺炸药的SEM图

    Fig. 1 The SEM images of Ta⁃Fe and nitramine explosives

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F007.png

    a. Ta⁃Fe

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F008.png

    b. CL⁃20

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F009.png

    c. RDX

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F010.png

    d. HMX

    图2 Ta⁃Fe和硝胺炸药的粒度分布曲线

    Fig. 2 The particle size distribution curves of Ta⁃Fe and nitramine explosives

  • 3.1.2 Ta⁃Fe/硝胺炸药复合微球的形貌和粒径分析

    采用超声喷雾干燥法制备的Ta⁃Fe/硝胺炸药复合微球的微观形貌如图3所示。从图3可以看出,与原始材料相比,超声喷雾干燥法并未改变复合物的形貌,制备的复合物仍为球形。采用能谱仪对三种复合微球进行元素分析,复合微球的能谱分析图和铁元素分布图如图4所示。从图4可以看出,三种复合微球中均检测出C、N、O和Fe元素,其中Fe元素是Ta⁃Fe的特征元素,并且铁元素分布较为均匀,这证明超声喷雾干燥法可以制得混合均匀的Ta⁃Fe/硝胺炸药复合微球。采用纳米激光粒度仪对复合微球进行粒度分析,其粒度分布曲线图如图5所示。从图5可以看出,制备的复合微球的粒度分布均符合正态分布规律,与原材料CL⁃20、RDX、HMX相比,复合微球的粒径有所增大。Ta⁃Fe/CL⁃20复合微球、Ta⁃Fe/RDX复合微球、Ta⁃Fe/HMX复合微球的粒度D50分别为992.01,624.24,513.48 nm。

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F012.png

    a. Ta⁃Fe/CL⁃20

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F013.png

    b. Ta⁃Fe/RDX

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F014.png

    c. Ta⁃Fe/HMX

    图3 Ta⁃Fe/硝胺炸药复合微球的SEM图

    Fig. 3 The SEM images of Ta⁃Fe/nitramine explosive composite microspheres

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F015.png

    a. Ta⁃Fe/CL⁃20

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F016.png

    b. Ta⁃Fe/RDX

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F017.png

    c. Ta⁃Fe/HMX

    图4 Ta⁃Fe/硝胺炸药复合微球能谱分析图和铁元素分布图

    Fig. 4 The energy spectrum analysis charts and iron element distribution images of Ta⁃Fe/nitramine explosive composite microspheres

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F018.png

    a. Ta⁃Fe/CL⁃20

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F019.png

    b. Ta⁃Fe/RDX

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F020.png

    c. Ta⁃Fe/HMX

    图5 Ta⁃Fe/硝胺炸药复合微球的粒度分布曲线图

    Fig. 5 The particle size distribution curves of Ta⁃Fe/nitramine explosive composite microspheres

  • 3.2 催化性能分析

    采用热分析的方法研究Ta⁃Fe对硝胺炸药热分解性能的催化作用,分别对硝胺炸药原料、微球形硝胺炸药、细化硝胺炸药与Ta⁃Fe的混合粉末、Ta⁃Fe/硝胺炸药复合微球进行DSC测试,控制升温速率为10 ℃·min-1,气氛为空气,结果如图6所示。

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F021.png

    a. CL⁃20

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F022.png

    b. RDX

    html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F023.png

    c. HMX

    图6 硝胺炸药及添加Ta⁃Fe后的DSC曲线

    Fig. 6 The DSC curves of nitramine explosives without and with Ta⁃Fe

    图6可以看出,与硝胺炸药原料相比,微球形硝胺炸药、微球形硝胺炸药与Ta⁃Fe的混合粉末、Ta⁃Fe/硝胺炸药复合微球的热分解放热峰的温度均有不同程度的降低,其中复合微球的分解放热峰温度最低。这说明Ta⁃Fe对硝胺炸药的热分解具有一定的催化作用,并且在通过超声喷雾干燥法制备的复合微球中Ta⁃Fe的催化性能更佳。在三种Ta⁃Fe/硝胺炸药复合微球中,鞣酸铁有效促进了CL⁃20、RDX、HMX的热分解,使得CL⁃20、RDX、HMX的热分解峰温比原料分别提前了17.2,8.2,11.5 ℃,其中鞣酸铁对CL⁃20的热分解催化效果最佳。

  • 3.3 热动力学分析

    在5,10,15,20 ℃·min-1四个升温速率下,对硝胺炸药和Ta⁃Fe/硝胺炸药复合微球进行DSC测试,结果见表1。利用Kissinger[21]和Ozawa[22]法对热分解数据进行计算,获得热动力学参数。三种硝胺炸药原料及其对应的复合微球的热动力学参数分别如表1所示。由表1可以得出,与CL⁃20原料相比,采用Kissinger法和Ozawa法计算得到的Ta⁃Fe/CL⁃20复合微球的活化能分别降低了9.6 kJ·mol-1和9.3 kJ·mol-1,证明在复合微球中Ta⁃Fe对CL⁃20的热分解具有催化作用。与RDX、HMX原料相比,采用Kissinger法和Ozawa法计算得到的Ta⁃Fe/RDX复合微球的活化能分别增加0.8 kJ·mol-1和0.7 kJ·mol-1,Ta⁃Fe/HMX复合微球的活化能分别增加2.9 kJ·mol-1和2.6 kJ·mol-1,表明复合微球中Ta⁃Fe对RDX和HMX均有催化效果。

    表1 不同升温速率下CL⁃20原料及Ta⁃Fe/CL⁃20复合微球的热动力学参数

    Table 1 Thermodynamic parameters of CL⁃20 and Ta⁃Fe/CL⁃20 composite microspheres at different heating rates

    sampleΒ / ℃·min-1Tp / KEa / kJ·mol-1lg(A/s-1)R
    KissingerOzawaKissingerKissingerOzawa
    raw CL⁃205519.85178.0177.615.68-0.9925-0.9932
    10530.15
    15534.55
    25539.25

    Ta⁃Fe/CL⁃20

    composite microspheres

    5505.55168.4168.315.24-0.9974-0.9977
    10512.95
    15518.55
    20522.75
    raw RDX5509.65188.5187.417.18-0.9987-0.9988
    10517.45
    15521.45
    20525.55

    Ta⁃Fe/RDX

    composite microspheres

    5503.55189.3188.117.55-0.9744-0.9765
    10509.25
    15512.65
    20518.95
    raw HMX5562.35244.6241.620.64-0.9838-0.9850
    10568.35
    15571.85
    20577.35

    Ta⁃Fe/HMX

    composite microspheres

    5551.55247.5244.221.38-0.9898-0.9905
    10556.85
    15561.35
    20565.55
  • 4 结论

    (1)采用超声喷雾干燥的方法制备了三种亚微米Ta⁃Fe/CL⁃20、Ta⁃Fe/RDX、Ta⁃Fe/HMX复合微球,粒度为528.38~992.2 nm,Ta⁃Fe催化剂在复合微球中分布均匀。

    (2)通过DSC数据分析,获得了Ta⁃Fe催化剂对CL⁃20、RDX、HMX热分解催化数据,计算了其反应活化能。CL⁃20、RDX、HMX热分解峰温分别提前了17.2 ℃、8.2 ℃、11.5 ℃,其中Ta⁃Fe/CL⁃20复合微球的分解放热峰的峰温从257.0 ℃降低至239.8 ℃,催化效果在三者中最明显。

    (3)超声喷雾干燥法制备的三种Ta⁃Fe/CL⁃20、Ta⁃Fe/RDX、Ta⁃Fe/HMX复合微球催化效果明显优于物理混合,表明超声喷雾干燥法在固体推进剂的材料制备中拥有广泛的应用前景。

    (责编: 张 琪)

  • 参考文献

    • 1

      Rastogi R P, Kishore K. Polymers as fuel binders in composite solid propellants[J]. Journal of Scientific & Industrial Research, 1973, 32: 279-299.

    • 2

      庞爱民, 黎小平. 固体推进剂技术的创新与发展规律[J]. 含能材料, 2015, 23(1): 3-6.

      PANG Ai⁃min, LI Xiao⁃ping. Innovation and development law of solid propellant technology[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(1): 3-6.

    • 3

      Jain S R. Solid propellant binders[J]. Journal of Scientific & Industrial Research, 2002, 61(11): 899-911.

    • 4

      Talawar M B, Sivabalan R, Anniyappan M, et al. Emerging trends in advanced high energy materials[J]. Combustion Explosion and Shock Waves, 2007, 43(1): 62-72.

    • 5

      陈沛, 赵凤起, 李上文, 等. 国外对高能量密度材料CL⁃20在固体推进剂中的应用研究[J]. 飞航导弹, 2002, 2(2): 57-60.

      CHEN Pei, ZHAO Feng⁃qi, LI Shang⁃wen, et al. Application of high energy density materials CL⁃20 in solid propellants abroad[J]. Winged Missiles Journal, 2002, 2(2): 57-60.

    • 6

      代志高, 宋琴, 吴京汉, 等. 单室双推力固体火箭发动机用NEPE低燃速推进剂的燃烧性能[J]. 固体火箭技术, 2018, 41(1): 47-52.

      DAI Zhi⁃gao, SONG Qin, WU Jing⁃han, et al. Combustion property of low burning rate of NEPE propellant applied to single chamber dual thrust rocket motor[J]. Journal of Solid Rocket Technology, 2018, 41(1): 47-52.

    • 7

      Ge H, Shen L, Gu H, et al. Effect of co⁃precipitation and impregnation on K⁃decorated Fe2O3/Al2O3 oxygen carrier in chemical looping combustion of bituminous coal[J].Chemical Engineering Journal, 2015, 262: 1065-1076.

    • 8

      Wang Y, Xia X, Zhu J, et al. Catalytic activity of nanometer⁃sized Cuo/Fe2O3 on thermal decomposition of AP and combustion of AP⁃based propellant[J]. Combustion Science and Technology, 2010, 183(2): 154-162.

    • 9

      周晓杨, 唐根, 庞爱民, 等. GAP/CL⁃20高能固体推进剂燃烧性能影响因素[J]. 固体火箭技术, 2017, 40(5): 592-595.

      ZHOU Xiao⁃yang, TANG Gen, PANG Ai⁃min, et al. Study on combustion performances of GAP/CL⁃20 high⁃energy solid propellants [J]. Journal of Solid Rocket Technology, 2017, 40(5): 592-595.

    • 10

      宋振伟, 李笑江, 严启龙, 等. CL⁃20基交联改性双基推进剂的燃烧性能[J]. 火炸药学报, 2012, 35(1): 52-54.

      SONG Zhen⁃wei, LI Xiao⁃jiang, YAN Qi⁃long, et al. Combustion properties of cross⁃linking modified double⁃base propellant with CL⁃20[J]. Chinese Journal of Explosives and Propellants, 2012, 35(1): 52-54.

    • 11

      焦清介, 李江存, 任慧, 等. RDX粒度对改性双基推进剂性能影响[J]. 含能材料, 2007, 15(3): 220-223.

      JIAO Qing⁃jie, LI Jiang⁃cun, REN Hui, et al. Effects of RDX particle size on properties of CMDB propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007, 15(3): 220-223.

    • 12

      Dreizin E L. Metal⁃based reactive nanomaterials[J]. Progress in Energy & Combustion Science, 2009, 35(2): 141-167.

    • 13

      Survase D V, Gupta M, Asthana S N. The effects of Nd2O3 on thermal and ballistic properties of ammonium perchlorate (AP) based composite propellants[J]. Progress in Crystal Growth & Characterization Mater, 2002, 45(1-2): 161-165.

    • 14

      Tersoff J. New empirical model for the structural properties of silicon[J]. Physical Review Letters, 1986, 56(6): 632-635.

    • 15

      Kohga M. Burning characteristics of AP/HTPB composite propellants prepared with fine porous or fine hollow ammonium perchlorate[J]. Propellants Explosives Pyrotechnics, 2010, 31(1): 50-55.

    • 16

      Zhao W Y, Zhang T L, Zhang L N, et al. Large⁃scale production of (2,4⁃DHB)nM micro⁃nano sphere by spray drying and their application as catalysts for ammonium perchlorate[J]. Journal of Scientific & Industrial Research, 2016, 38: 73-81.

    • 17

      Zhao W, Zhang T, Song N, et, al. Assembly of composites into a core⁃shell structure using ultrasonic spray drying and catalytic application in the thermal decomposition of ammonium perchlorate[J]. Royal Society of Chemistry Advances, 2016, 6(75): 71223-71231.

    • 18

      Song N M, Yang Li. Catalytic study on thermal decomposition of Cu⁃en/(AP, CL⁃20, RDX and HMX) composite microspheres prepared by spray drying[J]. Royal Society of Chemistry, 2018, 42(23): 19062-19069.

    • 19

      Song N M, Liu J C, Zhang G Y, et al. Catalytic action of submicron spherical Ta/Ph⁃Fe on combustion of AP/HTPB[J]. Propellant, Explosives, Pyrotechnics, 2018, 43(7): 637-641.

    • 20

      南焕杰, 王许力, 刘所恩,等. 鞣酸铅制造工艺改进及其在推进剂中的应用研究[J]. 含能材料, 2004, 12(z1): 197-200.

      Nan Huan⁃jie, Wang Xu⁃li, Liu Suo⁃en, et al. Modify the technology of lead tannin and study to propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2004, 12(z1): 197-200.

    • 21

      Ozawa T. Estimation of activation energy by isoconversion methods[J]. Thermochimica Acta, 1992, 203(2): 159-165.

    • 22

      Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706.

杨利

机 构:北京理工大学 爆炸科学与技术国家重点实验室,北京100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology,Beijing 100081, China

角 色:通讯作者

Role:Corresponding author

邮 箱:yanglibit@bit.edu.cn

作者简介:杨利(1972-),女,教授,主要从事含能材料制备、性能及应用研究。e⁃mail:yanglibit@bit.edu.cn

李泓润

机 构:北京理工大学 爆炸科学与技术国家重点实验室,北京100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology,Beijing 100081, China

邮 箱:lihognrun94@163.com

作者简介:李泓润(1994-),男,硕士,从事亚微米含能材料的制备与表征研究。e⁃mail:lihognrun94@163.com。

宋乃孟

机 构:

1. 北京理工大学 爆炸科学与技术国家重点实验室,北京100081

2. 哈尔滨工程大学航天与建筑工程学院, 黑龙江 哈尔滨 150001

Affiliation:

1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology,Beijing 100081, China

2. School of Aerospace and Architectural Engineering, Haerbin 150001,China

刘剑超

机 构:北京理工大学 爆炸科学与技术国家重点实验室,北京100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology,Beijing 100081, China

html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F002.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F003.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F004.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F005.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F007.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F008.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F009.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F010.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F012.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F013.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F014.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F015.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F016.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F017.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F018.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F019.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F020.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F021.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F022.png
html/hnclen/CJEM2019129/alternativeImage/f7219a37-e38c-4332-83df-ffe19e5689a5-F023.png
sampleΒ / ℃·min-1Tp / KEa / kJ·mol-1lg(A/s-1)R
KissingerOzawaKissingerKissingerOzawa
raw CL⁃205519.85178.0177.615.68-0.9925-0.9932
10530.15
15534.55
25539.25

Ta⁃Fe/CL⁃20

composite microspheres

5505.55168.4168.315.24-0.9974-0.9977
10512.95
15518.55
20522.75
raw RDX5509.65188.5187.417.18-0.9987-0.9988
10517.45
15521.45
20525.55

Ta⁃Fe/RDX

composite microspheres

5503.55189.3188.117.55-0.9744-0.9765
10509.25
15512.65
20518.95
raw HMX5562.35244.6241.620.64-0.9838-0.9850
10568.35
15571.85
20577.35

Ta⁃Fe/HMX

composite microspheres

5551.55247.5244.221.38-0.9898-0.9905
10556.85
15561.35
20565.55

图1 Ta⁃Fe和硝胺炸药的SEM图 -- a. Ta⁃Fe

Fig. 1 The SEM images of Ta⁃Fe and nitramine explosives -- a. Ta⁃Fe

图1 Ta⁃Fe和硝胺炸药的SEM图 -- b. CL⁃20

Fig. 1 The SEM images of Ta⁃Fe and nitramine explosives -- b. CL⁃20

图1 Ta⁃Fe和硝胺炸药的SEM图 -- c. RDX

Fig. 1 The SEM images of Ta⁃Fe and nitramine explosives -- c. RDX

图1 Ta⁃Fe和硝胺炸药的SEM图 -- d. HMX

Fig. 1 The SEM images of Ta⁃Fe and nitramine explosives -- d. HMX

图2 Ta⁃Fe和硝胺炸药的粒度分布曲线 -- a. Ta⁃Fe

Fig. 2 The particle size distribution curves of Ta⁃Fe and nitramine explosives -- a. Ta⁃Fe

图2 Ta⁃Fe和硝胺炸药的粒度分布曲线 -- b. CL⁃20

Fig. 2 The particle size distribution curves of Ta⁃Fe and nitramine explosives -- b. CL⁃20

图2 Ta⁃Fe和硝胺炸药的粒度分布曲线 -- c. RDX

Fig. 2 The particle size distribution curves of Ta⁃Fe and nitramine explosives -- c. RDX

图2 Ta⁃Fe和硝胺炸药的粒度分布曲线 -- d. HMX

Fig. 2 The particle size distribution curves of Ta⁃Fe and nitramine explosives -- d. HMX

图3 Ta⁃Fe/硝胺炸药复合微球的SEM图 -- a. Ta⁃Fe/CL⁃20

Fig. 3 The SEM images of Ta⁃Fe/nitramine explosive composite microspheres -- a. Ta⁃Fe/CL⁃20

图3 Ta⁃Fe/硝胺炸药复合微球的SEM图 -- b. Ta⁃Fe/RDX

Fig. 3 The SEM images of Ta⁃Fe/nitramine explosive composite microspheres -- b. Ta⁃Fe/RDX

图3 Ta⁃Fe/硝胺炸药复合微球的SEM图 -- c. Ta⁃Fe/HMX

Fig. 3 The SEM images of Ta⁃Fe/nitramine explosive composite microspheres -- c. Ta⁃Fe/HMX

图4 Ta⁃Fe/硝胺炸药复合微球能谱分析图和铁元素分布图 -- a. Ta⁃Fe/CL⁃20

Fig. 4 The energy spectrum analysis charts and iron element distribution images of Ta⁃Fe/nitramine explosive composite microspheres -- a. Ta⁃Fe/CL⁃20

图4 Ta⁃Fe/硝胺炸药复合微球能谱分析图和铁元素分布图 -- b. Ta⁃Fe/RDX

Fig. 4 The energy spectrum analysis charts and iron element distribution images of Ta⁃Fe/nitramine explosive composite microspheres -- b. Ta⁃Fe/RDX

图4 Ta⁃Fe/硝胺炸药复合微球能谱分析图和铁元素分布图 -- c. Ta⁃Fe/HMX

Fig. 4 The energy spectrum analysis charts and iron element distribution images of Ta⁃Fe/nitramine explosive composite microspheres -- c. Ta⁃Fe/HMX

图5 Ta⁃Fe/硝胺炸药复合微球的粒度分布曲线图 -- a. Ta⁃Fe/CL⁃20

Fig. 5 The particle size distribution curves of Ta⁃Fe/nitramine explosive composite microspheres -- a. Ta⁃Fe/CL⁃20

图5 Ta⁃Fe/硝胺炸药复合微球的粒度分布曲线图 -- b. Ta⁃Fe/RDX

Fig. 5 The particle size distribution curves of Ta⁃Fe/nitramine explosive composite microspheres -- b. Ta⁃Fe/RDX

图5 Ta⁃Fe/硝胺炸药复合微球的粒度分布曲线图 -- c. Ta⁃Fe/HMX

Fig. 5 The particle size distribution curves of Ta⁃Fe/nitramine explosive composite microspheres -- c. Ta⁃Fe/HMX

图6 硝胺炸药及添加Ta⁃Fe后的DSC曲线 -- a. CL⁃20

Fig. 6 The DSC curves of nitramine explosives without and with Ta⁃Fe -- a. CL⁃20

图6 硝胺炸药及添加Ta⁃Fe后的DSC曲线 -- b. RDX

Fig. 6 The DSC curves of nitramine explosives without and with Ta⁃Fe -- b. RDX

图6 硝胺炸药及添加Ta⁃Fe后的DSC曲线 -- c. HMX

Fig. 6 The DSC curves of nitramine explosives without and with Ta⁃Fe -- c. HMX

表1 不同升温速率下CL⁃20原料及Ta⁃Fe/CL⁃20复合微球的热动力学参数

Table 1 Thermodynamic parameters of CL⁃20 and Ta⁃Fe/CL⁃20 composite microspheres at different heating rates

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Rastogi R P, Kishore K. Polymers as fuel binders in composite solid propellants[J]. Journal of Scientific & Industrial Research, 1973, 32: 279-299.

    • 2

      庞爱民, 黎小平. 固体推进剂技术的创新与发展规律[J]. 含能材料, 2015, 23(1): 3-6.

      PANG Ai⁃min, LI Xiao⁃ping. Innovation and development law of solid propellant technology[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(1): 3-6.

    • 3

      Jain S R. Solid propellant binders[J]. Journal of Scientific & Industrial Research, 2002, 61(11): 899-911.

    • 4

      Talawar M B, Sivabalan R, Anniyappan M, et al. Emerging trends in advanced high energy materials[J]. Combustion Explosion and Shock Waves, 2007, 43(1): 62-72.

    • 5

      陈沛, 赵凤起, 李上文, 等. 国外对高能量密度材料CL⁃20在固体推进剂中的应用研究[J]. 飞航导弹, 2002, 2(2): 57-60.

      CHEN Pei, ZHAO Feng⁃qi, LI Shang⁃wen, et al. Application of high energy density materials CL⁃20 in solid propellants abroad[J]. Winged Missiles Journal, 2002, 2(2): 57-60.

    • 6

      代志高, 宋琴, 吴京汉, 等. 单室双推力固体火箭发动机用NEPE低燃速推进剂的燃烧性能[J]. 固体火箭技术, 2018, 41(1): 47-52.

      DAI Zhi⁃gao, SONG Qin, WU Jing⁃han, et al. Combustion property of low burning rate of NEPE propellant applied to single chamber dual thrust rocket motor[J]. Journal of Solid Rocket Technology, 2018, 41(1): 47-52.

    • 7

      Ge H, Shen L, Gu H, et al. Effect of co⁃precipitation and impregnation on K⁃decorated Fe2O3/Al2O3 oxygen carrier in chemical looping combustion of bituminous coal[J].Chemical Engineering Journal, 2015, 262: 1065-1076.

    • 8

      Wang Y, Xia X, Zhu J, et al. Catalytic activity of nanometer⁃sized Cuo/Fe2O3 on thermal decomposition of AP and combustion of AP⁃based propellant[J]. Combustion Science and Technology, 2010, 183(2): 154-162.

    • 9

      周晓杨, 唐根, 庞爱民, 等. GAP/CL⁃20高能固体推进剂燃烧性能影响因素[J]. 固体火箭技术, 2017, 40(5): 592-595.

      ZHOU Xiao⁃yang, TANG Gen, PANG Ai⁃min, et al. Study on combustion performances of GAP/CL⁃20 high⁃energy solid propellants [J]. Journal of Solid Rocket Technology, 2017, 40(5): 592-595.

    • 10

      宋振伟, 李笑江, 严启龙, 等. CL⁃20基交联改性双基推进剂的燃烧性能[J]. 火炸药学报, 2012, 35(1): 52-54.

      SONG Zhen⁃wei, LI Xiao⁃jiang, YAN Qi⁃long, et al. Combustion properties of cross⁃linking modified double⁃base propellant with CL⁃20[J]. Chinese Journal of Explosives and Propellants, 2012, 35(1): 52-54.

    • 11

      焦清介, 李江存, 任慧, 等. RDX粒度对改性双基推进剂性能影响[J]. 含能材料, 2007, 15(3): 220-223.

      JIAO Qing⁃jie, LI Jiang⁃cun, REN Hui, et al. Effects of RDX particle size on properties of CMDB propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007, 15(3): 220-223.

    • 12

      Dreizin E L. Metal⁃based reactive nanomaterials[J]. Progress in Energy & Combustion Science, 2009, 35(2): 141-167.

    • 13

      Survase D V, Gupta M, Asthana S N. The effects of Nd2O3 on thermal and ballistic properties of ammonium perchlorate (AP) based composite propellants[J]. Progress in Crystal Growth & Characterization Mater, 2002, 45(1-2): 161-165.

    • 14

      Tersoff J. New empirical model for the structural properties of silicon[J]. Physical Review Letters, 1986, 56(6): 632-635.

    • 15

      Kohga M. Burning characteristics of AP/HTPB composite propellants prepared with fine porous or fine hollow ammonium perchlorate[J]. Propellants Explosives Pyrotechnics, 2010, 31(1): 50-55.

    • 16

      Zhao W Y, Zhang T L, Zhang L N, et al. Large⁃scale production of (2,4⁃DHB)nM micro⁃nano sphere by spray drying and their application as catalysts for ammonium perchlorate[J]. Journal of Scientific & Industrial Research, 2016, 38: 73-81.

    • 17

      Zhao W, Zhang T, Song N, et, al. Assembly of composites into a core⁃shell structure using ultrasonic spray drying and catalytic application in the thermal decomposition of ammonium perchlorate[J]. Royal Society of Chemistry Advances, 2016, 6(75): 71223-71231.

    • 18

      Song N M, Yang Li. Catalytic study on thermal decomposition of Cu⁃en/(AP, CL⁃20, RDX and HMX) composite microspheres prepared by spray drying[J]. Royal Society of Chemistry, 2018, 42(23): 19062-19069.

    • 19

      Song N M, Liu J C, Zhang G Y, et al. Catalytic action of submicron spherical Ta/Ph⁃Fe on combustion of AP/HTPB[J]. Propellant, Explosives, Pyrotechnics, 2018, 43(7): 637-641.

    • 20

      南焕杰, 王许力, 刘所恩,等. 鞣酸铅制造工艺改进及其在推进剂中的应用研究[J]. 含能材料, 2004, 12(z1): 197-200.

      Nan Huan⁃jie, Wang Xu⁃li, Liu Suo⁃en, et al. Modify the technology of lead tannin and study to propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2004, 12(z1): 197-200.

    • 21

      Ozawa T. Estimation of activation energy by isoconversion methods[J]. Thermochimica Acta, 1992, 203(2): 159-165.

    • 22

      Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706.