1 引 言
含能金属有机框架材料(EMOFs)比表面积大、具有规则的孔道结构和高度分散的活性位点,是一类极具应用前景的的含能燃烧催化
剂[1,2] 。EMOFs的合成工艺简单,通过改变金属离子和配体、溶剂类别、调控反应条件等措施可有效控制其晶型和孔道结构[3,4] ,从而改变其催化效果。Jing[5] 等将富氮含能配位聚合物(ECPs)[Mn(BTO)(H2 O)2 ]n热解,所得产物α‑Mn2 O3 的比表面积为50.2m2 ·g-1 ,使高氯酸铵(AP)的分解温度降低至271 ℃,加快热分解历程。由配体BTO2- 和Co2+ 形成的EMOFs显著降低奥克托今(HMX)与黑索今(RDX)的热分解活化能(Ea)[6] 。EMOFs除自身分解放热外,其热分解原位生成的金属氧化物可作为燃烧催化剂[7] ,如铁基EMOF化合物Fe‑BTC及其热分解产生的Fe2 O3 @C均对AP催化作用显著[8] 。引入富氮含能配体可获得能量性能优异的EMOF[9] ,如以1,1'‑二羟基‑5,5'‑联四唑(DHBT)为配体的[Cu2 (DOBT)2 ]n.n[(CH3 )4 N]燃烧热为12039.4 J·g-1[10] 。EMOFs催化效果好,但感度高,如果能对EMOFs降感的同时增强催化效果,其在固体推进剂中应用前景将更加广阔。氧化石墨烯(GO)比表面积大、强度高、柔韧性好,且其层状分子含有羧基、羟基等官能团,因此可通过共价键偶联多种含能基
团[11,12] 。GO对含能组分起到稳定化效应,既能降低感度,又能提高催化效果[13] 。GO稳定化掺杂TAG‑Cu(Ⅱ)得到的GO‑TAG‑Cu‑Cl热分解温度提高至285℃[14] ,且金属离子可作为催化中心[15] ,对EMOFs起到修饰作用[16] 。GO自身也可发生快速热分解反应,放热量为1600 J·g-1[17] 。TAG‑Co使RDX的活化能(Ea)降低11 kJ·mol-1 ,而RDX/GT‑Cu体系的Ea由206 kJ·mol-1 降低至155.3 kJ·mol-1[18] 。利用GO对EMOFs改性,在降感的同时提高了燃烧催化活性[19] ,并可根据需要改变配体和金属离子的种类以实现不同推进剂体系的燃烧催化[20,21] 。为了选取高能且相对钝感的配体,利用石墨烯的稳定化效应,制备出高能且催化性能优异的石墨烯基EMOFs。选用两种联四唑高氮配体——1,1'‑二羟基‑5,5'‑联四唑(DHBT,N%=81.2%)和5,5'‑联四唑(
H2 BT,N%=76.4%),采用溶剂热法,利用GO稳定化掺杂EMOFs,并通过实验条件改变晶型,制备出GO‑Co‑DBT、GO‑Co‑BT、GO‑Ni‑DBT、α‑GO‑Ni‑BT与β‑GO‑Ni‑BT五种含能催化剂,研究了这五种含能催化剂的微观形貌及晶体配位方式,并通过热分析研究GO对EMOFs的稳定化效应以及GO‑Co‑DBT、GO‑Co‑BT、GO‑Ni‑DBT、α‑GO‑Ni‑BT对AP、RDX的催化效果。2 实验
2.1 试剂
DHBT、
H2 BT均按照文献报道方法制备[22,23] 。实验采用超纯水,电阻率为18.25 MΩ·cm-1 。所用溶剂甲醇(天津市东丽区新中村)、N,N‑二甲基甲酰胺(DMF、天津市天力化学试剂有限公司)、N,N‑二甲基乙酰胺(DMAc、天津市富宇精细化工有限公司)和碳酸氢钠(广东光华科技股份有限公司)的纯度均大于99.5%;GO(南京吉仓纳米科技有限公司)分子层数为1~5层,氧含量大于50%;六水合硝酸钴、六水合硝酸镍,广东光华科技股份有限公司,纯度大于98.5%。2.2 M‑DHBT晶体的制备
M‑DHBT均采用溶剂热法通过配位反应合成,在两个烧杯中分别加入20 mL去离子水,将0.5 mmol的Co(N
O3 )2 ·6H2 O与Ni(NO3 )2 ·6H2 O溶解于去离子水中,随后加入0.5 mmol的DHBT配体,加热至70 ℃并搅拌,将得到的沉淀抽滤并转移至水热反应釜中,加入16.67 mL DMAc、58.36 mL甲醇溶液,135 ℃保温3天。采用每小时降温10 ℃的方式,将产物离心、洗涤、干燥,得到Co‑DHBT、Ni‑DHBT晶体粉末。M‑DHBT制备过程比较危险,特别是以金属硝酸盐作为金属来源,实验中坚决避免金属刮擦,以防爆炸。2.3 GO‑M‑DHBT与GO‑M‑BT的制备
以GO‑M‑BT为例说明石墨烯基联四唑含能配位聚合物的制备方法,GO‑M‑BT的制备流程图如图1所示。
取40 mg GO超声分散于40 mL DMF与2 mL
H2 O的混合溶剂中,将分散均匀的GO分成两份,分别加入0.5 mmol的Co(NO3 )2 ·6H2 O与Ni(NO3 )2 ·6H2 O,并于70 ℃下反应1 h,生成GO‑Co与GO‑Ni配合物,在上述溶液中加入0.5 mmolH2 BT,70 ℃下反应30 min后,将溶液转移至水热反应釜中,135 ℃保温3天。采用每小时降温10 ℃的逐步降温方式,将产物离心、洗涤、干燥,得到GO‑Co‑BT、GO‑Ni‑BT。实验中通过加入NaHCO3 溶液调节PH值,NaHCO3 与联四唑摩尔比为1∶1,反应过程中联四唑与Cu2+ 结合释放的H+ 与NaHCO3 结合,生成CO2 ,改变晶型,制备出β‑GO‑Ni‑BT。GO‑M‑DHBT的制备方法与GO‑M‑BT类似,区别在于GO‑M‑BT采用水和DMF的混合溶剂(水和DMF的体积比为20∶1),GO‑M‑DHBT采用DMAc和甲醇的混合溶剂(DMAc和甲醇的体积比为1∶1),得到GO‑Co‑DBT、GO‑Ni‑DBT。2.4 结构表征及性能分析
粉末衍射测试(XRD):日本,ULTIMA IV,扫描范围为5°~80°,步长为0.02 fs;X射线光电子能谱(XPS):ULVAC‑PHI Inc公司,PH 15000X,辐射源为单色Al的Kα射线,采用284.8 eV的C 1s进行校正;TG‑DSC同步热分析仪:德国NETZSCH STA 449,升温速率10 ℃·mi
n-1 ,气体流速50 mL·min-1 ,升温范围40~500 ℃,氮气作为保护气氛,样品质量约1 mg;扫描电子显微镜(SEM):德国,ZEISS,以钨灯丝为光源,加速电压15 kV。3 结果与讨论
3.1 晶体形貌分析
GO对含能唑类配合物联四唑的结晶具有诱导和取向作用,Co‑DHBT、GO‑Co‑DBT、GO‑Co‑BT、Ni‑DHBT、GO‑Ni‑BT、α‑GO‑Ni‑BT与β‑GO‑Ni‑BT的SEM形貌结构如图2所示。
图2 石墨烯基联四唑含能配位聚合物的SEM照片
Fig.2 SEM images of graphene‑templated energetic bis‑tetrazole coordination polymers
由图2可见,Co‑DHBT(图2a)的结晶度较低、呈无定型粉末状;而图2b中的GO‑Co‑DBT具有GO片层结构,晶体表面更加平滑,呈有序多层结晶。Ni‑DHBT(图2e)为纳米片层状无序晶簇,晶体上有很多片状褶皱,但整体外观形状无明显特征;加入GO后,GO‑Ni‑DBT呈规则的球状结晶,晶体分散均匀。在GO‑Ni‑DBT(图2f)的表面有明显GO片层结构,晶体外观类似石榴果,晶体表层和石榴最顶部位置能观测到GO片层。GO具有诱导结晶的作用,促进晶体有序生长,改善其晶体致密性和热物理化学性能,石墨片层结构诱导含能配合物有序结晶,使产物具有更高的密度,结果与文献一
致[19] 。制备石墨烯基联四唑含能配位聚合物,可以通过改变金属有机框架的金属离子和配体,或改变溶剂热反应条件,来调节晶型结构。实验中引入钴、镍两种金属离子来改变晶型,GO‑Co‑BT呈现两种晶型,一种是短圆柱状晶体,另一种为规则圆片状结晶;而GO‑Ni‑BT的结晶则呈多面体结构,可清楚的观察到不规则平面结构。配体对晶型也起到调节作用,GO‑Ni‑DBT为球型晶体,而α‑GO‑Ni‑BT呈立方体或多面体结晶。GO‑Co‑BT与GO‑Co‑DBT同样都在氧化石墨烯片层上生长,但GO‑Co‑BT在氧化石墨烯片层上长出了纳米级短圆柱状晶体。实验中通过加入NaHC
O3 溶液调节PH值,改变晶体的生长方式,H2 BT配体与Ni 结合释放的H+ 与NaHCO3 结合生成CO2 ,Ni‑H2 BT沿着GO表面生长,使GO片层达到纳米级别。3.2 化学键结构XPS分析
配合物的立体结构、中心离子的氧化价态及配体电荷转移都会影响其结合能,通过配合物中氮、氧、碳、铜、镍原子结合能的变化及分峰数目,可确定配位方式、参与配位的基团和化学键联接方式。对C、N、O、Ni的能谱进行分峰处理,得到了四种原子的化学键类型。GO‑Ni‑DBT、GO‑Ni‑BT、GO‑Co‑DBT与GO‑Co‑BT四种催化剂的配位方式类似,下面以GO‑Ni‑DBT为例说明,GO‑Ni‑DBT的C、N、O、Cu原子的键能分布如图3所示。
GO‑Ni‑DBT中C原子具有C─C单键、C N双键和C─N单键三种键型,与DHBT中C原子的键型一致,表明在配位过程中DHBT配体没有发生分解。N原子的能谱分为六个峰,如图3b所示,分别对应于N─C键、N─N键、N N键、N C键、N─O键和硝酸根氮氧键。GO‑Ni‑DBT中氮原子出现硝酸根氮氧键,表明溶剂中的硝酸根离子参与配位。
GO‑Ni‑DBT中O原子有两类化学键。Ni(N
O3 )2 ·6H2 O与DHBT以摩尔比1∶1参与配位,硝酸根离子中的氮氧键能量在532 eV附近,故在532.3 eV处的主峰代表硝酸根离子中的氮氧键。534.2 eV的位置对应于GO‑Ni‑DBT配体中与N原子相连的羟基,为N‑O‑Ni键。Ni的+2价态的结合能在857.0 eV附近,还原态的镍金属结合能在852.5 eV。GO‑Ni‑DBT中Ni原子的Ni 2p3/2 峰位置为857.4 eV,表明Ni离子未被还原。GO‑Ni‑DBT的配位方式与GO‑Cu‑BT类似,均为金属离子与溶剂中的两个硝酸根离子以配位键形式连接,同时联接两个配体,形成六配位模式[24] 。区别在于,GO‑Ni‑DBT的结构为Ni离子分别连接两个DHBT分子中的O原子和N原子,GO‑Cu‑BT中Cu离子分别与两个H2 BT上的两个N原子联接。3.3 XRD粉末衍射分析
GO‑Ni‑DBT、GO‑Ni‑BT、GO‑Co‑DBT与GO‑Co‑BT的粉末衍射光谱如图4所示。由图4a可见,GO‑Ni‑DBT、GO‑Ni‑BT的衍射峰位置、强度、半峰宽等均非常一致,仅晶面略有差异。在2θ=15.0°、17.2°、22.1°、26.4°、34.1°、59.7°衍射峰高度吻合,表明配体的改变对以镍作为金属离子的石墨烯基MOF晶型无较大影响。由图4b可见,GO‑Co‑DBT与GO‑Co‑BT粉末衍射峰差异显著,GO‑Co‑DBT的衍射峰集中在30°以下,且(001)晶面、(100)晶面、(011)晶面与(100)晶面对应的衍射峰半峰宽较大,在2θ>30°时基本无衍射;GO‑Co‑BT衍射峰强度大、半峰宽较小,在θ>30°时有非常多的杂峰。与氧化石墨烯基联四唑铜配位聚合物相
比[25] ,以镍作为配位中心,其衍射峰半峰宽变大,衍射强度增强。改变金属离子对峰位置和半峰宽影响非常大,由此说明不同金属离子的结晶难易程度有别,GO‑Ni‑DBT与GO‑Ni‑BT的衍射峰与氧化GO‑Cu‑DBT几乎没有重合。图4 GO‑Ni‑DBT、GO‑Ni‑BT、GO‑Co‑DBT与GO‑Co‑BT的 XRD对比图
Fig.4 XRD results of GO‑Ni‑DBT、GO‑Ni‑BT、GO‑Co‑DBT and GO‑Co‑BT
GO‑Ni‑DBT、GO‑Ni‑BT、GO‑Co‑DBT与GO‑Co‑BT的晶体粉末衍射数据统计见表1。由表1可见,GO‑Ni‑DBT、GO‑Ni‑BT、GO‑Co‑DBT与GO‑Co‑BT均为单斜晶系,二羟基联四唑配体与联四唑配体仅存在羟基联接的变化,配体微小变化,及配位中心离子种类并不影响其晶系。羟基的存在,影响C、H、O、N、Ni原子所处的化学环境,影响化学键的空间排布方式,表现为空间点群的差异,GO‑Ni‑BT为Cc(9),而GO‑Ni‑DBT为Pc(7)。因为羟基的存在,联四唑的空间体积小于二羟基联四唑,但以二羟基联四唑为配体的GO‑Ni‑DBT和GO‑Co‑DBT的晶胞体积更小一点,表明GO改变了二羟基联四唑的键角,从而使GO‑Ni‑DBT和GO‑Co‑DBT的晶胞体积减小,向更稳定的晶型方向生长。GO‑Ni‑DBT、GO‑Ni‑BT的晶胞体积分别为180.5, 296.3
Å3 ,比GO‑Ni‑DBT与GO‑Ni‑BT的晶胞体积小一个数量级,图2所示SEM形貌特征也反映了GO‑Ni‑DBT与GO‑Ni‑BT结晶度较高,更容易生长成大晶体。GO‑Cu‑DBT为四方或斜方晶系,GO‑Ni‑DBT、GO‑Ni‑BT、GO‑Co‑DBT与GO‑Co‑BT仅出现斜方晶系,这些研究结果充分证明改变金属离子可以显著改变晶型结构[25] 。表1 GO‑Ni‑DBT、GO‑Ni‑BT、GO‑Co‑DBT与GO‑Co‑BT晶体数据
Table 1 Lattice parameters for GO‑Ni‑DBT、GO‑Ni‑BT、GO‑Co‑DBT and GO‑Co‑BT
catalyzer GO‑Ni‑BT GO‑Ni‑DBT GO‑Co‑BT GO‑Co‑DBT crystal system monoclinic monoclinic monoclinic monoclinic space group Cc(9) Pc(7) P21/c (14) P21(4) a/Å 18.952 16.522 25.711 5.714 b/Å 20.533 14.350 22.916 3.638 c/Å 17.730 24.757 26.675 8.728 α/(°) 90 90 90 90 β/(°) 100.2 96.9 135.6 95.9 γ/(°) 90 90 90 90 V/ Å3 6790.6 5826.5 296.3 180.5 3.4 石墨烯基联四唑含能配位聚合物的热分解性能
研究表明,GO不仅具有稳定化效应,而且起到钝感化效果。石墨烯的导热系数约5000 W·(m·K
)-1 ,可大幅提高含能材料的力学性能;增强导热性和导电性,在外界摩擦、冲击等能量刺激下,能迅速传递热量,避免热点的产生[26] 。此外,晶体缺陷如空隙、气泡、裂纹、晶体尖锐部分等是热点产生的重要位置,热点产生的概率直接决定了失控化学反应的难易程度[27,28,29] 。GO能够诱导结晶,减少晶体缺陷,降低外界刺激下含能材料中“热点”的产生几率,从而提高含能物质的热稳定性,进而降低其机械感度和静电火花感度。EMOFs热稳定性差、感度高,利用GO的稳定化与钝感化效应,通过水热反应制备石墨烯基含能配位聚合物,在保证催化作用的同时提高EMOFs的热稳定性,降低感度。MOFs与石墨烯基唑含能配位聚合物的热分解曲线如图5所示。图5 石墨烯基联四唑含能配位聚合物的DSC曲线(升温速率10 ℃·mi
n-1 )Fig.5 DSC curves of graphene‑templated bis‑tetrazole coordination polymers (heating rate, 10 °C·mi
n-1 )由图5可见,Co‑DHBT和Ni‑DHBT的热分解起始温度分别为122.2 ℃、100.5 ℃,热分解分两步进行。加入GO稳定化掺杂后,石墨烯基含能配位聚合物的热稳定性明显提高,GO‑Co‑DBT的热分解起始温度提高了47.3 ℃,而GO‑Co‑DBT热分解起始温度则提高102.3 ℃,说明GO对配合物的稳定化效应非常显著。Co‑DHBT和Ni‑DHBT的吸热峰对应于配位基团(N
O3 1-)的热解离,放热过程对应于DHBT配体开环断裂分解过程,与文献[6]结果一致。制备β‑GO‑Ni‑BT时,加入NaHCO3 将水热反应釜中溶剂的PH调节为中性,结晶过程中,NaHCO3 与联四唑配体配位过程中产生的H+ 反应,产生CO2 ,SEM图像(图2)也表明反应条件改变了GO‑Ni‑BT的晶型,从而影响热分解特性,使得β‑GO‑Ni‑BT配位基团的热分解与氧化石墨烯掺杂联四唑的热分解反应一步完成。与Co‑DHBT相比,GO‑Co‑DBT晶体的配位基团热分解吸热量降低486.6 J·
g-1 ,放热量由3330.9 J·g-1 增加至8645.9 J·g-1 ,最大热分解速率增加0.0069 %·min-1 ,其对应的峰温由279.2 ℃增加至316.7 ℃。如前文所述,GO自身可发生快速分解放热量约为1600 J·g-1 ,添加5%GO,诱导Co‑DHBT和Ni‑DHBT结晶,使其以GO为模板生长,改变其分子排布结构,减少晶体缺陷,使GO‑Co‑DBT、GO‑Ni‑DBT能量密度提高的同时热稳定性也得到了改善。3.5 对AP和RDX的催化性能分析
为评估上述GO‑Co‑DBT、GO‑Co‑BT、GO‑Ni‑DBT、α‑GO‑Ni‑BT四种石墨烯基含能催化剂的催化效果和催化体系的相容性,将这四种含能催化剂分别与AP、RDX以1∶4(质量比)的比例在甲醇中研磨并混合均匀,待干燥后进行热分析测试,研究四种含能催化剂对AP、RDX的催化效果及催化机理。在不同催化剂的催化作用下,AP和RDX非等温热分解过程的DSC曲线如图6所示,具体热物理参数见表2。
图6 石墨烯基联四唑催化AP与RDX分解的DSC和TG/DTG曲线(升温速率10 ℃·mi
n-1 )Fig.6 DSC and TG/DTG curves of AP and RDX catalyzed by graphene‑templated bis‑tetrazoles (heating rate, 10 °C·mi
n-1 )表2 石墨烯基联四唑催化剂催化AP与RDX热分解DSC参数
Table 2 DSC data of AP and RDX catalyzed by graphene‑templated bis‑tetrazoles
sample edothermic peak eothermic peak To / ℃ Tp / ℃ Te / ℃ ΔH1 / J· g-1 To / ℃ Tp / ℃ Te / ℃ ΔH2 / J· g-1 ∆Hcg / J· g-1 AP 236.2 241.8 244.8 48.4 271.3 400.2 410.4 1788.0 - GO‑Co‑BT/AP 241.5 243.8 247.3 36.87 313.8 323.1 332.8 1910.0 2387.5 GO‑Ni‑BT/AP 240.9 244.4 252.3 23.2 366.6 371.9 378.7 1592.0 1990 405.9 424.4 436.3 57.33 71.66 GO‑Co‑DBT/AP 239.1 242.9 249.5 94.2 283.9 307.2 322.5 2205.6 2757.0 GO‑Ni‑DBT/AP 239.9 243.5 246.4 34.7 266.2 317.8 346.3 1873.4 2341.8 RDX 201.4 202.9 210.4 103.2 221.4 244.3 257.6 1900.0 - GO‑Co‑BT/RDX 200.9 202.9 209.5 66.66 222.6 243.2 252.3 1790.3 2237.9 391.5 349.4 437.1 411.6 514.5 GO‑Ni‑BT/RDX 201.4 202.9 209.5 63.56 221.5 243.5 255.4 1599.8 1999.8 332.3 404.0 477.5 304.1 380.1 GO‑Co‑DHBT/RDX 201.3 203.0 209.3 66.81 218.3 244.9 257.1 2318.4 2898.0 GO‑Ni‑DHBT/RDX 201.4 203.0 209.1 66.78 221.9 243.7 254.3 1843.2 2304.0 342.7 408.0 420.5 234.6 293.3 NOTE: To is initial temperature. Tp is peak temperature. Te is onset temperature. ΔH1 is heat absorption. ΔH2 is heat release. ΔHcg is heat difference.
由图6可看出,加入催化剂后,AP的高温分解峰与低温分解峰重合,使高温分解峰分别降低82.4, 93, 28.3, 73 ℃,放热峰面积增大,放热量增加,这与文献[30]结果一致。催化剂与AP体系的初始分解温度与纯AP非常接近,进一步证实了石墨烯基联四唑含能催化剂兼顾催化性能和体系的热稳定性。由表2知,AP的归一化放热量仅为1788.0 J·
g-1 ,催化剂与AP混合体系的放热量最高增至2757.0 J·g-1 。AP热分解吸热峰减小,四种催化剂对于AP热分解时的转晶过程具有一定的缓释作用,尤其是加入GO‑Ni‑BT催化剂,转晶阶段对应的吸热峰热值由48.4 J·g-1 降低至23.2 J·g-1 。加入GO‑Co‑BT后,AP的高温热分解速率由0.2188 %·min-1 增加至0.9687 %·min-1 。配体为DHBT的催化剂比配体为H2 BT的催化剂使AP分解的放热量大,且DHBT结构中的羟基具有较强的配位能力,使GO‑Co(Ⅱ)/Ni(Ⅱ)‑DBT的催化性能更好,使得催化反应一步完成。加入GO‑Co‑DBT催化剂,AP的分解残渣剩量几乎为0,在不可控反应区内质量损失为90%以上,催化反应完全,放热量为2757.0 J·g-1 ,对AP催化效果最好。研究表明,降低AP的热分解温度,有利于提高固体推进剂的燃速和推
力[31] 。催化剂加速催化AP的高温分解阶段,降低反应过程的活化能,这是放热量增加的主要原因。粒度较大的AP具有较为规则的晶体形状,其热分解分为高温和低温两个阶段,AP 的热分解过程是一个气相(如NH3 、HClO4 )解吸和凝聚相分解的平衡过程[32] 。HClO4 部分分解会产生O2 、H2 O和N2 O。在高温分解过程中,生成了NH3 +、H2 O+ 、O2+ 、NO2+ 、NO+ 和HCl+ ,说明决定AP分解速率的主要是高温分解过程[33] 。石墨烯基含能催化剂通过转移更多的O元素与NH4 +反应来提高NH3 和H2 O转化生成率,使AP两个放热峰得以重叠,放热量增加,催化作用加速了质子转移后HClO4 的非均相分解反应速率,实验结果与文献[34]吻合。含能催化剂本身可作为燃料,AP作为氧化剂,其分解释放的氧使含能催化剂燃烧更充分,体系热值大幅增加。由图6知,加入催化剂后的DTG曲线与纯RDX的DTG曲线基本重合,均在240~244 ℃热分解速率达到最大,不可控反应起始温度基本一致。纯RDX在220 ℃出现正切阶跃,于250 ℃热分解结束;对于加入催化剂的混合体系,在300 ℃之后又出现第二个正切阶跃,使体系的放热量进一步增加。由表2可得,加入GO‑Co‑BT、GO‑Ni‑BT、GO‑Co‑DBT和GO‑Ni‑DBT催化剂后,RDX转晶所对应的吸热峰热值由103.2 J·
g-1 分别降低至66.66,3.56,6.81 J·g-1 和66.78 J·g-1 ,体系放热量分别为2752.4,379.9,898.0 J·g-1 和2597.3 J·g-1 。综合几种催化剂来看GO‑Co‑DHBT/RDX体系的放热量最大,热分解反应一步完成,使RDX的最大热分解速率由0.2188 %·min-1 增加至0.4386 %·min-1 ,残渣率几乎为0,对RDX的催化效果最好。RDX的热分解分为固相分解、液化、液相分解三个阶
段[35] ,RDX的热分解初始反应存在N─N和C─N键同时断裂的竞争反应,C─N键的断裂为放热反应,N─N的断裂为吸热反应,后续的分解反应才是热分解的主要热源[36] 。石墨烯基联四唑含能燃烧催化剂起主要催化作用的物质是原位分解出的纳米金属氧化物;另外氧化石墨烯降解为还原石墨烯,其主要由碳原子组成,其分解燃烧后形成的大量碳元素,起到辅助催化作用。石墨烯基联四唑结构中含有大量高氮配体,分解或燃烧能释放大量能量,进一步促进推进剂燃烧[37] 。石墨烯基联四唑原位分解产生的过度金属氧化物(CuO、NiO、Co2 O3 )中作用最显著的是CuO[38] ,加入催化剂后,整个体系的吸热峰的起始温度基本不变,放热峰结束温度大幅延后,表明催化剂与RDX的相容性极好,有利于提高体系的热安定性,并且使RDX分解更完全。催化剂对于RDX的催化模式是作用于RDX的初始热分解产物或中间凝聚相产物。在热分解后期,石墨烯基含能唑类配合物热分解中间产物(含能组分)进一步分解,增大放热量,催化剂对于RDX最主要的热分解反应历程(如硝铵基氢原子重排,及后续的N─N键断裂和亚硝酸生成)基本无影响。这种独特的催化模式,使整个体系的热稳定性增加的同时还能保证高催化活性,与传统催化剂大幅降低含能物质热稳定性的特点完全不同[39] 。GO‑Co‑DHBT、GO‑Co‑BT的催化效果明显优于GO‑Ni‑DHBT、GO‑Ni‑BT,钴离子的催化效果优于镍离子。GO‑Ni‑DHBT、GO‑Ni‑BT更容易长成大晶体,GO‑Ni‑DHBT呈石榴状的晶体直径约10 μm,GO‑Ni‑BT晶体直径约为2 μm,GO‑Co‑DHBT、GO‑Co‑BT晶体直径为纳米级别;粉末衍射的测试结果也表明,GO‑Ni‑DHBT、GO‑Ni‑BT的晶胞体积分别为5826.5
Å3 、6790.6Å3 而GO‑Co‑DHBT、GO‑Co‑BT的晶胞体积则为180.5Å3 、296.3Å3 ,纳米催化剂与AP、RDX的接触面积更大,催化效率更高。4 结 论
采用溶剂热法制备了石墨烯基联四唑含能配合物。研究了金属离子、配体、合成工艺以及有无石墨烯诱导结晶对晶型的影响,优选出四种石墨烯基联四唑含能催化剂,研究了其对AP和RDX的催化热分解性能。得到主要结论如下:
(1) 以GO为模板生长,制备的石墨烯基联四唑含能配合物兼具高催化活性和高热稳定化效应,GO‑Co‑DBT、GO‑Ni‑DBT与GO‑Ni‑BT的起始热分解温度提高约100 ℃,GO‑Co‑BT起始热分解温度提高50 ℃,GO‑Co‑DBT的放热量增至9645.9 J·
g-1 。GO不仅具有稳定化效应,而且起到钝感化作用。(2) 石墨烯基联四唑含能催化剂对AP的分解有良好的催化效果。加入催化剂后,使AP的转晶过程吸热峰由48.4 J·
g-1 最低降至23.2 J·g-1 ;归一化放热峰量最高为2757.0 J·g-1 ,放热量提高54%。GO‑Co‑BT、GO‑Ni‑BT、GO‑Co‑DBT、GO‑Ni‑DBT通过转移更多的O元素与NH4 +反应来提高NH3 和H2 O转化率,使AP两个放热峰组合,放热量增加,催化作用加速质子转移后的HClO4 的非均相分解反应速度,增强催化效果。(3) 石墨烯基联四唑含能催化剂使RDX转晶所对应的吸热峰热值由103.2 J·
g-1 降低至63.56 J·g-1 ,GO‑Co‑DHBT/RDX体系中,RDX归一化放热量由1900.0 J·g-1 增加至2898.0 J·g-1 。催化体系吸热峰起始温度基本不变,表明催化剂与RDX的相容性极好,有利于提高体系的热安定性,使RDX分解更完全。催化剂通过催化RDX的初始热分解产物和中间凝聚相产物,在热分解后期,石墨烯基含能唑类配合物热分解中间产物(含能组分)进一步分解,增加体系的放热量。(4) GO‑Co‑DHBT、GO‑Co‑BT的催化效果优于GO‑Ni‑DHBT、GO‑Ni‑BT,GO‑Co‑DHBT、GO‑Ni‑DHBT的催化效果分别优于GO‑Co‑BT、GO‑Ni‑BT,易知钴离子的催化效果优于镍离子,配体为DHBT的催化剂比配体为
H2 BT的催化剂催化效果更好,DHBT结构中的羟基具有较强的配位能力,使得催化反应一步完成。(责编:王艳秀)
参考文献
- 1
Li S, Wang Y, Qi C, et al. 3D energetic metal‑organic frameworks: Synthesis and properties of high energy materials[J]. Angewandte Chemie International Edition, 2013, 52(52): 14031-14035.
- 2
Liu X, Gao W, Sun P, et al. Environmentally friendly high‑energy MOFs: crystal structures, thermostability, insensitivity and remarkable detonation performances[J]. Green Chemistry, 2015, 17(2): 831-836.
- 3
Chen S, Zhang B, Yang L, et al. Synthesis, structure and characterization of neutral coordination polymers of 5,5′‑bistetrazole with copper(Ⅱ), zinc(Ⅱ) and cadmium(Ⅱ): a new route to reconcile oxygen balance and nitrogen content of high‑energy MOFs[J]. Dalton Transactions, 2016, 45(42): 16779-16783.
- 4
Guo Z, Wu Y, Deng C, et al. Structural modulation from 1D chain to 3D framework: improved thermostability, insensitivity, and energies of two nitrogen‑rich energetic coordination polymers[J].Inorganic Chemistry,2016,55(21):11064-11071.
- 5
Jing D, Chen D, Fan G, et al. From a novel energetic coordination polymer precursor to diverse Mn2O3 nanostructures: control of pyrolysis products morphology achieved by changing the calcination atmosphere[J]. Crystal Growth & Design, 2016, 16(12): 6849-6857.
- 6
Su Q, Wang X J, Shu Q H, et al. Synthesis, crystal Structure, and properties of energetic complexes constructed from transition metal cations (Fe, Co, Cu, and Pb) and BTO2-[J]. Journal of Heterocyclic Chemistry, 2017, 54(6): 3227-3234.
- 7
Zhang X, Liu Y, Wang K, et al. Remarkably improved hydrogen storage properties of nanocrystalline TiO2- modified NaAlH4 and evolution of Ti- containing species during dehydrogenation/hydrogenation[J]. Nano Research, 2015, 8(2): 533-545.
- 8
Yang Y, Bai Y, Zhao F, et al. Effects of metal organic framework Fe‑BTC on the thermal decomposition of ammonium perchlorate[J]. RSC Advances, 2016, 6(71): 67308-67314.
- 9
杨燕京, 赵凤起, 仪建华, 等. MOFs作为固体推进剂的燃烧催化剂和含能添加剂的研究进展[J]. 含能材料, 2016, 24(12): 1225-1232.
YANG Yan‑jing, ZHAO Feng‑qi, YI Jian‑hua, et al. Comments on criteria for evaluation of combustion catalysts in solid propellants[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(12): 1225-1232.
- 10
Guo Z, Liu X, Chen X, et al. Design and synthesis of two energetic coordination polymers based on copper ion and 1H,1′H‑[5,5′‑bitetrazole]‑1,1′‑diol: a comparative study of the structure‑property relationships[J]. Journal of Solid State Chemistry, 2018, 268: 55-61.
- 11
Li Y, Alain‑Rizzo V, Galmiche L, et al. Functionalization of graphene oxide by tetrazine derivatives: a versatile approach toward covalent bridges between graphene sheets[J]. Chemistry of Materials, 2015, 27(12): 4298-4310.
- 12
Yan Q L, Gozin M, Zhao F Q, et al. Highly energetic compositions based on functionalized carbon nanomaterials[J]. Nanoscale, 2016, 8(9): 4799-4851.
- 13
McCrary P D, Beasley P A, Alaniz S A, et al. Graphene and graphene oxide can “lubricate” ionic liquids based on specific surface interactions leading to improved low‐temperature hypergolic performance[J]. Angewandte Chemie International Edition, 2012, 51(39): 9784-9787.
- 14
Chen S, He W, Luo C J, et al. Thermal behavior of graphene oxide and its stabilization effects on transition metal complexes of triaminoguanidine[J]. Journal of Hazardous Materials, 2019, 368: 404-411.
- 15
Lyu J Y, Chen S, He W, et al. Fabrication of high‑performance graphene oxide doped PVDF/CuO/Al nanocomposites via electrospinning[J]. Chemical Engineering Journal, 2019, 368: 129-137.
- 16
Dimiev A, Kosynkin D V, Alemany L B, et al. Pristine graphite oxide[J]. Journal of the American Chemical Society, 2012, 134(5): 2815-2822.
- 17
Li R, Wang J, Shen J P, et al. Preparation and characterization of insensitive HMX/graphene oxide composites[J]. Propellants, Explosives, Pyrotechnics, 2013, 38(6): 798-804.
- 18
He W, Guo J H, Cao C K, et al. Catalytic reactivity of graphene oxide stabilized transition metal complexes of triaminoguanidine on thermolysis of RDX[J]. The Journal of Physical Chemistry C, 2018, 122(26): 14714-14724.
- 19
Cohen A, Yang Y, Yan Q L, et al. Highly thermostable and insensitive energetic hybrid coordination polymers based on graphene oxide‑Cu(Ⅱ) complex[J]. Chemistry of Materials, 2016, 28(17): 6118-6126.
- 20
Zhang X, Hikal W M, Zhang Y, et al. Direct laser initiation and improved thermal stability of nitrocellulose/graphene oxide nanocomposites[J]. Applied Physics Letters, 2013, 102(14): 141905-141908.
- 21
Krishnan D, Kim F, Luo J, et al. Energetic graphene oxide: challenges and opportunities[J]. Nano today, 2012, 7(2): 137-152.
- 22
Steinhauser G, Klapötke T M. “Green” pyrotechnics: a chemists' challenge[J]. Angewandte Chemie International Edition, 2008, 47(18): 3330-3347.
- 23
Fischer N, Fischer D, Klapötke T M, et al. Pushing the limits of energetic materials‑the synthesis and characterization of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. Journal of Materials Chemistry, 2012, 22(38): 20418-20422.
- 24
Fan J Z, Du C C, Wang D Z. Copper and manganese complexes based on bis (tetrazole) ligands bearing flexible spacers: Syntheses, crystal structures, and magnetic properties[J]. Polyhedron, 2016, 117: 487-495.
- 25
Zhang X X, He W, Chen S W, et al. Tuning the crystal morphology and catalytic behavior of graphene‑templated energetic bis‑tetrazole copper coordination polymers[J]. Advanced Composites and Hybrid Materials, 2019, 2(2): 289-300.
- 26
He G, Yang Z, Zhou X, et al. Polymer bonded explosives (PBXs) with reduced thermal stress and sensitivity by thermal conductivity enhancement with graphene nanoplatelets[J]. Composites Science and Technology, 2016, 131: 22-31.
- 27
Kuklja M M, Kunz A B. Ab initio simulation of defects in energetic materials. Part I. Molecular vacancy structure in RDX crystal[J]. Journal of Physics and Chemistry of Solids, 2000, 61(1): 35-44.
- 28
Kuklja M M, Kunz A B. Ab initio simulation of defects in energetic materials: Hydrostatic compression of cyclotrimethylene trinitramine[J]. Journal of Applied Physics, 1999, 86(8): 4428-4434.
- 29
Kuklja M M, Stefanovich E V, Kunz A B. An excitonic mechanism of detonation initiation in explosives[J]. The Journal of Chemical Physics, 2000, 112(7): 3417-3423.
- 30
Lu Y, Chen J, Wang R, et al. Bio‑inspired Cu‑alginate to smartly enhance safety performance and the thermal decomposition of ammonium perchlorate[J]. Applied Surface Science, 2019, 470: 269-275.
- 31
Bagalkote V, Grinstein D, Natan B. Energetic nanocomposites as burn rate catalyst for composite solid propellants[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(2): 136-143.
- 32
Sanoop A P, Rajeev R, George B K. Synthesis and characterization of a novel copper chromite catalyst for the thermal decomposition of ammonium perchlorate[J]. Thermochimica acta, 2015, 606: 34-40.
- 33
Zongxue Y, Lifen C, Lude L U, et al. DSC/TG‑MS study on in situ catalytic thermal decomposition of ammonium perchlorate over CoC2O4[J]. Chinese journal of catalysis, 2009, 30(1): 19-23.
- 34
Chen S, An T, Gao Y, et al. Gaseous products evolution analyses for catalytic decomposition of AP by graphene‑based additives[J]. Nanomaterials, 2019, 9(5): 801-812.
- 35
李艳春, 闫石, 成一. RDX热分解的TG‑DSC‑QMS‑FTIR同步动力学[J]. 火炸学报, 2009, 32(1): 32-35.
Li Y C, Yan S, Cheng Y. Thermal decomposition kinetics of RDX by TG‑DSC‑QMS‑FTIR[J]. Chinese Journal of Explosives & Propellants, 2009, 32(1): 32-35.
- 36
刘子如, 刘艳, 范夕萍, 等. RDX和HMX的热分解Ⅲ分解机理[J]. 火炸药学报,2006, 29(4): 14-18.
LIU Zi‑ru, LIU Yan, FAN Xi‑ping, et al. Thermal decomposition of RDX and HMX explosives Part Ⅲ: mechanism of thermal decomposition[J]. Chinese Journal of Explosives & Propellants, 2006, 29(4): 14-18.
- 37
Yan Q L, Cohen A, Petrutik N, et al. Highly insensitive and thermostable energetic coordination nanomaterials based on functionalized graphene oxides[J]. Journal of Materials Chemistry A, 2016, 4(25): 9941-9948.
- 38
Yan Q L, Zhao F Q, Kuo K K, et al. Catalytic effects of nano additives on decomposition and combustion of RDX‑, HMX‑, and AP‑based energetic compositions[J]. Progress in Energy and Combustion Science, 2016, 57: 75-136.
- 39
严启龙. 浅谈固体推进剂燃烧催化剂的评判标准[J]. 含能材料,2019, 27(4): 266-269.
YAN Qi‑long. Comments on criteria for evaluation of combustion catalysts in solid propellants[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2019, 27(4): 266-269.
- 1
摘要
采用溶剂热法制备了一系列新型石墨烯基联四唑钝感含能配位聚合物,该含能配位聚合物以钴和镍两种金属离子为典型配位中心,氧化石墨烯(GO)为结晶掺杂物,配体选用1,1'‑二羟基‑5,5'‑联四唑(DHBT)和5,5'‑联四唑(
Abstract
Several novel GO‑based bis‑tetrazole energetic coordination polymers (ECPs) were designed and prepared by solvothermal method, which contain cobalt(Ⅱ) and nickel(Ⅱ) as coordination center, 5,5′‑bis‑tetrazole(
Graphic Abstract
图文摘要
Novel bis‑tetrazole energetic coordination polymers (GO‑Ni‑DBT, GO‑Ni‑BT, GO‑Co‑DBT and GO‑Co‑BT) were designed and prepared. Their crystallization mode was influenced by graphene oxide.