1 引 言
近年来武器弹药的更新迭代,传统的桥丝式火工品已不能满足现在火工品所需的快速响应、可靠发火、安全钝感的更高性能要
求[1,2,3] 。随着MEMS(Micro Electro Mechanical Systems)技术的快速发展,利用物理气相沉积技术可获得尺寸易调节,满足特殊形状设计需求的金属薄膜发火件,它是一种可将电能转换成热能的换能元,与传统火工品相比具有响应更快、一致性更好、点火可靠性更高的优点。与金属Pt、Cr、Ti及复合金属等薄膜相比[4,5] ,镍铬薄膜由于具有机械性能优良,电阻率高,与药剂相容性好,取材方便,电阻系数小等优点,其制备方法和性能已被广泛研究[6,7,8,9] 。但是金属薄膜发火件存在输出能量低的问题[10,11,12] ,利用物理气相沉积技术或化学气相沉积技术将含能反应薄膜与金属薄膜发火件复合,可提高输出能量。含能反应薄膜一般分为合金化薄膜和化学反应薄膜,化学反应薄膜能释放更高的热量[13,14] 。Al/CuO化学反应薄膜相对于Zr/CuO、Mg/CuO和Al/MoO3 三种薄膜,它能放出更多的热量,发生更强烈的电爆反应,显著提升反应的输出能量[15,16,17,18,19,20] 。为了增强Ni⁃Cr薄膜发火件的点火能力,本研究通过磁控溅射技术,将Al/CuO含能薄膜集成于Ni⁃Cr薄膜发火件上,制备了一种新型的Ni⁃Cr@Al/CuO钝感含能元件。采用SEM与DSC表征了Al/CuO含能薄膜的物理化学性能,研究了Ni⁃Cr@Al/CuO钝感含能元件1A1W5min安全性、电发火感度和点火能力,并和Ni⁃Cr薄膜发火件的性能形成对比。以期能将Ni⁃Cr@Al/CuO钝感含能元件作为换能元和最简单的电点火元件,简化点传火序列,适应弹药微型化发展需求。
2 实验部分
2.1 试剂与仪器
试剂:金属Al靶材,直径76 mm,厚5 mm,纯度99.99%,中诺新材科技有限公司;CuO靶材,直径76 mm,厚4 mm,纯度99.99%,中诺新材科技有限公司;GJB6217-2008硼/硝酸钾点火药,使用压药模具将30 mg药粉压制成直径6 mm,厚度0.7 mm,密度(1.52±0.22)g·c
m-3 的圆形药片;仪器:智能激光冷水机(深圳东露阳实业有限公司);MS550多功能通用镀膜机(沈阳科友真空技术
公司); Sirion2000场发射扫描电子显微镜(荷兰FEI公司);NETZSCH STA 449 C型同步热分析仪(德国); Fotric红外热像仪;火工品感度试验用便携式计算装置(中国兵器工业第213研究所); Agilent E3634A恒流稳压源;HG⁃100K高速摄影(REDLAKE公司);DPO 5054B型号示波器;内径6 mm,外径10 mm的玻璃管;内径3 mm,外径5 mm,高度分别为1 mm和2 mm的两种绝缘垫片。
2.2 Ni⁃Cr@Al/CuO钝感含能元件的设计与制备
Ni⁃Cr薄膜设计为蝶形,两侧V字形开口的角度为60°,膜厚为1.3 µm,设计电阻为0.9 Ω。将制备的Ni⁃Cr薄膜与陶瓷塞进行集成,得到Ni⁃Cr薄膜发火件。利用磁控溅射技术将Al/CuO含能薄膜与Ni⁃Cr薄膜发火件复合,得到Ni⁃Cr@Al/CuO钝感含能元件,其结构如图1所示,实物如图2所示。
图1 Ni⁃Cr@Al/CuO钝感含能元件结构示意图
Fig.1 Sketch of Ni⁃Cr@Al/CuO insensitive energetic element
注:1—Al/CuO含能薄膜, 2—Cu焊盘, 3—Ni⁃Cr薄膜(80/20), 4—基片, 5—陶瓷塞, 6—硅铝丝
NOTE: 1—Al/CuO energetic thin film, 2—copper film, 3—Ni⁃Cr (80/20) thin film, 4—substrate, 5—ceramic electrode, 6— silicon aluminum wire
磁控溅射原理如下:在高真空中通入一定量的惰性气体,利用气体分子在强电场作用下发生电离,发生辉光放电,从而产生了带正电的离子,由于正交磁场的作用形成高能离子流撞击在靶材上,导致靶材原子或分子飞溅出来,沉积到样品基片上形成薄膜。磁控溅射原理如图3所示。
根据Al与CuO薄膜发生铝热反应的化学反应式:2Al+3CuO=A
l2 O3 +3Cu,将薄膜密度近似于靶材的密度(Al:2.7 g·cm-3 ,CuO:6.0 g·cm-3 ),由镀膜参数可知,制备得到的含能薄膜中的Al和CuO的调制比为1/2,根据计算得到含能薄膜中的Al和CuO化学摩尔质量比为2:3,与反应式理论化学计量比一致,因此Al/CuO含能薄膜组成的反应体系的氧平衡状态处于零氧平衡,计算得到该反应体系的反应生成热为 -1209.6 kJ·mol-1 。镀膜参数设置如表1所示。2.3 性能测试
采用扫描电子显微镜(Scanning Electron Microscopy,SEM)分析Al/CuO含能薄膜样品的断面形貌;采用差式扫描量热分析(Differential Scanning Calorimetry,DSC)对Al/CuO含能薄膜进行研究,测试条件:取样量1.5 mg,气体氛围为氩气,气体流量20 mL·mi
n-1 ,升温区间30~1000 ℃,升温速率10 ℃·min-1 。对Ni⁃Cr@Al/CuO钝感含能元件的安全性能、电发火感度及点火能力等进行了研究。电阻测试:测试温度为(25±3) ℃;按照GJB5309.11-201
4[21] 测试其1A1W5min下的安全性能,同时使用红外热像仪记录Ni⁃Cr@Al/CuO钝感含能元件的表面温度变化,样品数量为10发;利用D⁃最优化法进行发火感度试验[22] ,测试50 ms临界发火电流,开展两组平行试验,样品数量分别为13发和14发;通过不同间隙点火硼硝酸钾实验测试点火能力,当无间隙时,药片紧贴在Ni⁃Cr@Al/CuO钝感含能元件表面,实验装置如图4所示,使用绝缘垫片实现药片和Ni⁃Cr@Al/CuO钝感含能元件1 mm和2 mm的间隙距离,示意图如图5所示。3 结果和分析
3.1 Al/CuO含能薄膜表征
Al/CuO含能薄膜样品的调制周期为75 nm,调制比为1:2,膜厚为3 µm。图6为Al/CuO含能薄膜样品断面形貌图,可见Al/CuO含能薄膜为层状结构,层间结合紧密,成膜质量良好。DSC测试结果如图7所示,在295.6 ℃附近,DSC曲线上出现较小的放热峰,此时CuO发生分解反应生成C
u2 O;在温度为626.5 ℃时,出现第二个主放热峰,Al的熔点为660 ℃,放热峰出现在Al融化之前,表明此时Al与CuO发生固固相反应,放出热量。3.2 Ni⁃Cr@Al/CuO钝感含能元件的电阻
选用Ni/Cr(80:20)合金材料作为薄膜材料,材料确定后薄膜的电阻值仅与其长宽比有关。蝶形Ni⁃Cr薄膜的几何参数有长度l、宽度w、V形角度θ,最窄宽度wmin以及厚度d,其截面积随着长度l变化而变化。实验设计所用Ni⁃Cr薄膜为蝶形,其中桥区几何尺寸为1 mm(w)×0.35 mm(l)×1.3 μm(d),V型角度θ为60°,桥区最窄处宽度wmin为0.35 mm,制备的Ni⁃Cr薄膜样品和桥区尺寸如图8所示。
通过横截面积恒定的长方体型薄膜电阻阻值计算模
型[23] 可得Ni⁃Cr薄膜电阻为0.9 Ω,实测电阻平均值为0.848 Ω,标准偏差为0.053Ω;Ni⁃Cr薄膜发火件实测电阻平均值为0.948 Ω,标准偏差为0.012 Ω, Ni⁃Cr薄膜发火件的阻值稍大于Ni⁃Cr薄膜阻值;Ni⁃Cr@Al/CuO钝感含能元件实测电阻平均值为1.022 Ω,标准偏差为0.015 Ω,与Ni⁃Cr薄膜发火件相差不大。表2为Ni⁃Cr@Al/CuO钝感含能元件电阻测试结果,从表2可以看出,制备的Ni⁃Cr@Al/CuO钝感含能元件一致性好,加工工艺稳定可靠。表2 Ni⁃Cr@Al/CuO钝感含能元件电阻测试
Table 2 Resistance measurement of Ni⁃Cr@Al/CuO insensitive energetic element
measured resistance / Ω average resistance / Ω standard deviation / Ω Ni⁃Cr film 0.767 0.811 0.852 0.905 0.850 0.761 0.901 0.852 0.872 0.911 0.848 0.053 Ni⁃Cr thin film igniter 0.957 0.954 0.935 0.951 0.942 0.930 0.954 0.964 0.956 0.935 0.948 0.012 Ni⁃Cr@Al/CuO energetic insensitive element 1.020 1.010 1.006 1.012 1.004 1.041 1.040 1.020 1.040 1.030 1.022 0.015 3.3 Ni⁃Cr@Al/CuO钝感含能元件的安全电流
为了研究Al/CuO含能薄膜复合到Ni⁃Cr薄膜发火件上的热安全性,对Ni⁃Cr薄膜发火件和Ni⁃Cr@Al/CuO钝感含能元件通以1 A恒流激励,图9是红外热像仪记录的Ni⁃Cr薄膜发火件和Ni⁃Cr@Al/CuO钝感含能元件表面的最高温度随时间变化曲线。从图9可知,Ni⁃Cr薄膜发火件表面温度从0.002 s秒开始上升,上升速率较快,240 s时达到最高温度(205±1) ℃,随后保持不变;Ni⁃Cr@Al/CuO钝感含能元件表面温度从0.001 s秒开始上升,上升速率较慢,300 s时达到最高温度(169±1) ℃,之后保持不变。图10是Ni⁃Cr薄膜发火件和Ni⁃Cr@Al/CuO钝感含能元件在300s时的红外热像图,图10显示Ni⁃Cr@Al/CuO钝感含能元件表面温度169.4 ℃低于Ni⁃Cr薄膜发火件的表面温度205.5 ℃,说明在Ni⁃Cr薄膜发火件上复合Al/CuO含能薄膜提高了其热安全性。
图9 不同换能元的表面最高温度随时间变化曲线
Fig.9 Surface maximum temperature variation curve of different transducer elements
按照GJB5309.11-201
4[21] 测试了Ni⁃Cr@Al/CuO钝感含能元件1A1W5min安全性,样品数量为10发。10发Ni⁃Cr@Al/CuO钝感含能元件在规定的时间内都未发火,表明它满足1A1W5min不发火的安全性要求。3.4 Ni⁃Cr@Al/CuO钝感含能元件的发火感度
为研究Ni⁃Cr@Al/CuO钝感含能元件在恒定电流激励下的临界爆发性,根据D⁃最优化
法[22] 对Ni⁃Cr@Al/CuO钝感含能元件进行50 ms临界发火电流的测试,其结果如表3所示。表3 Ni⁃Cr@Al/CuO钝感含能元件的50 ms电发火感度
Table 3 Electrical firing sensitivity test results of Ni⁃Cr@Al/CuO insensitive energetic element at 50 ms
sample account 50%firing current / A 99.9%firing current / A 0.1%firing current / A Ni⁃Cr insensitive and high⁃energy igniter 13 3.079 3.193 2.964 14 3.080 3.174 2.987 average 3.08 3.18 2.98 Ni⁃Cr@Al/CuO钝感含能元件的50 ms临界发火电流值为3.08 A,最小全发火电流为3.18 A,最大不发火电流为2.98 A。文
献[10] 钝感Ni⁃Cr薄膜换能元(阻值为(1.04±0.09) Ω)的最小全发火电流2.47 A,与之相比,Ni⁃Cr@Al/CuO钝感含能元件的50 ms临界发火电流更高,发火感度更低,安全性能更好。图11为Ni⁃Cr@Al/CuO钝感含能元件发火后实物图。从图11中可见,Al/CuO含能薄膜全部发生反应,桥区完全炸断,发火后桥区两端烧蚀区域不对称,发火区域大小与电流方向有关[24] 。图12为Ni⁃Cr@Al/CuO钝感含能元件3.18 A发火高速摄影图,可知Ni⁃Cr@Al/CuO钝感含能元件的火焰空间尺寸较大,有利于对下一级装药的能量传递。图12 Ni⁃Cr@Al/CuO钝感含能元件3.18 A发火高速摄影图
Fig.12 High⁃speed photographs of Ni⁃Cr@Al/CuO insensitive energetic element under constant current 3.18 A
图13是 Ni⁃Cr@Al/CuO钝感含能元件在3.5 A激励下的电流⁃电压⁃电阻(V⁃I⁃R)曲线,结果表明,通电后桥区温度升高,加热其上的Al/CuO含能薄膜,15.9 ms时Al/CuO含能薄膜开始燃烧,可以探测到光信号,此时电阻变为5 Ω,17.2 ms时电流变为0,Ni⁃Cr薄膜发火件电阻为开路状态。这说明在3.5 A恒流激励下,Ni⁃Cr薄膜发火件通过热积累,薄膜表面温度达到Al/CuO含能薄膜的着火点,含能薄膜发火。
3.5 Ni⁃Cr@Al/CuO钝感含能元件的点火能力
在恒流激励下,通过点燃硼/硝酸钾实验比较Ni⁃Cr@Al/CuO钝感含能元件和Ni⁃Cr薄膜发火件的点火能力。
在3.5 A恒流激励下,Ni⁃Cr@Al/CuO钝感含能元件成功点燃点火药硼/硝酸钾,硼/硝酸钾燃烧过程的高速摄影记录如图14所示。从图14可以看出,Ni⁃Cr@Al/CuO钝感含能元件首先在10 ms时发火,20 ms时硼/硝酸钾被点燃,火焰迅速扩散,直至190 ms时,硼/硝酸钾基本燃烧结束,燃烧过程持续约169.7 ms。而Ni⁃Cr薄膜发火件不能成功点燃硼/硝酸钾。分析认为, Ni⁃Cr薄膜发火件在恒流激励下产生的热量积累不足以直接点燃硼/硝酸钾,而Ni⁃Cr@ Al/CuO钝感含能元件由于集成了Al/CuO含能薄膜,Al/CuO含能薄膜在Ni⁃Cr薄膜的焦耳热作用下被点燃,发生化学反应,产生大量的高温燃烧产物,从而能够点燃硼/硝酸钾,说明Ni⁃Cr@Al/CuO钝感含能元件较Ni⁃Cr薄膜发火件具有更好的点火能力。
3.6 Ni⁃Cr@Al/CuO钝感含能元件的间隙点火能力
为了进一步测试Ni⁃Cr@Al/CuO钝感含能元件的点火性能,在常压下以3.5 A恒流激励,间隙距离分别为1 mm和2 mm,采用高速摄影记录Ni⁃Cr@Al/CuO钝感含能元件间隙点燃硼/硝酸钾的发火过程,实验结果如图15a和图15b所示。
由图15a可知,Ni⁃Cr@Al/CuO钝感含能元件在1 mm间隙点火硼/硝酸钾测试中,Ni⁃Cr薄膜在0.5 ms内发火,Al/CuO含能薄膜在10.5 ms发火,火焰向上扩散,在硼/硝酸钾药片形成热点,21.5 ms药剂部分发火,随着时间持续和热量积累,41.5 ms完全点燃药剂,硼/硝酸钾被成功点燃。从图15b可以看出,在2 mm间隙点火测试中,Ni⁃Cr@Al/CuO钝感含能元件发火,硼/硝酸钾未被点燃。
4 结 论
(1)使用磁控溅射技术将Al/CuO含能薄膜与Ni⁃Cr薄膜发火件复合,制备出Ni⁃Cr@Al/CuO钝感含能元件,其中Al/CuO含能薄膜调制周期为75 nm,调制比为(Al:25 nm;CuO:50 nm),总膜厚3 μm。SEM表征得Al/CuO含能薄膜成膜均匀致密,截面分层明显,且Al/CuO含能薄膜反应有明显的放热性。
(2)Ni⁃Cr@Al/CuO钝感含能元件满足1A1W5min安全性要求;利用D⁃最优化法测试Ni⁃Cr@Al/CuO钝感含能元件的50 ms临界发火电流为3.08 A,制备的Ni⁃Cr@Al/CuO钝感含能元件具有良好的安全性。
(3)Ni⁃Cr@Al/CuO钝感含能元件可以点燃硼/硝酸钾点火药,并且能实现1 mm间隙点火,而Ni⁃Cr薄膜发火件不能点燃硼/硝酸钾点火药,说明在Ni⁃Cr薄膜发火件上复合Al/CuO含能薄膜能提高其点火能力。
(责编: 高 毅)
参考文献
- 1
周庆, 焦清介. Ni⁃Cr桥丝式电火工品发火规律[J]. 四川兵工学报, 2015, 36(4):144-147.
ZHOU Qing, JIAO Qing⁃jie. Study on firing property of Ni⁃Cr electric hot wire initiating devices [J]. Journal of Sichuan Ordnance, 2015, 36(4):144-147.
- 2
焦清介, 周庆, 臧充光, 等. 塑料与玻璃基体Ni⁃Cr桥丝爆发规律研究[J]. 北京理工大学学报, 2012, 32(10):1009-1013.
JIAO Qing⁃jie, ZHOU Qing, ZANG Chong⁃guang, et al. Explosive property of Ni⁃Cr bridge wire with plastic and glass plug[J]. Transactions of Bei Jing Institute of Technology, 2012, 32(10):1009-1013.
- 3
张彬, 褚恩义, 任炜, 等. MEMS火工品换能元的研究进展[J]. 含能材料, 2017, 25(5):428-436.
ZHANG Bin, CHU En⁃yi, REN Wei, et al. Research progress in energy conversion components for MEMS initiating explosive device[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(5):428-436.
- 4
Kazi I H, Wild P M, Moore T N, et al. Characterization of sputtered nichrome (Ni⁃Cr 80/20 wt.%) films for strain gauge applications[J]. Thin Solid Films, 2006, 515(4):2602-2606.
- 5
Eom T H , Han J I . The effect of the nickel and chromium concentration ratio on the temperature coefficient of the resistance of a Ni⁃Cr thin film⁃based temperature sensor[J]. Sensors & Actuators A Physical, 2017, 260:198-205.
- 6
颜志红, 谢贵久, 景涛, 等. 低能量发火Ni⁃Cr薄膜桥制备及性能分析[J]. 火工品, 2011(5):29-32.
YAN Zhi⁃hong, XIE Gui⁃jiu, JING Tao, et al. Preparation and properties of Ni⁃Cr thin film bridge with low firing energy [J]. Initiators & Pyrotechnics, 2011(5):29-32.
- 7
解瑞珍, 薛艳, 任小明, 等. 桥区参数对Ni⁃Cr薄膜换能元发火性能的影响[J]. 火工品, 2012(1):18-20.
XIE Rui⁃zhen, XUE Yan, REN Xiao⁃ming, et al. Effect of bridge parameters on the firing sensitivity of Ni⁃Cr alloy thin film transducer elements[J]. Initiators & Pyrotechnics, 2012(1):18-20.
- 8
解瑞珍, 任小明, 王可暄, 等. Ni⁃Cr桥膜换能元的制备[J]. 含能材料, 2011, 19(5):584-587.
XIE Rui⁃zhen, REN Xiao⁃ming, WANG Ke⁃xuan, et al. Fabrication of Ni⁃Cr film bridge resistor[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2011, 19(5):584-587.
- 9
解瑞珍, 任小明, 王可暄, 等. Ni⁃Cr薄膜换能元刻蚀工艺研究[J]. 火工品, 2010(6):20-22.
XIE Rui⁃zhen, REN Xiao⁃ming, WANG Ke⁃xuan, et al. Study on etching techniques of Ni⁃Cr film firing resistor[J]. Initiators & Pyrotechnics, 2010(6):20-22.
- 10
王科伟, 杨正才, 刘海旭, 等. 钝感Ni⁃Cr金属桥膜换能元的制备及性能[J]. 含能材料, 2014(6):819-823.
WANG Ke⁃wei, YANG Zheng⁃cai, LIU Hai⁃xu, et al. Preparation and characterization of insensitive Ni⁃Cr metal film igniting Component[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014(6):819-823.
- 11
杨正发. 一种姿态控制发动机点火装置简介[J]. 固体火箭技术, 2000, 23(1):9-12.
YANG Zheng⁃fa. Brief description of an ignition device for attitude control motors[J]. Journal of Solid Rocket Technologys[J]. 2000, 23(1):9-12.
- 12
王广海. 薄膜桥火工品的制备与性能研究[J]. 含能材料, 2008, 16(5):543-546.
WANG Guang⁃hai. Preparation and properties of thin film bridge EED[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(5):543-546.
- 13
Dutro G M, Yetter R A, Risha G A, et al. The effect of stoichiometry on the combustion behavior of a nanoscale Al/MoO3, thermite[J]. Proceedings of the Combustion Institute, 2009, 32(2):1921-1928.
- 14
Plantier K B, Pantoya M L, Gash A E. Combustion wave speeds of nanocomposite Al/Fe2O3 : the effects of Fe2O3, particle synthesis technique[J]. Combustion & Flame, 2005, 140(4):299-309.
- 15
Tai Y, Xu J, Wang F, et al. Experimental and modeling investigation on the self⁃propagating combustion behavior of Al⁃MoO3 reactive multilayer films[J]. Journal of Applied Physics, 2018, 123(23): 235-302.
- 16
Xu J, Tai Y, Ru C, et al. Tuning the ignition performance of a microchip initiator by integrating various Al/MoO3 reactive multilayer films on a semiconductor bridge[J]. ACS applied materials & interfaces, 2017, 9(6): 5580-5589.
- 17
董能发.铝⁃氧化铜可反应性膜的制备和性能研究[D].南京:南京理工大学, 2008.
DONG Neng⁃fa. Preparation and properties of aluminum⁃copper oxide reactive film[D]. Nanjing: Nanjing University of Science and Technology, 2008.
- 18
崔庆华.氧化铜⁃锆的制备与性能表征研究[D].南京:南京理工大学, 2006.
CUI Qing⁃hua. Preparation and characterization of copper oxide⁃zirconium[D]. Nanjing: Nanjing University of Science and Technology, 2006.
- 19
朱朋. 微推进器发火件阵列制作及性能研究[D].南京:南京理工大学, 2007.
ZHU Peng. Fabrication and performance study of micro⁃thruster ignition array[D]. Nanjing: Nanjing University of Science and Technology, 2007.
- 20
Fischer S H, Grubelich M C. Theoretical energy release of thermites, intermetallics, and combustible metals[J]. Office of Scientific & Technical Information Technical Reports, 1998.
- 21
GJB5309.11-2004. 火工品试验方法⁃第11部分: 1A1W5min不发火试验[S].
GJB5309.11-2004. Test methods initiating explosive devices⁃Part 11: 1A1W5min No⁃fire test[S].
- 22
张蕊, 付东晓, 白颖伟, 等. 火工品感度试验用便携式计算装置[J]. 火工品, 2009(1): 35-39.
ZHANG Rui, FU Dong⁃xiao, BAI Ying⁃wei,et al. A Calculation instrument for the sensitivity test of initiating Explosive Device[J]. Initiators & Pyrotechnics, 2009(1):35-39.
- 23
汝承博. 固体化学微推进系统的设计、制作及性能研究[D]. 南京: 南京理工大学, 2017.
RU Cheng⁃bo. Design, fabrication and characterization of solid propellant micropropulsion system[D]. Nanjing: Nanjing University of Science and Technology, 2017.
- 24
刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 北京: 电子工业出版社, 2011: 312-313.
LIU En⁃ke, ZHU Bing⁃sheng, LUO Jin⁃sheng. The physics of semiconductors[M]. Beijing: Publishing House of Electronics Industry, 2011: 312-313.
- 1
摘要
为了提高Ni⁃Cr薄膜发火件的安全性和点火能力,使用磁控溅射技术将Al/CuO含能薄膜与Ni⁃Cr薄膜发火件复合,制备了一种新型的Ni⁃Cr@Al/CuO钝感含能元件。该Ni⁃Cr@Al/CuO钝感含能元件既可以用作换能元,又可以作为最简单的电点火元件,从而简化点传火序列,适应弹药微型化的发展需求。测试其1A1W5min安全性、电发火感度和点火能力。结果表明,Ni⁃Cr@Al/CuO钝感含能元件满足1A1W5min安全性要求;50 ms临界发火电流为3.08 A,最小全发火电流为3.18 A,最大不发火电流为2.98 A,安全裕度较高;在相同条件下,Ni⁃Cr@Al/CuO钝感含能元件可以点燃硼/硝酸钾,并且可实现1 mm的间隙点火,而Ni⁃Cr薄膜发火件不能成功点燃硼/硝酸钾。
Abstract
In order to improve the safety and ignition ability of Ni⁃Cr thin film igniter, a new Ni⁃Cr@Al/CuO insensitive energetic element was fabricated by combining Al/CuO energetic thin film with Ni⁃Cr thin film bridge by magnetron sputtering. The Ni⁃Cr@Al/CuO insensitive energetic element can be used both as the energy transducer element and as the simplest electrical ignition elements. It simplified the point fire transmission sequence and adapt to the development needs of ammunition miniaturization. The safety of Ni⁃Cr@Al/CuO was tested at the loading condition of 1A1W5min, and its electric ignition sensitivity and ignition capability were tested. The results show that the 50 ms critical ignition current of the insensitive nucleus Ni⁃Cr igniter is 3.08 A, 99.9% firing current is 3.18 A, 0.1% firing current is 2.98 A. Under the same conditions, Ni⁃Cr@Al/CuO insensitive energetic element can ignite B/KN
Graphic Abstract
图文摘要
A Ni⁃Cr@Al/CuO insensitive energetic element was fabricated by combining Al/CuO energetic thin film with Ni⁃Cr thin film igniter. The safety of 1A1W5min, its electric ignition sensitivity and ignition capability were tested. Ni⁃Cr@Al/CuO insensitive energetic element can ignite B/KN