CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
王鸿范, 张光中. QJ2328-92 复合固体推进剂贮存老化试验方法[S]. 北京: 航空航天工业部七〇八所, 1992.
WANGHong-Fan, ZHANGGuang-Zhong. QJ2328-92 Test method of storage aging for composite solid propellant [S]. Beijing: Institute of aerospace standardization, 1992.
参考文献 2
谢宇芳, 冯志新, 郑云中, 等. GB/T 20028⁃2005 硫化橡胶或热塑性橡胶 应用阿累尼乌斯图推算寿命和最高使用温度[S]. 北京: 中国标准出版社, 2005.
XIEYu-fang, FENGZhi⁃xin, ZHENGYun⁃zhong, et al. Rubber, vulcanized or thermoplastic—Estimation of life⁃time and maximum temperature of use from an Arrhenius plot [S]. Beijing: Standards Press of China, 2005.
参考文献 3
邢耀国, 董可海, 沈伟, 等. 固体火箭发动机使用工程[M]. 北京:国防工业出版社, 2010: 88-92.
XINGYao⁃guo, DONGKe⁃hai, SHENWei, et al. Practical engineering of solid rocket motor[M].Beijing: National Defense Industry Press, 2010.
参考文献 4
丁 彪, 张旭东, 刘著卿, . HTPB推进剂交变温度加速老化与自然贮存相关性[J]. 含能材料, 2011, 19 (1): 50-54.
DINGBiao, ZHANGXu⁃dong, LIUZhu⁃qing, et al. Correlation between Alternating Temperature Accelerated Aging and Real World Storage of HTPB Propellant [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao ), 2011, 19 (1): 50-54.
参考文献 5
杜锡娟, 彭松. 逐日性能变化叠加法的应用[C]//航天三网第27届年会论文集, 沈阳, 2006.
DUXi⁃juan, PENGSong. The application of daily performance overlay method[C]//Proceedings of the 27th seminar for the third Aerospace professional information network. Shenyang, 2006.
参考文献 6
王斌, 常新龙. 固体火箭推进剂贮存使用寿命的累积损伤⁃反应论模型[J]. 弹箭与制导学报, 2007, 27(1): 171-173.
WANGBin, CHANGXin⁃long. The cumulative damage⁃reaction theory life model to the storage and usage of solid rocket propellant[J]. Journal of Projectile, Rockets, Missiles and Guidance, 2007, 27(1): 171-173.
参考文献 7
张文伟, 李宏民. 自然贮存场自然环境剖面归纳处理[J]. 装备环境工程, 2011, 8(1): 61-66.
ZHANGWen⁃wei, LIHong⁃min. Induction Treatment of Environmental Profile of Natural Storage Station [J]. Equipment Environmental Engineering, 2011, 8(1): 61-66.
参考文献 8
刘子如, 邵颖惠 任晓宁, 等. 预估火炸药寿命的数学模型及其计算[J]. 火炸药学报, 2016, 39(2): 1-7.
LIUZi⁃ru,SHAOYing⁃hui,RENXiao⁃ning,et al. Mathematical models and its calculations for predicting the life of explosives and propellants[J]. Chinese Journal of Explosives&Propellants, 2016, 39(2): 1-7.
参考文献 9
刘兵吉. 固体推进剂延伸率可靠寿命计算[J]. 推进技术, 1990 (6): 46-50.
LIUBing⁃ji. Calculation on reliable life of solid⁃propellant extensibility[J]. Journal of Propulsion Technology, 1990 (6): 46-50.
参考文献 10
刘兵吉. 固体推进剂贮存可靠寿命的Monte Carlo仿真计算[J]. 推进技术, 1992, 13(2): 68-71.
LIUBing⁃ji. Simulation calculation of storage reliable life of solid⁃propellant modulus by Monte Carlo method[J]. Journal of Propulsion Technology, 1992, 13(2): 68-71.
参考文献 11
金六一, 马芳梅, 汤建华. 气温计算模型的构造及其模糊优选[J]. 华中理工大学学报, 1994, 22 (3): 82-86.
JINLiu⁃yi, MAFang⁃mei, TANGJian⁃hua. The construction of an air temperature calculating model and its fuzzy optimum seeking[J]. J Huazhong Univ of Sci.& Tech, 1994, 22 (3): 82-86.
参考文献 12
国家气象信息中心. 中国气象数据网: 气候背景[EB/OL]. [2018⁃12⁃13]. http://data.cma.cn/data/weatherBk.html
National Meteorological Information Center. Meteorological Data Network of China:Climate Background [EB/OL]. [2018⁃12⁃13]. http://data.cma.cn/data/weatherBk.html
参考文献 13
陈铁喜, 陈星. 近50年中国气温日较差的变化趋势分析[J]. 高原气象, 2007, 26(1): 150-157.
CHENTie⁃xi, CHENXing. Variation of diurnal temperature range in China in the past 50 years [J]. Plateau Meteorology, 2007, 26(1): 150-157.
参考文献 14
汤爽. 建筑物自然室温的研究[D]. 黑龙江:哈尔滨工业大学, 2008.
TANGShuang. The research of natural room temperature of building[D]. Heiongjiang:Harbin Institute of Technology, 2008.
参考文献 15
天气网: 气温查询[EB/OL]. [2018⁃12⁃10]. https://www.tianqi.com/qiwen/city⁃chachapoyas⁃12
NetworkWeather: Temperature Information [EB/OL]. [2018⁃12⁃10]. https://www.tianqi.com/qiwen/city⁃chachapoyas⁃12
参考文献 16
CerriS, BohnM A, MenkeK, et al. Aging of HTPB/Al/AP rocket propellant formulations investigated by DMA measurements [J]. Propellants Explosives, Pyrotechnics, 2013, 38(2), 190-198.
参考文献 17
JudgeM D.An investigation of composite propellant accelerated ageing mechanisms and kinetics [J]. Propellants, Explosives, Pyrotechnics, 2003, 28(3): 114-119.
参考文献 18
PerraultG, BedardM, LavertuR R, et al. Accelerated aging of a composite explosive [J]. Propellants and Explosives1979(4): 45-49.
参考文献 19
王春华, 彭网大, 翁武军, 等. HTPB推进剂贮存寿命的理论预估[J]. 推进技术, 2000, 21(3): 63-66.
WANGChun⁃hua, PENGWang⁃da, WENGWu⁃jun, et al. Theoretical predication of storage life for HTPB propellant [J]. Journal of Propulsion Technology, 2000, 21(3): 63-66.
参考文献 20
张福高. 某型固体火箭发动机装药老化试验研究[J]. 新技术新工艺, 2014(12): 91-93.
ZHANGFu⁃gao. Aging test if certain solid rocket motor grain [J]. New Technologies and New Processes, 2014(12): 91-93.
参考文献 21
郝仲璋, 刘子如, 谢俊杰, 等. 预估FH⁃94固体推进剂使用寿命置信下限的研究[J]. 兵工学报火化工分册1994 (2): 20-23.
HAOZhong⁃zhang, LIUZi⁃ru, XIEJun⁃jie, et al. Predication lower confidence limit of service life for solid propellant FH⁃94 [J]. Acta Armamentarii, Fire Chemical Part, 1994(2): 20-23.
参考文献 22
张兴高, 张炜, 王春华, 等. 定应变作用下NEPE推进剂老化特性及寿命预估研究[J]. 国防科技大学学报, 2009, 31(3): 20-24.
ZHANGXing⁃gao, ZHANGWei, WANGChun⁃hua, et al. The aging property and life prediction of NEPE propellant under constant strain [J]. Journal of National University of Defense technology, 2009, 31(3): 20-24.
参考文献 23
张腊莹,刘子如,衡淑云,等. NEPE类推进剂的寿命预估[J]. 推进技术, 2006, 27(6): 572-576.
ZHANGLa⁃ying, LIUZ⁃i ru, HENGShu⁃yun, et al. Estimation of life span for NEPE propellant [J]. Journal of Propulsion Technology, 2006, 27(6): 572-576.
参考文献 24
范夕萍,刘子如,孙莉霞, 等. NEPE⁃5复合固体推进剂物理老化寿命的预估[J]. 推进技术, 2003, 26(1): 43-46.
FANXi⁃ping, LIUZi⁃ru, SUNLi⁃xia, et al. A prediction on the physical aging life of NEPE⁃5 propellant [J]. Journal of Propulsion Technology, 2003, 26(1): 43-46.
参考文献 25
ZhaoFengqi, HengShuyun, HuRongzu, et al. A study of kinetic behaviours of the effective centralite⁃stabilizer consumption reaction of propellants[J]. Journal of Hazardous Materials, 2007, 145(1⁃2): 45-50.
参考文献 26
BohnM A, VolkF. Aging behavior of propellants investigated by heat generation, stabilizer consumption and molar mass degradation [J]. Propellants, Explosives, Pyrotechnics1992, 17(4): 171-178.
参考文献 27
VolkF, BohnM A, WunschG. Determination of chemical and mechanical properties of double base propellants during aging [J]. Propellants, Explosives, Pyrotechnics, 1987, 12(3): 81-87.
参考文献 28
WiseJ, GillenK T, CloughL. An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers [J]. Polymer Degradation and Stability, 1995, 49(3): 403-418.
目录 contents

    摘要

    采用传统方法评估自然环境贮存固体推进剂的老化,需要详细、长期的环境温度数据,应用受到很大的局限,为了解决这个问题,根据自然温度季节、昼夜变化规律,以及气温的地域分布的特点,基于月均气温数据得到温度季节、昼夜变化模型的各项参数,建立了一个基于月均气温的老化等效温度计算模型,用于评估自然温度贮存固体推进剂的老化效应。应用本模型计算了:端羟基聚丁二烯(HTPB)、硝酸酯增塑聚醚NEPE、复合改性双基(CMDB)三类典型固体推进剂在不同地区的老化等效温度。结果表明,老化等效温度显著大于年均气温,季节温差越大,差异越明显。固体推进剂的老化活化能越大,等效温度越向最大月均气温靠近,与年均气温的差异也越大。

    Abstract

    Conventional methods for evaluating aging effects of solid propellants stored at natural temperature need long⁃term (at least 10 years) and detailed (at least daily) environment temperature data. It is very difficult or expensive to access those data in storage places. Even if the data has been obtained, it would be a very heavy workload to process them. A novel method has been established to substitute the conventional methods limited by data acquisition and processing. The method is based on monthly average temperature data. According to seasonal and diurnal variation models of natural temperature, the parameters of these models have been calculated from monthly average temperature data and local climate characteristics. Therefore, the aging equivalent temperature could be evaluated, and the natural temperature aging effects could be predicated. This method is simpler than conventional method in data processing. And the required temperature data of the method can be easily obtained through public ways. Aging equivalent temperatures of three typical solid propellants ((hydroxyl⁃terminated polybutadiene(HTPB), nitrate ester plasticized polyether (NEPE), composite modified double⁃base(CMDB)) stored in four typical regions was calculated by the novel method. Results show that the aging equivalent temperature is much higher than the annual average temperature. The difference between the aging equivalent temperature and the annual average temperature increases with the increase of the annual temperature range. As the aging activation energy of solid propellant increases, the aging equivalent temperature approaches the maximum monthly average temperature, and the difference between the equivalent temperature and the annual average temperature becomes larger.

  • 1 引 言

    对于贮存状态的固体推进剂药柱或其他高分子材料制品,环境温湿度主导的老化通常是性能下降的主因。环境湿度对老化的影响容易通过密封等简单的手段予以抑制或消除,因而环境温度通常是影响产品老化的主要因素。

    固体推进剂和高分子材料都是采用高温加速试验来评估老化性能及贮存寿[1,2]。这种评估方法需要给定一个代表实际贮存温度的参数,可称为参考温度。但实际上,因为成本、自然环境条件等原因,不容易也没必要保持产品贮存环境温度完全恒定,实际贮存环境温度通常是周期性变化的。当贮存环境温度受控,变化幅度不大时,可以贮存温度上限作为参考温度。实际情况是,许多产品贮存于与自然通风的普通库房,环境温度随气温周期变化,存在大幅度的昼夜温差和季节温差,这时候不能简单以某个特征温度(如平均温度、中值温度)作为参考温度。

    针对环境温度变化对固体推进剂老化的影响,邢耀国、丁彪[3,4]采用交变温度加速老化试验方法,在高频率、大幅值的加速试验与低频小幅值自然温度贮存之间建立了相关性,并根据这个相关性对推进剂寿命进行预估。杜锡[5]、王[6]、张文[7]和刘子[8]等从不同角度提出采用积分或累加的方法研究环境温度波动变化影响。上述方法的应用都需要详尽的产品贮存环境温度数据,甚至是按小时计的温度分布统计数据。这些数据需要在贮存地长期不间断记录累积,获取成本很高或者无从获取。因此这类方法在实践上局限性较大。

    刘兵[9]提出一种可靠寿命预估方法,起初将温度周期变化等效为年平均温度。考虑到老化速率是温度的指数函数的事实,年平均温度等效过于简化,之后又提出一种Monte Carlo模拟方[10],将温度周期变化视为随机变量,当作概率分布处理。这种方法也需要充分的温度数据以确定概率分布参数,应用上受限较大。

    考虑到地区气候温度变化的周期性和相对稳定性,且各地区温度标准值容易从互联网等公开渠道获得,本研究以产品贮存地域月平均温度标准值为基本数据,构建自然交变温度下老化等效温度的简化计算模型,并结合我国气温周期变化和地区分布的基本特点,确定模型参数,为自然温度环境贮存固体推进剂及其他高分子材料的老化评估提供了一个简便实用的方法。

  • 2 理论模型

  • 2.1 老化等效温度

    在恒定温度环境下,材料老化敏感性能P与老化时间t的关系为:

    fP=fP0-Kt
    (1)

    式中,P0P的初始值;K为老化速率常数,恒为正值。高分子材料的老化速率常数与温度T(t)的关系一般遵循Arrhenius方程:

    K=Ze-E/RTt
    (2)

    式中,Z为指前因子;E为老化活化能,J·mol-1R为摩尔气体常数,8.314 J·K-1·mol-1 T(t),温度,K。

    则一年内累积老化量Δf(P)可以表示为:

    ΔfP=0ωaKdt=0ωaZexp-ERTtdt
    (3)

    ωa为年周期,取365 d。根据积分中值定理,存在一个teq∈[0, ωa],使得:

    ωaZexp-ERTteq=0ωaZexp-ERTtdt
    (4)

    则年老化等效温度:

    Teq=Tteq=-ER/ln1ωa0ωaexp-ERTtdt
    (5)
  • 2.2 基于日均气温的自然温度变化模型

    自然环境温度(气温)有两个显著的变化周期:四季(年)和昼夜(日)。本研究只考虑四季和昼夜温度变化,并且假定自然环境温度最大交变周期为年。首先考虑四季温度变化,在日均气温模型的基础上进行分析,昼夜温度变化的影响通过修正参数进行补偿。

  • 2.2.1 日均气温变化模型

    日均气温周期变化数学模型如(6)[11]

    Tt=Ta-Tf,acos2πωat-θa
    (6)

    式中,Ta为年均气温,℃; Tf,a为日均气温年振幅,℃;ωa为年周期,取365 d; θa为最低日均气温滞后于元旦(0 d)的相位角,(°); t为时间,d。本研究关心的是年气温变化的累积影响,与θa无关,故可令θa为0,即:

    Tt=Ta-Tf,acos2πωat
    (7)
  • 2.2.2 由月均气温确定模型参数

    各地月均气温容易从公开的气象数据中获得,故首先基于月均气温开展分析。

    年均气温Ta可直接查得,或由全年月均气温Tm取均值得到:

    Ta=112i=112Tm,i
    (8)

    日均气温年振幅Tf,a可由气温年较差(最高月均气温TMax,m与最低月均气温TMin,m之差)确定。由于月均气温是按月计,而Tf,a是按日计,Tf,a应该稍大于(TMax,m-TMin,m)/2。考虑到在一个温度变化周期内,高温部分加速老化的贡献总是大于低温部分降速的贡献,应重点考虑超过年均气温Ta部分的影响,故以(TMax,mTa)代替(TMax,m-TMin,m)/2进行分析。

    设在一年内最高气温月份的角度区间为[α1,α2]。全年12个月,每月所占角度为π/6,有α2=α1+π/6。据式(7),该月份的平均气温为:

    TMax,m=α1α2Ta+Tf,acosαdαα2-α1=Ta+Tf,asinα1-sinα2α2-α1
    (9)

    有:

    Tf,a=TMax,m-Taα2-α1sinα1-sinα2
    (10)

    最高日均气温(Ta+Tf,a)与最高月均气温TMax,m之差ΔTm为:

    ΔTm=Ta+Tf,a-TMax,m=TMax,m-Taα2-α1sinα1-sinα2 -1
    (11)

    考虑两种极端情形如图1所示。由图1可见,当(Ta+Tf,a)在月份正中间时(图1a),α1=11π/12,α2=13π/12,ΔTm=0.0115×(TMax,m-Ta);当(Ta+Tf,a)在月份边沿时(图1b),α1=π,α2=7π/6,ΔTm=0.0472×(TMax,m-Ta)。可见ΔTm取值在0.0115×(TMax,m-Ta)0.0472×(TMaxx,m-Ta)之间。

    html/hnclen/CJEM2019099/alternativeImage/c52dce19-d930-401d-909b-73ee35ed012e-F002.png

    a. (Ta+Tf,a) in the middle of the maximum⁃temperature month

    html/hnclen/CJEM2019099/alternativeImage/c52dce19-d930-401d-909b-73ee35ed012e-F003.png

    b. (Ta+Tf,a) at the edge of the maximum⁃temperature month

    图1 两种极端状态

    Fig. 1 Relationships between (Ta+Tf,a) and TMax,m in two extreme cases

    根据中国气象数据[12],我国北纬40°以南,气温年较差在40 ℃以下;北纬40°以北,大部分地区气温年较差在40~45 ℃,少数地区超过45 ℃,接近50 ℃。

    TMax,m-Ta)约为气温年较差的一半,以20 ℃计,ΔTm理论最大值约为0.0472×20=0.94(℃)。保守起见,统一取ΔTm=1(℃)。因此,可以根据年均气温Ta和月均气温Tm确定Tf,a

    Tf,a=TMax,m-Ta+1
    (12)
  • 2.3 昼夜温差影响分析

  • 2.3.1 昼夜气温变化模型

    昼夜气温变化示意图如图2,不考虑日气温滞后相位角,在一个昼夜期间气温随时间τ的变化可用(13)式近似表[11]

    Tt=Td-Tf,dcos2πτωdn
    (13)

    式中,0 h≤ τ ≤24 h; Td为日均气温; Tf,d为日振幅; ωd为日周期,取24 h; n为指数,以昼夜最高气温与最低气温出现的时间间隔9 h计,n取值约为0.7。

    图2
                            昼夜气温变化示意图

    图2 昼夜气温变化示意图

    Fig.2 Schematic of diurnal temperature variation

  • 2.3.2 环境温度日振幅

    根据文献[13],中国1952~2001年50年间各地区的气温日较差(日最高气温与最低气温之差,DTR)如表1。日气温振幅为DTR的一半。据表1,我国各典型地域的DTR在6.4~15.4 ℃,则日气温振幅在3~8 ℃。

    表1 近50年(1952~2001)中国气温日较差

    Table 1 Diurnal temperature ranges in different regions of China during 1952-2001

    地区中国东部四川长江中下游河套地区青藏高原云贵高原新疆合计
    20°-30° N30°-40° N40°-50° N
    DTR / ℃7.1-9.57.8-11.110.3-13.06.4-8.17.3-9.010.5-12.613.1-15.48.6-10.312.6-14.26.4-15.4

    产品贮存环境与大气环境之间还存在库房、包装箱等分隔,因为热传导的滞后效应,贮存环境温度日振幅显著小于气温日振[14]。本文统一取环境温度日振幅Tf,d=5 ℃。

  • 2.3.3 日老化等效温度和日等效温差

    参照式(5)定义的年老化温度,将式(13)代入式(5),并以ωd取代ωa,将τ以小时为单位离散化,得到日老化等效温度Teq,d的理论式:

    Teq,d=-ER/ln124i=124exp-ERTd-Tf,dcos2πτi24n
    (14)

    则日等效温差(日老化等效温度与日均温度之差)ΔTd为:

    ΔTd=Teq,d-Td(15)

    下面分析TdTf,dEa等参数变化对日等效温差的影响。Td已经确定,还需要确定TdE的取值范围。

    根据天气网数[15],中国典型地区的日均最高气温和最低气温如表2。据表2,我国各典型地域的日均气温为-30~40 ℃,即Td为-30~40 ℃。考虑到室温与气温的差异,极端低温的时间很短,本文分析Td在-20~40 ℃之间对日等效温差的影响。

    表2 我国典型地区的日均最高气温和最低气温

    Table 2 The maximum and minmum diurnal temperatures of typical regions in China

    城市北京大兴安岭阿勒泰吐鲁番拉萨包头遵义重庆三亚郑州南京
    TMax,d / ℃3126284023303034323232
    TMin,d / ℃-9-29-22-13-9-172618-4-1

    据文献[16,17,18,19,20,21,22,23,24,25,26,27]报道,HTPB、 NEPE、 CMDB复合固体推进剂老化活化能如表3。各类固体推进剂老化活化能E的取值范围约为65~152 kJ·mol-1,橡胶等高分子材料老化活化能也在这个范围[28]。本文考虑E在60~150 kJ·mol-1之间对日等效温差的影响。

    表3 文献报道的3类典型固体推进剂的老化活化能

    Table 3 Aging activation energies of three typical solid propellants reported in literature

    propellantsHTPBNEPECMDB
    E / kJ·mol-165-102[16,17,18,19,20,21]96-107[22,23,24]105-152[25,26,27]

    根据式(15)和式(14),计算得到当Tf,d=5 ℃、E取不同值时日等效温差ΔTd随日均气温Td变化的规律见图3。由图3可见,ΔTd随日均温度Td的增大而缓慢下降;E越大,ΔTd越大。E确定时,在-10~40 ℃的宽广范围内,ΔTd变化幅度小于0.5 ℃。图4中ΔTd-Td数据可以采用指数函数拟合:

    y=aebx
    (16)
    图3
                            E取不同值时ΔTd随Td变化的规律(Tf,d=5 ℃)

    图3 E取不同值时ΔTdTd变化的规律(Tf,d=5 ℃)

    Fig. 3 Variations of ΔTdwith Td at different E values (Tf,d=5 ℃)

    图3各曲线按照式(16)拟合,结果如表4表4中,参数b在-0.0056上下波动,与老化活化能E无明显相关。参数aE增大而增大,可用线性方程拟合

    表4 ΔTd-Td关系指数函数拟合结果

    Table 4 Fitting results of ΔTd-Td data with an exponential function

    E / kJ·mol-16080100120150
    a / ℃0.7030.8901.0661.2371.474
    b-0.0054-0.0057-0.0056-0.0056-0.0055
    r-0.9985-0.9997-0.9986-0.9994-0.9996

    NOTE: a and b are parameters, r is the correlation coefficient.

    a=0.20+0.0086E(17)

    因此,ΔTdETd的关系可量化表示为:

    ΔTd=0.20+0.0086Eexp-0.0056Td
    (18)

    我国绝大部分地区、绝大部分时间的室内日均温度在-10~30 ℃,此时exp(-0.0056Td)的取值范围为0.85~1.06,变化不大,可近似取为1。即认为ΔTd与日均温度Td无关,有:

    ΔTd=0.20+0.0086E
    (19)
  • 2.4 考虑昼夜温差的日等效温度模型

    以上分析表明,在我国各地,固体推进剂日等效贮存温度:

    Teq,d=Td+ΔTd=Td+0.20+0.0086E
    (20)

    在全年范围考虑,(20)式相当于全年平均气温增加一个ΔTd,即年等效平均气温:

    Ta,eq=Ta+ΔTd=Ta+0.20+0.0086E
    (21)

    Ta,eq取代式(7)的Ta,据式(12)和式(21),得到考虑昼夜温差的日等效温度模型:

    Tt=Ta+0.20+0.0086E-TMax,m-Ta+1cos2πtωa
    (22)
  • 2.5 基于月均气温的老化等效温度模型

    将式(22)和式(8)代入式(5),得到基于月均气温的老化等效温度模型式(23)。据式(23),只需要知道月均气温标准值和材料老化活化能,就可以求出适用于我国陆地贮存的老化等效温度。式(23)难于积分,可将时间t以天为单位离散化(式(24))。

    Teq=-ER/ln1ωa0ωaexp-ER112i=112Tm,i+0.20+0.0086E-TMax,m-112i=112Tm,i+1cos2πtωadt
    (23)
    Teq=-ER/ln1365j=1365exp-ER112i=112Tm,i+0.20+0.0086E-TMax,m-112i=112Tm,i+1cos2πt365
    (24)
  • 3 应 用

    由中国气象数据[12]查得四个典型地区月平均气温标准值如表5。根据表5,求得四个地区年均气温Ta、最大月均气温TMax,m、最大月均气温与年均气温之差TMax,m-Ta,并通过式(24)求得表3所列各类固体推进剂(老化活化能分别取典型值80, 100, 130 kJ·mol-1)在各典型地区的等效温度Teq,结果如表6

    表5 典型地区月平均气温标准值Tm(1981-2010)

    Table 5 Normal values of monthly mean temperature of typical regions in China(1981-2010)℃

    月份123456789101112
    海口18.419.422.226.027.929.029.128.627.426.023.319.8
    南京2.75.09.315.621.224.828.127.623.317.610.94.9
    北京-3.0-0.77.114.821.025.127.325.921.213.95.1-1.1
    齐齐哈尔-18.1-12.8-3.57.015.221.123.321.614.95.7-6.3-15.5

    表6 不同种类推进剂在典型地区自然环境贮存的等效温度(1971-2000)

    Table 6 Equivalent temperatures of different solid propellants in natural environments in typical regions(1971-2000)

    地区Ta/℃TMax,m/℃(TMax,m-Ta)/℃Teq / ℃

    HTPB

    E=80 kJ·mol-1

    NEPE

    E=100 kJ·mol-1

    CDMA

    E=130 kJ·mol-1

    海口24.829.14.326.426.727.2
    南京15.928.112.220.921.923.2
    北京13.127.314.319.320.521.9
    齐齐哈尔4.423.318.914.015.517.2

    表6可见,老化等效温度显著大于年均气温,季节温差越大,等效温度与年均气温的差异越大。固体推进剂的老化活化能越大,等效温度越向最大月均气温靠近,与年均气温的差异也越大。

  • 4 结 论

    根据自然温度季节、昼夜变化规律,在年等效温度积分式基础上分析了气温年较差、气温日较差以及材料老化活化能对年等效温度积分式各参数的影响。通过对气温季节和昼夜周期性变化规律的分析,得到月均气温与日均气温年振幅的关系式,以及昼夜温差补偿数学式。根据我国气温地域分布特点,基于月均气温数据求得温度季节、昼夜变化模型的各项参数,建立了基于月均气温的老化等效温度计算模型。

    应用该模型计算了三类典型固体推进剂在4种典型地区的老化等效温度,发现老化等效温度显著大于年均气温,季节温差越大,等效温度与年均气温的差异越大。固体推进剂的老化活化能越大,等效温度越向最大月均气温靠近,与年均气温的差异也越大。

    本文方法只需要从公开气象资料查得的贮存地月均气温数据,就可以确定自然温度贮存的固体推进剂及其他易老化高分子产品的等效老化温度,具有很强的实用性。

    (责编: 王艳秀)

  • 参考文献

    • 1

      王鸿范, 张光中. QJ2328-92 复合固体推进剂贮存老化试验方法[S]. 北京: 航空航天工业部七〇八所, 1992.

      WANG Hong-Fan, ZHANG Guang-Zhong. QJ2328-92 Test method of storage aging for composite solid propellant [S]. Beijing: Institute of aerospace standardization, 1992.

    • 2

      谢宇芳, 冯志新, 郑云中, 等. GB/T 20028⁃2005 硫化橡胶或热塑性橡胶 应用阿累尼乌斯图推算寿命和最高使用温度[S]. 北京: 中国标准出版社, 2005.

      XIE Yu-fang, FENG Zhi⁃xin, ZHENG Yun⁃zhong, et al. Rubber, vulcanized or thermoplastic—Estimation of life⁃time and maximum temperature of use from an Arrhenius plot [S]. Beijing: Standards Press of China, 2005.

    • 3

      邢耀国, 董可海, 沈伟, 等. 固体火箭发动机使用工程[M]. 北京:国防工业出版社, 2010: 88-92.

      XING Yao⁃guo, DONG Ke⁃hai, SHEN Wei, et al. Practical engineering of solid rocket motor[M].Beijing: National Defense Industry Press, 2010.

    • 4

      丁 彪, 张旭东, 刘著卿, . HTPB推进剂交变温度加速老化与自然贮存相关性[J]. 含能材料, 2011, 19 (1): 50-54.

      DING Biao, ZHANG Xu⁃dong, LIU Zhu⁃qing, et al. Correlation between Alternating Temperature Accelerated Aging and Real World Storage of HTPB Propellant [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao ), 2011, 19 (1): 50-54.

    • 5

      杜锡娟, 彭松. 逐日性能变化叠加法的应用[C]//航天三网第27届年会论文集, 沈阳, 2006.

      DU Xi⁃juan, PENG Song. The application of daily performance overlay method[C]//Proceedings of the 27th seminar for the third Aerospace professional information network. Shenyang, 2006.

    • 6

      王斌, 常新龙. 固体火箭推进剂贮存使用寿命的累积损伤⁃反应论模型[J]. 弹箭与制导学报, 2007, 27(1): 171-173.

      WANG Bin, CHANG Xin⁃long. The cumulative damage⁃reaction theory life model to the storage and usage of solid rocket propellant[J]. Journal of Projectile, Rockets, Missiles and Guidance, 2007, 27(1): 171-173.

    • 7

      张文伟, 李宏民. 自然贮存场自然环境剖面归纳处理[J]. 装备环境工程, 2011, 8(1): 61-66.

      ZHANG Wen⁃wei, LI Hong⁃min. Induction Treatment of Environmental Profile of Natural Storage Station [J]. Equipment Environmental Engineering, 2011, 8(1): 61-66.

    • 8

      刘子如, 邵颖惠 任晓宁, 等. 预估火炸药寿命的数学模型及其计算[J]. 火炸药学报, 2016, 39(2): 1-7.

      LIU Zi⁃ru,SHAO Ying⁃hui,REN Xiao⁃ning,et al. Mathematical models and its calculations for predicting the life of explosives and propellants[J]. Chinese Journal of Explosives&Propellants, 2016, 39(2): 1-7.

    • 9

      刘兵吉. 固体推进剂延伸率可靠寿命计算[J]. 推进技术, 1990 (6): 46-50.

      LIU Bing⁃ji. Calculation on reliable life of solid⁃propellant extensibility[J]. Journal of Propulsion Technology, 1990 (6): 46-50.

    • 10

      刘兵吉. 固体推进剂贮存可靠寿命的Monte Carlo仿真计算[J]. 推进技术, 1992, 13(2): 68-71.

      LIU Bing⁃ji. Simulation calculation of storage reliable life of solid⁃propellant modulus by Monte Carlo method[J]. Journal of Propulsion Technology, 1992, 13(2): 68-71.

    • 11

      金六一, 马芳梅, 汤建华. 气温计算模型的构造及其模糊优选[J]. 华中理工大学学报, 1994, 22 (3): 82-86.

      JIN Liu⁃yi, MA Fang⁃mei, TANG Jian⁃hua. The construction of an air temperature calculating model and its fuzzy optimum seeking[J]. J Huazhong Univ of Sci.& Tech, 1994, 22 (3): 82-86.

    • 12

      国家气象信息中心. 中国气象数据网: 气候背景[EB/OL]. [2018⁃12⁃13]. http://data.cma.cn/data/weatherBk.html

      National Meteorological Information Center. Meteorological Data Network of China:Climate Background [EB/OL]. [2018⁃12⁃13]. http://data.cma.cn/data/weatherBk.html

    • 13

      陈铁喜, 陈星. 近50年中国气温日较差的变化趋势分析[J]. 高原气象, 2007, 26(1): 150-157.

      CHEN Tie⁃xi, CHEN Xing. Variation of diurnal temperature range in China in the past 50 years [J]. Plateau Meteorology, 2007, 26(1): 150-157.

    • 14

      汤爽. 建筑物自然室温的研究[D]. 黑龙江:哈尔滨工业大学, 2008.

      TANG Shuang. The research of natural room temperature of building[D]. Heiongjiang:Harbin Institute of Technology, 2008.

    • 15

      天气网: 气温查询[EB/OL]. [2018⁃12⁃10]. https://www.tianqi.com/qiwen/city⁃chachapoyas⁃12

      Weather Network: Temperature Information [EB/OL]. [2018⁃12⁃10]. https://www.tianqi.com/qiwen/city⁃chachapoyas⁃12

    • 16

      Cerri S, Bohn M A, Menke K, et al. Aging of HTPB/Al/AP rocket propellant formulations investigated by DMA measurements [J]. Propellants Explosives, Pyrotechnics, 2013, 38(2), 190-198.

    • 17

      Judge M D.An investigation of composite propellant accelerated ageing mechanisms and kinetics [J]. Propellants, Explosives, Pyrotechnics, 2003, 28(3): 114-119.

    • 18

      Perrault G, Bedard M, Lavertu R R, et al. Accelerated aging of a composite explosive [J]. Propellants and Explosives1979(4): 45-49.

    • 19

      王春华, 彭网大, 翁武军, 等. HTPB推进剂贮存寿命的理论预估[J]. 推进技术, 2000, 21(3): 63-66.

      WANG Chun⁃hua, PENG Wang⁃da, WENG Wu⁃jun, et al. Theoretical predication of storage life for HTPB propellant [J]. Journal of Propulsion Technology, 2000, 21(3): 63-66.

    • 20

      张福高. 某型固体火箭发动机装药老化试验研究[J]. 新技术新工艺, 2014(12): 91-93.

      ZHANG Fu⁃gao. Aging test if certain solid rocket motor grain [J]. New Technologies and New Processes, 2014(12): 91-93.

    • 21

      郝仲璋, 刘子如, 谢俊杰, 等. 预估FH⁃94固体推进剂使用寿命置信下限的研究[J]. 兵工学报火化工分册1994 (2): 20-23.

      HAO Zhong⁃zhang, LIU Zi⁃ru, XIE Jun⁃jie, et al. Predication lower confidence limit of service life for solid propellant FH⁃94 [J]. Acta Armamentarii, Fire Chemical Part, 1994(2): 20-23.

    • 22

      张兴高, 张炜, 王春华, 等. 定应变作用下NEPE推进剂老化特性及寿命预估研究[J]. 国防科技大学学报, 2009, 31(3): 20-24.

      ZHANG Xing⁃gao, ZHANG Wei, WANG Chun⁃hua, et al. The aging property and life prediction of NEPE propellant under constant strain [J]. Journal of National University of Defense technology, 2009, 31(3): 20-24.

    • 23

      张腊莹,刘子如,衡淑云,等. NEPE类推进剂的寿命预估[J]. 推进技术, 2006, 27(6): 572-576.

      ZHANG La⁃ying, LIU Z⁃i ru, HENG Shu⁃yun, et al. Estimation of life span for NEPE propellant [J]. Journal of Propulsion Technology, 2006, 27(6): 572-576.

    • 24

      范夕萍,刘子如,孙莉霞, 等. NEPE⁃5复合固体推进剂物理老化寿命的预估[J]. 推进技术, 2003, 26(1): 43-46.

      FAN Xi⁃ping, LIU Zi⁃ru, SUN Li⁃xia, et al. A prediction on the physical aging life of NEPE⁃5 propellant [J]. Journal of Propulsion Technology, 2003, 26(1): 43-46.

    • 25

      Zhao Fengqi, Heng Shuyun, Hu Rongzu, et al. A study of kinetic behaviours of the effective centralite⁃stabilizer consumption reaction of propellants[J]. Journal of Hazardous Materials, 2007, 145(1⁃2): 45-50.

    • 26

      Bohn M A, Volk F. Aging behavior of propellants investigated by heat generation, stabilizer consumption and molar mass degradation [J]. Propellants, Explosives, Pyrotechnics1992, 17(4): 171-178.

    • 27

      Volk F, Bohn M A, Wunsch G. Determination of chemical and mechanical properties of double base propellants during aging [J]. Propellants, Explosives, Pyrotechnics, 1987, 12(3): 81-87.

    • 28

      Wise J, Gillen K T, Clough L. An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers [J]. Polymer Degradation and Stability, 1995, 49(3): 403-418.

池旭辉

机 构:航天化学动力技术重点实验室,湖北航天化学技术研究所,湖北 襄阳 441003

Affiliation:Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, China

邮 箱:chixh@126.com

作者简介:池旭辉(1973-),男,博士,研究方向为复合固体推进剂和高分子材料力学性能、老化性能和贮存寿命评估。e⁃mail:chixh@126.com

html/hnclen/CJEM2019099/alternativeImage/c52dce19-d930-401d-909b-73ee35ed012e-F002.png
html/hnclen/CJEM2019099/alternativeImage/c52dce19-d930-401d-909b-73ee35ed012e-F003.png
html/hnclen/CJEM2019099/alternativeImage/c52dce19-d930-401d-909b-73ee35ed012e-F004.png
地区中国东部四川长江中下游河套地区青藏高原云贵高原新疆合计
20°-30° N30°-40° N40°-50° N
DTR / ℃7.1-9.57.8-11.110.3-13.06.4-8.17.3-9.010.5-12.613.1-15.48.6-10.312.6-14.26.4-15.4
城市北京大兴安岭阿勒泰吐鲁番拉萨包头遵义重庆三亚郑州南京
TMax,d / ℃3126284023303034323232
TMin,d / ℃-9-29-22-13-9-172618-4-1
propellantsHTPBNEPECMDB
E / kJ·mol-165-102[16,17,18,19,20,21]96-107[22,23,24]105-152[25,26,27]
html/hnclen/CJEM2019099/alternativeImage/c52dce19-d930-401d-909b-73ee35ed012e-F005.png
E / kJ·mol-16080100120150
a / ℃0.7030.8901.0661.2371.474
b-0.0054-0.0057-0.0056-0.0056-0.0055
r-0.9985-0.9997-0.9986-0.9994-0.9996
月份123456789101112
海口18.419.422.226.027.929.029.128.627.426.023.319.8
南京2.75.09.315.621.224.828.127.623.317.610.94.9
北京-3.0-0.77.114.821.025.127.325.921.213.95.1-1.1
齐齐哈尔-18.1-12.8-3.57.015.221.123.321.614.95.7-6.3-15.5
地区Ta/℃TMax,m/℃(TMax,m-Ta)/℃Teq / ℃

HTPB

E=80 kJ·mol-1

NEPE

E=100 kJ·mol-1

CDMA

E=130 kJ·mol-1

海口24.829.14.326.426.727.2
南京15.928.112.220.921.923.2
北京13.127.314.319.320.521.9
齐齐哈尔4.423.318.914.015.517.2

图1 两种极端状态 -- a. (Ta+Tf,a) in the middle of the maximum⁃temperature month

Fig. 1 Relationships between (Ta+Tf,a) and TMax,m in two extreme cases -- a. (Ta+Tf,a) in the middle of the maximum⁃temperature month

图1 两种极端状态 -- b. (Ta+Tf,a) at the edge of the maximum⁃temperature month

Fig. 1 Relationships between (Ta+Tf,a) and TMax,m in two extreme cases -- b. (Ta+Tf,a) at the edge of the maximum⁃temperature month

图2 昼夜气温变化示意图

Fig.2 Schematic of diurnal temperature variation

表1 近50年(1952~2001)中国气温日较差

Table 1 Diurnal temperature ranges in different regions of China during 1952-2001

表2 我国典型地区的日均最高气温和最低气温

Table 2 The maximum and minmum diurnal temperatures of typical regions in China

表3 文献报道的3类典型固体推进剂的老化活化能

Table 3 Aging activation energies of three typical solid propellants reported in literature

图3 E取不同值时ΔTdTd变化的规律(Tf,d=5 ℃)

Fig. 3 Variations of ΔTdwith Td at different E values (Tf,d=5 ℃)

表4 ΔTd-Td关系指数函数拟合结果

Table 4 Fitting results of ΔTd-Td data with an exponential function

表5 典型地区月平均气温标准值Tm(1981-2010)

Table 5 Normal values of monthly mean temperature of typical regions in China(1981-2010)℃

表6 不同种类推进剂在典型地区自然环境贮存的等效温度(1971-2000)

Table 6 Equivalent temperatures of different solid propellants in natural environments in typical regions(1971-2000)

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

a and b are parameters, r is the correlation coefficient.

无注解

无注解

  • 参考文献

    • 1

      王鸿范, 张光中. QJ2328-92 复合固体推进剂贮存老化试验方法[S]. 北京: 航空航天工业部七〇八所, 1992.

      WANG Hong-Fan, ZHANG Guang-Zhong. QJ2328-92 Test method of storage aging for composite solid propellant [S]. Beijing: Institute of aerospace standardization, 1992.

    • 2

      谢宇芳, 冯志新, 郑云中, 等. GB/T 20028⁃2005 硫化橡胶或热塑性橡胶 应用阿累尼乌斯图推算寿命和最高使用温度[S]. 北京: 中国标准出版社, 2005.

      XIE Yu-fang, FENG Zhi⁃xin, ZHENG Yun⁃zhong, et al. Rubber, vulcanized or thermoplastic—Estimation of life⁃time and maximum temperature of use from an Arrhenius plot [S]. Beijing: Standards Press of China, 2005.

    • 3

      邢耀国, 董可海, 沈伟, 等. 固体火箭发动机使用工程[M]. 北京:国防工业出版社, 2010: 88-92.

      XING Yao⁃guo, DONG Ke⁃hai, SHEN Wei, et al. Practical engineering of solid rocket motor[M].Beijing: National Defense Industry Press, 2010.

    • 4

      丁 彪, 张旭东, 刘著卿, . HTPB推进剂交变温度加速老化与自然贮存相关性[J]. 含能材料, 2011, 19 (1): 50-54.

      DING Biao, ZHANG Xu⁃dong, LIU Zhu⁃qing, et al. Correlation between Alternating Temperature Accelerated Aging and Real World Storage of HTPB Propellant [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao ), 2011, 19 (1): 50-54.

    • 5

      杜锡娟, 彭松. 逐日性能变化叠加法的应用[C]//航天三网第27届年会论文集, 沈阳, 2006.

      DU Xi⁃juan, PENG Song. The application of daily performance overlay method[C]//Proceedings of the 27th seminar for the third Aerospace professional information network. Shenyang, 2006.

    • 6

      王斌, 常新龙. 固体火箭推进剂贮存使用寿命的累积损伤⁃反应论模型[J]. 弹箭与制导学报, 2007, 27(1): 171-173.

      WANG Bin, CHANG Xin⁃long. The cumulative damage⁃reaction theory life model to the storage and usage of solid rocket propellant[J]. Journal of Projectile, Rockets, Missiles and Guidance, 2007, 27(1): 171-173.

    • 7

      张文伟, 李宏民. 自然贮存场自然环境剖面归纳处理[J]. 装备环境工程, 2011, 8(1): 61-66.

      ZHANG Wen⁃wei, LI Hong⁃min. Induction Treatment of Environmental Profile of Natural Storage Station [J]. Equipment Environmental Engineering, 2011, 8(1): 61-66.

    • 8

      刘子如, 邵颖惠 任晓宁, 等. 预估火炸药寿命的数学模型及其计算[J]. 火炸药学报, 2016, 39(2): 1-7.

      LIU Zi⁃ru,SHAO Ying⁃hui,REN Xiao⁃ning,et al. Mathematical models and its calculations for predicting the life of explosives and propellants[J]. Chinese Journal of Explosives&Propellants, 2016, 39(2): 1-7.

    • 9

      刘兵吉. 固体推进剂延伸率可靠寿命计算[J]. 推进技术, 1990 (6): 46-50.

      LIU Bing⁃ji. Calculation on reliable life of solid⁃propellant extensibility[J]. Journal of Propulsion Technology, 1990 (6): 46-50.

    • 10

      刘兵吉. 固体推进剂贮存可靠寿命的Monte Carlo仿真计算[J]. 推进技术, 1992, 13(2): 68-71.

      LIU Bing⁃ji. Simulation calculation of storage reliable life of solid⁃propellant modulus by Monte Carlo method[J]. Journal of Propulsion Technology, 1992, 13(2): 68-71.

    • 11

      金六一, 马芳梅, 汤建华. 气温计算模型的构造及其模糊优选[J]. 华中理工大学学报, 1994, 22 (3): 82-86.

      JIN Liu⁃yi, MA Fang⁃mei, TANG Jian⁃hua. The construction of an air temperature calculating model and its fuzzy optimum seeking[J]. J Huazhong Univ of Sci.& Tech, 1994, 22 (3): 82-86.

    • 12

      国家气象信息中心. 中国气象数据网: 气候背景[EB/OL]. [2018⁃12⁃13]. http://data.cma.cn/data/weatherBk.html

      National Meteorological Information Center. Meteorological Data Network of China:Climate Background [EB/OL]. [2018⁃12⁃13]. http://data.cma.cn/data/weatherBk.html

    • 13

      陈铁喜, 陈星. 近50年中国气温日较差的变化趋势分析[J]. 高原气象, 2007, 26(1): 150-157.

      CHEN Tie⁃xi, CHEN Xing. Variation of diurnal temperature range in China in the past 50 years [J]. Plateau Meteorology, 2007, 26(1): 150-157.

    • 14

      汤爽. 建筑物自然室温的研究[D]. 黑龙江:哈尔滨工业大学, 2008.

      TANG Shuang. The research of natural room temperature of building[D]. Heiongjiang:Harbin Institute of Technology, 2008.

    • 15

      天气网: 气温查询[EB/OL]. [2018⁃12⁃10]. https://www.tianqi.com/qiwen/city⁃chachapoyas⁃12

      Weather Network: Temperature Information [EB/OL]. [2018⁃12⁃10]. https://www.tianqi.com/qiwen/city⁃chachapoyas⁃12

    • 16

      Cerri S, Bohn M A, Menke K, et al. Aging of HTPB/Al/AP rocket propellant formulations investigated by DMA measurements [J]. Propellants Explosives, Pyrotechnics, 2013, 38(2), 190-198.

    • 17

      Judge M D.An investigation of composite propellant accelerated ageing mechanisms and kinetics [J]. Propellants, Explosives, Pyrotechnics, 2003, 28(3): 114-119.

    • 18

      Perrault G, Bedard M, Lavertu R R, et al. Accelerated aging of a composite explosive [J]. Propellants and Explosives1979(4): 45-49.

    • 19

      王春华, 彭网大, 翁武军, 等. HTPB推进剂贮存寿命的理论预估[J]. 推进技术, 2000, 21(3): 63-66.

      WANG Chun⁃hua, PENG Wang⁃da, WENG Wu⁃jun, et al. Theoretical predication of storage life for HTPB propellant [J]. Journal of Propulsion Technology, 2000, 21(3): 63-66.

    • 20

      张福高. 某型固体火箭发动机装药老化试验研究[J]. 新技术新工艺, 2014(12): 91-93.

      ZHANG Fu⁃gao. Aging test if certain solid rocket motor grain [J]. New Technologies and New Processes, 2014(12): 91-93.

    • 21

      郝仲璋, 刘子如, 谢俊杰, 等. 预估FH⁃94固体推进剂使用寿命置信下限的研究[J]. 兵工学报火化工分册1994 (2): 20-23.

      HAO Zhong⁃zhang, LIU Zi⁃ru, XIE Jun⁃jie, et al. Predication lower confidence limit of service life for solid propellant FH⁃94 [J]. Acta Armamentarii, Fire Chemical Part, 1994(2): 20-23.

    • 22

      张兴高, 张炜, 王春华, 等. 定应变作用下NEPE推进剂老化特性及寿命预估研究[J]. 国防科技大学学报, 2009, 31(3): 20-24.

      ZHANG Xing⁃gao, ZHANG Wei, WANG Chun⁃hua, et al. The aging property and life prediction of NEPE propellant under constant strain [J]. Journal of National University of Defense technology, 2009, 31(3): 20-24.

    • 23

      张腊莹,刘子如,衡淑云,等. NEPE类推进剂的寿命预估[J]. 推进技术, 2006, 27(6): 572-576.

      ZHANG La⁃ying, LIU Z⁃i ru, HENG Shu⁃yun, et al. Estimation of life span for NEPE propellant [J]. Journal of Propulsion Technology, 2006, 27(6): 572-576.

    • 24

      范夕萍,刘子如,孙莉霞, 等. NEPE⁃5复合固体推进剂物理老化寿命的预估[J]. 推进技术, 2003, 26(1): 43-46.

      FAN Xi⁃ping, LIU Zi⁃ru, SUN Li⁃xia, et al. A prediction on the physical aging life of NEPE⁃5 propellant [J]. Journal of Propulsion Technology, 2003, 26(1): 43-46.

    • 25

      Zhao Fengqi, Heng Shuyun, Hu Rongzu, et al. A study of kinetic behaviours of the effective centralite⁃stabilizer consumption reaction of propellants[J]. Journal of Hazardous Materials, 2007, 145(1⁃2): 45-50.

    • 26

      Bohn M A, Volk F. Aging behavior of propellants investigated by heat generation, stabilizer consumption and molar mass degradation [J]. Propellants, Explosives, Pyrotechnics1992, 17(4): 171-178.

    • 27

      Volk F, Bohn M A, Wunsch G. Determination of chemical and mechanical properties of double base propellants during aging [J]. Propellants, Explosives, Pyrotechnics, 1987, 12(3): 81-87.

    • 28

      Wise J, Gillen K T, Clough L. An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers [J]. Polymer Degradation and Stability, 1995, 49(3): 403-418.