摘要
为了研究甲酸/水混合溶剂对含能离子盐5,5′‑联四唑‑1,1′‑二氧二羟铵(TKX‑50)生长形貌的影响,采用分子动力学方法计算了TKX‑50晶面与甲酸/水混合溶剂之间的相互作用能。使用修正的附着能模型预测了TKX‑50在不同体积比的甲酸/水(1/4,1/3,1/2,1/1和2/1)混合溶剂中的生长形貌,并且模拟了温度对TKX‑50生长形貌的影响。结果表明,改变混合溶剂中甲酸的体积比,能够显著改变TKX‑50的晶习。当甲酸/水的体积比为1/2,温度为298 K时,TKX‑50的晶体形貌更接近球形。径向分布函数分析表明,TKX‑50的(1 1 0)晶面与混合溶剂分子间同时存在氢键、范德华力和静电力。
图文摘要
Crystal morphology predictions of TKX‑50 under different formic acid/water volume ratios and temperatures.
5,5′‑联四唑‑1,1′‑二氧二羟铵(TKX‑50)是一种四唑类含能离子盐,区别于传统的含能材料,TKX‑50分子结构中并没有硝基致爆基团,但是爆速和爆压等爆轰性能均超过了奥克托今(HMX
近年来,计算机科学的蓬勃发展,使得人们逐渐掌握了在原子分子水平上模拟晶体生长过程的手段。其中,分子动力学(MD)方法已经广泛地被应用于研究炸药晶体生长过程中的溶剂效应。Duan
AE模型是在周期性键链(PBC)理论基础上建立起来的模
(1) |
式中,Rhkl为相对生长速率;Eatt为晶面的附着能,kJ·mo
晶面附着能绝对值越高,晶面生长速率越快,晶面生长趋于减小或消失;晶面附着能绝对值越低,晶面生长速率越慢,在最终的晶体形态中越容易得到显露。通过评估晶体不同晶面的相对生长速率Rhkl,可以应用AE模型预测晶体的习性。然而,该模型的准确度有待商榷,因为AE模型忽略了外部结晶条件,并不能准确反映溶液结晶过程中晶体的实际生长过程。因此,对AE模型进行修正,修正后的附着能可以通过下式来计
(2) |
式中,E代表修正后的附着能,kJ·mo
(3) |
式中,Aacc为单位晶胞(h k l)面的溶剂可及面积,
ES代表溶剂对晶面的影响能力,kJ·mo
(4) |
式中,Abox是超晶面模型的面积,
(5) |
式中,Etot是溶剂层和晶面层的总能量,kJ·mo
TKX‑50的初始晶胞结构来源于单晶衍射数

a. Molecular structure

b. Unit cell structure
图1 TKX‑50的分子和晶胞结构图(C,H,O,N分别由灰色,白色,红色和蓝色表示)
Fig.1 Molecular and unit cell structures of TKX‑50(C, H, O, N are represented by gray, white , red, and blue colors, respectively)
使用AE模型,预测真空中TKX‑50的晶体形貌,确定形态学上重要的晶面。然后对TKX‑50的重要晶面进行切割,将其构造为3×3×3的周期性超晶胞结构模型,并对超晶胞结构模型进行优化。随后,构建溶剂层模型,溶剂体系为不同体积比的甲酸/水(1/4,1/3,1/2,1/1和2/1)混合溶剂。对溶剂层进行几何优化,将优化后的溶剂层沿着c轴与晶面层对接,构建晶体‑溶剂双层模型,以此来探究溶剂对晶体形貌的影响。晶面层与溶剂层之间的真空距离为3 Å,而溶剂层上方空出50 Å的真空距离,以便消除上下晶体表面的影响。对双层模型进行20000次的迭代优化,然后进行MD模拟,MD模拟期间要固定晶面层。MD模拟总时间设定为300.0 ps(300000 fs),时间步长为1 fs,系综选择NVT,温度由Andersen恒温器控
TKX‑50晶体单晶衍射数据与优化后的晶胞参数列于

图2 TKX‑50分子之间的相互作用
Fig.2 Interactions between TKX‑50 molecules
任晓婷

图3 TKX‑50在真空中的形貌预测图
Fig.3 Morphology prediction diagram of TKX‑50 in vacuum
TKX‑50分子的羟铵阳离子和联四唑阴离子通过强静电作用结合,不同的分子排布方式可能会导致不同的电荷分布,最终影响晶面与溶剂之间的相互作用。TKX‑50各个重要晶面的分子堆积结构见

图4 TKX‑50重要晶面的分子堆积结构
Fig.4 Molecular stacking structure of TKX‑50 habit faces
从前面的分析来看,(1 1 0)晶面由于其表面的结构特征,可以对溶质分子和溶剂分子产生较强的吸附能力。但是,晶面更容易吸附溶质分子还是溶剂分子,仅分析表面结构是不够的。溶液结晶是一个复杂的相转变过程。一方面,溶剂吸附于晶体降低了界面能,使晶面由光滑面转变为粗糙面,这会促进晶面的生长;另一方面,溶剂的优先吸附占据了晶面的生长活性位,溶质生长必须先克服溶剂的脱附能垒,这会阻碍晶面的生
溶质分子从溶液主体扩散到晶体表面并且长入晶体,促进了晶体的生长。然而,溶剂会优先占据晶面的生长活性位点,溶质分子吸附到晶面必须克服溶剂的脱附能

a. (0 1 1)

b. (1 1 )
图5 MD模拟 (0 1 1) 和 (1 1 ) 晶面上甲酸/水的分子分布
Fig.5 Formic acid/water molecular distributions of (0 1 1) and (1 1 ) crystal faces after MD simulation
前面根据

a. 1/4

b. 1/3

c. 1/2

d. 1/1

e. 2/1
图6 TKX‑50在不同体积比甲酸/水混合溶剂中预测的晶体形貌
Fig.6 Crystal morphology prediction of TKX‑50 in formic acid/water mixed solvent with different volume ratios

图7 TKX‑50在甲酸/水混合溶剂体积比为1/1,温度为298.15K时,重结晶得到的晶体形
Fig.7 Crystal morphology of TKX‑50 obtained by recrystallization from formic acid/water mixed solvent at temperature of 298.15K and volume ratio of 1/1
温度是影响晶体生长的重要因素之一,升高温度会使溶液中溶质分子的运动速率加快,更容易克服溶剂的脱附能垒,能促进晶体的生长。另外,温度的变化也会引起溶液过饱和度的变化,从而间接影响晶体的生长习性。因此可以通过调节温度来控制晶面的生长速率,进而影响晶体的形貌。选择甲酸/水的体积比为1/2,温度分别设置为298,308,318 K和328 K,执行MD模拟,模拟结果归纳在

a. 298 K

b. 308 K

c. 318 K

d. 328 K
图8 TKX‑50在不同温度下甲酸/水混合溶剂中预测的晶体形貌
Fig.8 Crystal morphology predictions of TKX‑50 in formic acid/water mixed solvent at different temperatures
径向分布函数(RDF)定义为给定一个粒子的坐标,距离这个粒子为r时出现其他粒子的概率,反映了体系中粒子的聚集特性。一般来说,溶剂与晶面之间的分子相互作用包括氢键(<3.1 Å),范德华力(3.1~5.0 Å)和静电力(>5.0 Å

图9 (1 1 0)晶面与甲酸/水混合溶剂体系中氧原子和氢原子之间的径向分布函数
Fig.9 The RDFs between oxygen atoms and hydrogen atoms in (1 1 0) crystal face and formic acid/water mixed solvent system
本研究利用AE模型预测了TKX‑50的真空形貌,通过修正的AE模型预测了TKX‑50晶体在甲酸/水中的晶体形貌,并且比较了甲酸/水体积比和温度对TKX‑50晶体形貌的影响,得到结论如下:
(1) TKX‑50真空中的重要生长面为(0 2 0)、(1 0 0)、(0 1 1)、(1 1 0)和 (1 1 ),纵横比为1.98。(0 1 1)面具有最强的形态重要性,(1 1 )面的生长速率最快,趋向于消失。此外,分析了晶面的特性,结果表明,(1 1 0)晶面最粗糙,因此(1 1 0)晶面可能会与溶剂分子产生较强的吸附作用。
(2) 甲酸/水混合溶剂分子对TKX‑50各晶面的吸附强度不同,导致TKX‑50各晶面生长速率不同。当甲酸/水的体积比和温度变化时,晶体形貌存在较为明显的差异,然而其中共同点都是(1 1 0)晶面均具有最大的形态重要性。当甲酸/水的体积比为1/2,温度为298 K时,TKX‑50的晶体形貌相对更接近球形,纵横比为2.91。
(3)径向分布函数分析表明,TKX‑50的(1 1 0)晶面与溶剂分子间同时存在氢键、范德华力和静电力。
(责编: 高 毅)
参考文献
Fischer N, Fischer D, Klapötke T M, et al. Pushing the limits of energetic materials‑the synthesis and characterization of dihydroxylammonium 5,5ʹ‑bistetrazole‑1,1ʹ‑diolate[J]. Journal of Materials Chemistry, 2012, 22(38): 20418-20422. [百度学术]
Fischer N, Thomas M,Klapötke T M, et al. Nitrogen‑Rich Salts of 1H,1′H‑5,5′‑bitetrazole‑1,1′‑diol: Energetic Materials with High Thermal Stability[J]. European Journal of Inorganic Chemistry, 2013, 2013(12):2167-2180. [百度学术]
Fischer N, Gao L, Klapötke T M, et al. Energetic salts of 5,5′‑bis(tetrazole‑2‑oxide) in a comparison to 5,5′‑bis(tetrazole‑1‑oxide) derivatives[J]. Polyhedron, 2013, 51(1):201-210. [百度学术]
毕福强, 肖川, 许诚, 等. 1,1ʹ‑二羟基‑5,5ʹ‑联四唑二羟铵盐的合成与性能[J]. 含能材料, 2014, 22(2): 272-273. [百度学术]
BI Fu‑qiang, XIAO Chuan, XU Cheng, et al. Synthesis and Properties of dihydroxylammonium 5,5ʹ‑bistetrazole‑1,1ʹ‑diolate Salt[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2014, 22(2): 272-273. [百度学术]
居平文, 凌亦飞, 谷玉凡, 等. TKX‑50合成方法改进[J]. 含能材料, 2015, 23(9):887-891. [百度学术]
JU Ping‑wen, LING Yi‑fei, GU Yu‑fan, et al. Improved synthesis of TKX‑50[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2015, 23(9): 887-891. [百度学术]
王杰群. 1,1′‑二羟基‑5,5′‑联四唑的合成及其含能离子盐的热分解研究[D]. 南京: 南京理工大学, 2016. [百度学术]
WANG Jie‑qun. Synthesis of 1,1ʹ‑dihydroxy‑5,5ʹ‑bitetrazole and its thermal decomposition of energetic ion salts[D]. Nanjing: Nanjing University of Science and Technology, 2016. [百度学术]
Armstrong R W, Ammon H L, Elban W L, et al. Investigation of hot spot characteristics in energetic crystals[J]. Thermochimica Acta, 2002, 384(1):303-313. [百度学术]
徐容, 廖龙渝, 王述存, 等. 重结晶方法对2,6‑二氨基‑3,5‑二硝基吡嗪‑1‑氧化物晶体特性及性能影响[J]. 兵工学报, 2015, 36(11): 2099-2103. [百度学术]
XU Rong, LIAO Long‑yu, WANG Shu‑cun, et al. Effects of recrystallization methods on crystal properties and properties of 2,6‑diamino‑3,5‑dinitropyrazine‑1‑oxide[J]. Acta Armamentarii, 2015, 36(11): 2099-2103. [百度学术]
周诚, 黄靖伦, 王伯周, 等. 溶剂对FOX‑7晶体相变和热性能的影响[J]. 火炸药学报, 2016, 39(4): 19-22. [百度学术]
ZHOU Cheng, HUANG Jing‑lun, WANG Bo‑zhou, et al. Effects of solvents on phase transition and thermal properties of FOX‑7 crystal[J]. Chinese Journal of Explosive and Propellants, 2016, 39 (4): 19-22. [百度学术]
许诚, 张敏, 赵娟, 等. 重结晶工艺对1,1′‑二羟基‑5,5′‑联四唑二羟铵盐热性能和机械感度的影响[J]. 含能材料, 2017, 25(5): 409-412. [百度学术]
XU Cheng, ZHANG Min, ZHAO Juan, et al. Influence of recrystallization process on the thermal properties and mechanical sensitivity of dihydroxylammonium 5,5ʹ‑bistetrazole‑1,1ʹ‑diolate[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25(5): 409-412. [百度学术]
Duan X H, Wei C X, Liu Y G, et al. A molecular dynamics simulation of solvent effects on the crystal morphology of HMX[J]. Journal of Hazardous Materials, 2010, 174(1‑3): 175-180. [百度学术]
Chen G, Chen C Y, Xia M Z, et al. A study of the solvent effect on the crystal morphology of hexogen by means of molecular dynamics simulations[J]. RSC Advances. 2015, 5(32): 25581-25589. [百度学术]
Lan G C, Jin S H, Li J, et al. The study of external growth environments on the crystal morphology of ε‑HNIW by molecular dynamics simulation[J]. Journal of Materials Science, 2018, 53(18): 12921-12936. [百度学术]
刘英哲, 毕福强, 来蔚鹏, 等. 5,5′‑联四唑‑1,1′‑二氧二羟铵在不同生长条件下的晶体形貌预测[J]. 含能材料, 2018, 26(3): 210-217. [百度学术]
LIU Ying‑zhe, BI Fu‑qiang, LAI Yu‑peng, et al. Prediction of crystal morphology of dihydroxylammonium 5,5ʹ‑bistetrazole‑1,1ʹ‑diolate under different growth conditions[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26 (3): 210-217. [百度学术]
Li D, Cao D L, Chen L Z, et al. Solubility of Dihydroxylammonium 5,5ʹ‑Bistetrazole‑1,1ʹ‑diolate in (formic acid, water) and their binary solvents from 298.15 K to 333.15 K at 101.1 kPa[J]. The Journal of Chemical Thermodynamics, 2019, 128: 10-18. [百度学术]
Hartman P, Bennema P. The attachment energy as a habit controlling factor: I. Theoretical considerations[J]. Journal of Crystal Growth, 1980, 49(1):145-156. [百度学术]
Hartman P. The attachment energy as a habit controlling factor: III. Application to corundum[J]. Journal of Crystal Growth, 1980, 49(1):166-170. [百度学术]
Berkovitch‑Yellin Z, Van Mil J, Addadi L, et al. Crystal morphology engineering by "tailor‑made" inhibitors: a new probe to fine intermolecular interactions[J]. Journal of the American Chemical Society, 1985, 107(11): 3111-3122. [百度学术]
Liu N, Li Y N, Zeman S, et al. Crystal morphology of 3,4‑bis(3‑nitrofurazan‑4‑yl)furoxan (DNTF) in a solvent system: molecular dynamics simulation and sensitivity study[J].Cryst Eng Comm, 2016, 18(16): 2843-2851. [百度学术]
Song L, Chen L Z, Wang J L, et al. Prediction of crystal morphology of 3,4‑Dinitro‑1H‑pyrazole (DNP) in different solvents[J]. Journal of Molecular Graphics & Modelling, 2017, 75: 62-70. [百度学术]
任晓婷, 张国涛, 何金选, 等. 1,1′‑二羟基‑5,5′‑联四唑二羟铵盐的晶形计算及控制[J]. 火炸药学报, 2016, 39(2):68-71. [百度学术]
REN Xiao‑ting, ZHANG Guo‑tao, HE Jin‑xuan, et al. Calculation and control of crystal morphology of dihydroxylammonium 5,5ʹ‑bistetrazole‑1,1ʹ‑diolate[J]. Chinese Journal of Explosive and Propellants, 2016, 39(2): 68-71. [百度学术]
Xiong S L, Chen S S, Jin S H, et al. Additives Effects on Crystal Morphology of Dihydroxylammonium 5,5ʹ‑Bistetrazole‑1,1ʹ‑diolate by Molecular Dynamics Simulations[J]. Journal of Energetic Materials, 2016, 34(4):384-394. [百度学术]
Karasawa N, Goddard W A I. Force fields, structures, and properties of poly(vinylidene fluoride) crystals[J]. Macromolecules, 1992, 25(26): 7268-7281. [百度学术]
Sangster M J L, Dixon M. Interionic potentials in alkali halides and their use in simulations of the molten salts[J]. Advances in Physics, 1976, 25(3): 247-342. [百度学术]
Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. Journal of Chemical Physics, 1980, 72(4): 2384-2393. [百度学术]
Kondrashova D,Valiullin R. Freezing and melting transitions under mesoscalic confinement: application of the Kossel–Stranski crystal‑growth model[J]. The Journal of Physical Chemistry C, 2015,119(8): 4312-4323. [百度学术]
杨芗钰. 溶液结晶中L‑丙氨酸晶体生长过程的分子模拟[D]. 上海: 华东理工大学, 2013. [百度学术]
YANG Xiang‑yv. Growth of L‑alanine crystal in aqueous solution: a molecular modeling study[D]. Shanghai: East China University of Science and Technology, 2013. [百度学术]
Chen F, Zhou T, Li J, et al. Crystal morphology of dihydroxylammonium 5,5ʹ‑bistetrazole‑1,1ʹ‑diolate (TKX‑50) under solvents system with different polarity using molecular dynamics[J]. Computational Materials Science, 2019, 168: 48-57. [百度学术]
Liu Y Z, Lai W P, Ma Y D, et al. Face‑Dependent Solvent Adsorption: A Comparative Study on the Interfaces of HMX Crystal with Three Solvents[J]. The Journal of Physical Chemistry B, 2017, 121(29): 7140-7146. [百度学术]
Liu Y Z, Lai W P, Yu T, et al. Understanding the growth morphology of explosive crystals in solution: insights from solvent behavior at the crystal surface[J]. RSC Advances, 2017, 7(3): 1305-1312. [百度学术]
Li J, Jin S H, Lan G C, et al. Morphology control of 3‑nitro‑1,2,4‑triazole‑5‑one (NTO) by molecular dynamics simulation[J]. Cryst Eng Comm, 2018, 20: 6252-6260. [百度学术]