CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
胡宏伟, 宋浦, 赵省向, 等. 有限空间内部爆炸研究进展[J]. 含能材料, 2013, 21(4): 539-546.
HUHong‑wei, SONGPu, ZHAOSheng‑xiang, et al. Progress in explosion in confined space[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2013,21(4): 539-546.
参考文献 2
胡宏伟, 肖川, 李丽, 等. 有限空间炸药装药内爆炸威力的评估方法综述[J]. 火炸药学报, 2013, 36(4): 1-6.
HUHong‑wei, XIAOChuan, LILi, et al. Review on evaluation methods of blast power in confined space[J]. Chinese Journal of Explosives & Propellants, 2013, 36(4): 1-6.
参考文献 3
段晓瑜, 郭学永, 焦清介, 等. 铝粉粒度和铝氧比对含铝炸药在密闭空间内爆炸特性的影响[J]. 含能材料, 2017, 25(6):472-478.
DUANXiao‑yu, GUOXue‑yong, JIAOQing‑jie, et al. Effect of aluminum size and content on explosion performance of aluminized explosives in confined space[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(6):472-478.
参考文献 4
张玉磊, 苏建军, 李芝绒, 等. TNT内爆炸准静态压力特性[J]. 爆炸与冲击, 2018, 38(6): 1429-1434.
ZHANGYu‑lei, SUJian‑jun, LIZhi‑rong, et al. Quasi‑static pressure characteristic of TNT′s internal explosion[J]. Explosion and Shock Waves, 2018,38 (6): 1429-1434.
参考文献 5
金朋刚, 郭炜, 王建灵, 等. 密闭条件下TNT的爆炸压力特性[J]. 火炸药学报, 2013, 36(3): 39-41.
JINPeng‑gang, GUOWei, WANGJian‑ling, et al. Explosion pressure characteristics of TNT under closed condition[J]. Chinese Journal of Explosives and Propellants, 2013,36(3):39-41.
参考文献 6
刘文祥, 张德志, 钟方平, 等. 球形爆炸容器内炸药爆炸形成的准静态气体压力[J]. 爆炸与冲击, 2018, 38(5): 1045-1050.
LIUWen‑xiang, ZHANGDe‑zhi, ZHONGFang‑ping, et al. Quasi‑static gas pressure generated by explosive charge blasting in a spherical explosion containment vessel[J]. Explosion and Shock Waves, 2018, 38(5): 1045-1050.
参考文献 7
孙琦, 董奇, 杨沙, 等. 内爆炸准静态压力对球形容器弹性动态响应的影响研究[J]. 含能材料, DOI:10.11943/CJEM2019026.
SUNQi, DONGQi, YANGSha, et al. Effects of quasi‑static pressure on the dynamic elastic response of spherical shell under internal Blast[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), DOI:10.11943/CJEM2019026.
参考文献 8
BakerW E. The elastic‑plastic response of thin spherical shells to internal blasting loading[J]. Journal of Applied Mechanics, 1960, 24(1): 139-144.
参考文献 9
诺曼·琼斯. 结构冲击(第二版)[M]. 北京: 国防工业出版社,2018: 145-159.
JonesN. Structural Impact (Second Edition)[M]. Beijing: National Defense Industry Press, 2018: 145-159.
参考文献 10
Livermore Software Technology Corporation[CP]. LS‑DYNA Keyword User′s Manual (Version 971, 2007.
参考文献 11
DongQ, LiQ M, ZhengJ Y. Interactive mechanisms between the internal blast loading and the dynamic elastic response of spherical containment vessels[J]. International Journal of Impact Engineering, 2010, 31(4): 349-358.
目录 contents

    摘要

    利用单自由度模型对球壳弹塑性动态响应过程进行力学分析并推导出解析解,得到等向强化双线性弹塑性球壳在考虑准静态压力的内爆炸载荷作用下径向位移响应公式,解析结果与数值模拟结果吻合较好。对屈服发生于首个脉冲阶段和准静态压力阶段的两种情况进行分析,获得了准静态压力对球壳弹塑性动态响应的影响规律。研究发现,若屈服发生于准静态压力阶段,进入屈服阶段时刻会受准静态压力幅值影响,随准静态压力的增大而减小;无论屈服发生于哪个阶段,最大位移均出现于准静态压力阶段,且出现时刻有明显差异,最大位移值随着准静态压力幅值的增大而显著增大;与弹性响应结果相比,在弹塑性响应分析中准静态压力幅值对最大位移的影响更为显著。研究表明,在炸药的威力评估工作中,针对准静态压力效应采取结构弹塑性响应分析更有实用价值和指导意义。

    Abstract

    Based on the single degree of freedom model, the dynamic elastic‑plastic response of a spherical shell subjected to internal impulse with quasi‑static pressure is obtained. Analytical solutions agree well with numerical simulation results. The solutions can be divided into two situations by confirming whether the yield point occurs in first triangle impulse or the duration of quasi‑static pressure. Effects of quasi‑static pressure can be studied in two different situations. If the yield occurs in the quasi‑static pressure phase, the time when yield occurs is affected by the quasi‑static pressure and decreases with the increase of the quasi‑static pressure. Whenever the yield occurs, the maximum displacement occurs in the quasi‑static phase, and the time reaching maximum displacement is quite different. The value of maximum displacement increases significantly with the increase of the quasi‑static pressure. Compared with the elastic situation, the quasi‑static pressure has a more obvious effect in the elastic‑plastic response analysis. Therefore, the elastic‑plastic dynamic response analysis is more valuable and instructive for the evaluation of quasi‑static pressure.

    Graphic Abstract

    图文摘要

    Based on the previous research on effects of quasi‑static pressure on the elastic dynamic response of the spherical shell, the research can be extended to a complex elastic‑plastic dynamic response for isotropic hardening plastic material model. Compared with the LS‑DYNA numerical simulation results, the analytical solution turns out to be available. By the proposed analytical solution, effects of quasi‑static pressure on elastic‑plastic dynamic response are studied and some brief inclusions are proposed.

  • 1 引 言

    爆炸容器作为一类特殊密封压力容器,可限制一定量爆炸物的爆炸效应,对容器内部的爆炸过程进行有效约束。在研究有限空间内爆炸准静态压力对结构响应的影响[1,2,3,4,5,6,7],常常会使用爆炸容器、爆炸塔等设备进行爆炸试验和威力评估。爆炸容器按照设计准则可分为单次使用与多次使用两种类型。其中,单次使用型爆炸容器允许材料发生一定的塑性变形,但不能发生破坏;多次使用型爆炸容器的防护当量须把容器材料限制于弹性极限内,不能产生塑性变形。

    Baker[8]针对薄球壳在内部三角脉冲冲击载荷作用下的动态冲击响应过程,提出了单自由度运动方程,获得了薄球壳受冲击载荷后的位移响应的弹性和双线性弹塑性解析解,但未考虑准静态压力的影响。Jones[9]同样利用单自由度模型对薄球壳的弹塑性动态响应过程进行了推导,获得了单一矩形脉冲作用下薄球壳的弹性‑理想塑性、理想刚塑性响应解析解,但仅考虑弹塑性屈服发生于脉冲结束后的情况,未考虑屈服发生在脉冲作用阶段的情况。结合前人工[8,9]与前期准静态压力对球壳弹性响应的影响研[7],本研究提出考虑准静态压力的薄球壳双线性弹塑性动态响应的解析解,对前人工作进行了一定的补充和完善,并利用该方法研究了内爆炸准静态压力对球形容器弹塑性动态响应的影响。

  • 2 力学模型分析

  • 2.1 研究模型

    基于之前对球壳在内爆炸载荷作用下弹性响应过程的研[7],建立考虑准静态压力的简化载荷的表达如式(1)。

    p(t)=pm1(1-tt1)   (0tt1)pm2                    (t>t1)
    (1)

    式中,pm1为首个脉冲压力峰值,t1为首个脉冲作用时间,pm2为准静态压力。当不考虑准静态压力时,令pm2=0即可。

    在承受来自容器中心的爆炸冲击载荷时,球形容器外壁各处应力应变状态相似,球壳的动态响应过程简化为在径向位移上的单一自由度受迫振动问[8]。此情况下,由于冲击载荷沿径向分布作用于球壳内表面,因此可利用单自由度运动模型对动态响应过程进行分析,得出位移随时间变化的解析解。本研究与前期球壳弹性响应研究中使用相同尺寸的球壳模[7]r为球壳中线半径,41 mm;h为壳体厚度,2 mm。并选用如图1所示的等向强化的双线性弹塑性材料,其材料属性如下:E为弹性模量,200 GPa;Et为切线模量,10 GPa;σs为屈服强度,200 MPa;v为泊松比,0.3;ρ为密度,7830 kg·m‑3图1σε表示应力和应变,σsεs为屈服应力和应变,σmax为球壳径向位移达到最大值时的应力。

    图1
                            等向强化的双线性弹塑性模型

    图1 等向强化的双线性弹塑性模型

    Fig.1 Biolinear elastic‑plastic model with isotropic hardening

  • 2.2 响应过程分析

    前期研究中,已得到弹性状态下球壳受考虑准静态压力冲击载荷作用时的动态响应的解如式(2[7]

    ur=pm1ρhω2(1-tt1+sinωtωt1-cosωt)            (0tt1)C1cosω(t-t1)+C2sinω(t-t1)+pm2ρhω2   (t>t1)C1=1ρhω2[pm1(sinωt1ωt1-cosωt1)-pm2] C2=pm1ρhω2(cosωt1ωt1+sinωt1-1ωt1)
    (2)

    式中,ω为振动频率,振动周期T=2π/ω

    在进入塑性阶段后,球壳表面仍有σθ=σφ=σ,应力可表示为:

    σ=σs+Et(ε-εs)=σs+Et(urr-εs)
    (3)

    故球壳受内部冲击载荷时,进入塑性阶段后单自由度运动方程应表示[8]

    d2urdt2+ ωp2ur=p(t)ρh-2(σs-Etεs)ρr        ωp2=2Etρr2
    (4)

    设屈服发生时刻为ts,则有如下两种分析情况。

    (1) 屈服发生于首个脉冲阶段,即0<tst1

    a. 在弹性段,式(2)仍然适用,直至应力σ达到屈服应力σs,此时0<tts

    b. 当tstt1时,设t′= t - ts,将初值条件式(5)代入塑性阶段SDoF方程式(4)可解得该阶段位移响应的解如式(6)。

    t'=t-ts=0,   ur(t'=0)=urs,  u˙r(t'=0)=u˙rs
    (5)
    ur=u˙rs+pm1ρhωp2t1ωpsinωp(t-ts)+{urs-1ρωp2[pm1h-pm1tsht1-2(σs-Etεs)r]}cosωp(t-ts)-pm1ρhωp2t1(t-ts)+1ρωp2[pm1h-pm1tsht1-2(σs-Etεs)r](ts<tt1)
    (6)

    式中,urs u˙rs 为进入塑性阶段时刻的位移值和速度值,即式(2)中代入tts时的解。

    c. 当tt1时,设t″=t-t1,式(4)可简化为式(7)

    d2urdt2+ωp2ur=pm2ρh-2(σs-Etεs)ρr        ωp2=2Etρr2
    (7)

    代入初值条件式(8)可得该阶段位移响应的解如式(9)。

    t=t-t1=0,  ur(t=0)=ur1,  u˙r(t=0)=u˙r1
    (8)
    ur=u˙r1ωpsinωp(t-t1)+{ur1-1ρωp2[pm2h-2(σs-Etεs)r]}cosωp(t-t1)+1ρωp2[pm2h-2(σs-Etεs)r]     (t1<t)
    (9)

    式中,ur1u˙r1t1时刻的位移值和速度值,即式(6)中代入tt1时的解。

    (2) 屈服发生于准静态压力作用期间,即tst1

    a. 当0<tt1时处于弹性段,位移响应的解适用式(2);

    b. 当t1tts时处于弹性段,式(2)仍然适用,直至应力σ达到屈服应力σs

    c. 当tts时,设t‴=t-ts,塑性阶段SDoF方程式(4)同样可以简化为式(7),将初值条件式(10)代入可解得该阶段位移响应的解如式(11)

    t=t-ts=0, ur(t=0)=urs, u˙r(t=0)=u˙rs
    (10)
    ur=u˙rsωpsinωp(t-ts)+{urs-1ρωp2[pm2h-2(σs-Etεs)r]}cosωp(t-ts)+1ρωp2[pm2h-2(σs-Etεs)r]    (ts<t)
    (11)

    式中,ursu˙rs为进入塑性阶段时刻的位移值和速度值,即式(2)中代入tts时的解。

    需要注意的是,两种情况中当位移响应达到最大值后回弹的过程,成为弹性等幅振动过程。设首个位移响应最大值出现时刻为tmax,位移最大值为ur max,则后续弹性等幅振动的运动方程满足弹性情况下的SDoF运动方[8],其初值条件为t=tmax,ur(tmax)=ur max,u˙r(tmax)=0

  • 3 数值模拟校验

    本研究中使用LS‑DYNA[10]对球壳内部冲击载荷下的弹塑性动态响应过程进行数值模拟,并与解析解结果进行对比。本研究中使用的有限元模型与弹性响应研究中的1/8球壳模[7]相同,但材料属性设置为MAT_PLASTIC_KINEMATIC,并在K文件中设置BETA=1表示等向强化,材料参数如2.1所示。冲击载荷按照简化载荷曲线式(1)进行定义,计算时长150 μs,计算步长0.1 μs。

    假定三种不同冲击载荷Load 1~Load 3见表1,其中Load 1情况下最大位移出现于准静态压力阶段,Load 2、Load 3情况最大位移出现于首个脉冲阶段,代入解析解公式进行计算。将计算得到的动态响应过程特征值,如最大位移出现时刻、最大位移值和振幅,与LS‑DYNA数值模拟结果进行对比验证。载荷Load 1~Load 3的对比结果如图2表2所示。图2ur为径向位移,mm;表2tmax为达到径向最大位移时刻,μs;ur max为径向最大位移值,mm;amplitude为后续阶段振幅,mm;εr为理论解与数值模拟结果的相对误差。可以发现解析解公式与LS‑DYNA数值模拟结果符合情况较好,公式的准确性得到了数值模拟的验证。

    表1 冲击载荷算例

    Table 1 Examples of impulsive loading

    impulsive loadingpm1 / MPat1 / μspm2 / MPa
    Load 18002.530
    Load 22001030
    Load 3200100

    NOTE: pm1 is peak pressure of the first triangle impulse. t1 is the time duration of the first triangle impulse. pm2 is the value of quasi‑static pressure.

    图2
                            位移响应解析解与LS‑DYNA数值模拟结果对比

    图2 位移响应解析解与LS‑DYNA数值模拟结果对比

    Fig.2 Comparison between analytical solution and LS‑DYNA simulation

    表2 解析解结果与LS‑DYNA数值模拟结果对比

    Table 2 Comparison between analytical solution and LS‑DYNA simulation

    Impulsive loadingtmax / μsεr / %urmax / mmεr / %amplitude / mmεr / %
    Load 1LS‑DYNA35.2-0.851.530-0.130.083-2.41
    Analytical solution35.51.5320.085
    Load 2LS‑DYNA38.51.301.252-1.520.0651.54
    Analytical solution38.01.2710.064
    Load 3LS‑DYNA25.5-3.920.8231.340.0842.38
    Analytical solution26.50.8120.082

    NOTE: tmax is the time reaching maximum displacement. ur max is the value of maximum displacement. εr is the difference between LS‑DYNA simulation and analytical solution results.

  • 4 准静态压力的影响

    参照前期研[7,11],利用解析解分析准静态压力对球壳弹塑性动态响应过程的影响。在图3~图7中,ur max指整个响应阶段位移最大值,amplitude指塑性卸载后弹性振动的振幅值,urmin为后续弹性振动中位移最小值。表3表4为各算例中屈服时刻ts,首个最大位移出现时刻tmax,最大位移值urmax,后续弹性振动阶段振幅值amplitude的计算结果。

    html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F004.png

    a. dynamic response

    html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F005.png

    b. parameters related to pm2

    图3 位移响应曲线及不同准静压的关键计算参数(pm1=400 MPa,t1=5 μs)

    Fig.3 Dynamic response and key calculated parameters at different quasi‑static pressure (pm1=400 MPa,t1=5 μs)

    html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F016.png

    a. dynamic response

    html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F017.png

    b. parameters related to pm2

    图7 位移响应曲线及不同准静压的关键计算参数(pm1=400 MPa,t1=2.5 μs)

    Fig.7 Dynamic response and key calculated parameters at different quasi‑static pressure (pm1=400 MPa,t1=2.5 μs)

    表3 屈服发生于三角脉冲阶段动态响应的参数计算值

    Table 3 Dynamic response parameters of yielding occurring in triangle impulse

    pm1

    / MPa

    t1

    / μs

    pm2

    / MPa

    ts

    / μs

    tmax

    / μs

    ur max

    / mm

    amplitude

    / mm

    1002004.029.50.7380.078
    304.040.00.9260.044
    604.064.01.7610.047
    2001003.026.50.8120.082
    303.038.01.2710.064
    603.053.02.2410.078
    400502.025.00.8670.087
    302.036.51.4180.072
    602.048.52.4970.094

    NOTE: pm1 is peak pressure of the first triangle impulse. t1 is the time duration of the first triangle impulse. pm2 is the value of quasi‑static pressure. ts is the time when yield occurs. tmax is the time reaching maximum displacement. urmax is the value of maximum displacement.

    表4 屈服发生于准静态压力阶段动态响应的参数计算值

    Table 4 Dynamic response parameters of yielding occurring in quasi‑static pressure phase

    pm1

    / MPa

    t1

    / μs

    pm2

    / MPa

    ts

    / μs

    tmax

    / μs

    ur max

    / mm

    amplitude

    / mm

    8002.503.524.00.9090.090
    303.035.51.5320.085
    603.046.52.6380.104
    4002.504.019.50.3390.050
    303.539.50.9180.043
    603.054.02.2100.076

    NOTE: pm1 is peak pressure of the first triangle impulse. t1 is the time duration of the first triangle impulse. pm2 is the value of quasi‑static pressure. ts is the time when yield occurs. tmax is the time reaching maximum displacement. ur max is the value of maximum displacement.

  • 4.1 屈服发生于三角脉冲阶段

    在保证首个脉冲冲量不变的情况下,针对屈服时刻发生于首个脉冲作用期间的情况,进行了图3~图5pm1=400 MPa,t1=5 μs、 pm1=200 MPa,t1=10 μs和pm1=100 MPa,t1=20 μs三种情况在不同准静态压力pm2水平下的分析。图3a、图4a和图5a表示不同载荷情况在pm2=0、30、60 MPa三种准静态压力下计算得到的位移响应曲线,图3b、图4b和图5b则是将pm2作为变量,得到ur=ur(pm2)形式下径向位移响应最大值、塑性卸载后弹性振动位移最小值和振幅值关于pm2变化的曲线。

    html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F010.png

    a. dynamic response

    html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F011.png

    b. parameters related to pm2

    图5 位移响应曲线及不同准静压的关键计算参数(pm1=100 MPa,t1=20 μs)

    Fig.5 Dynamic response and key calculated parameters at different quasi‑static pressure (pm1=100 MPa,t1=20 μs)

    html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F007.png

    a. dynamic response

    html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F008.png

    b. parameters related to pm2

    图4 位移响应曲线及不同准静压的关键计算参数(pm1=200 MPa,t1=10 μs)

    Fig.4 Dynamic response and key calculated parameters at different quasi‑static pressure (pm1=200 MPa,t1=10 μs)

    算例结果(图3~图5表3)显示,在不同准静态压力幅值下,屈服时刻不受准静态压力影响,最大位移出现在准静态压力段,随着准静态压力的增大,最大位移出现时刻变大;最大位移幅值受到准静态压力的影响,随着准静态压力幅值的增大而增大;后续弹性振动阶段位移最小值受准静态压力影响也较为显著,随准静态压力幅值的增大而增大。

  • 4.2 屈服发生于准静态压力阶段

    在首个脉冲冲量作用时间t1较小的情况下,屈服时刻发生于准静态压力作用期间,进行了如图6图7pm1=800 MPa,t1=2.5 μs和pm1=400 MPa,t1=2.5 μs两种情况在不同准静态压力pm2水平下的分析。图6a、7a表示不同载荷情况在pm2=0、30、60 MPa三种准静态压力下位移响应曲线,图6b、7b为径向位移响应最大值、塑性卸载后弹性振动位移最小值和振幅值关于pm2变化的曲线。

    html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F013.png

    a. dynamic response

    html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F014.png

    b. parameters related to pm2

    图6 位移响应曲线及不同准静压的关键计算参数(pm1=800 MPa,t1=2.5 μs)

    Fig.6 Dynamic response and key calculated parameters at different quasi‑static pressure (pm1=800 MPa,t1=2.5 μs)

    算例结果(图6~图7表4)显示,由于屈服发生于准静态压力阶段,屈服时刻会受到准静态压力幅值影响,随准静态压力的增大而减小;除此之外的结果与屈服发生于三角脉冲阶段情况类似,最大位移出现在准静态压力作用期间,其出现时刻随着准静态压力的增大而变大,最大位移幅值随准静态压力幅值的增大而增大;后续弹性振动阶段位移最小值受准静态压力影响较为显著,随准静态压力幅值的增大而增大。

    与前期获得的弹性响应结[7]相比较,弹性响应和弹塑性响应结果的不同之处主要表现为弹塑性响应分析中,准静态压力幅值对最大位移的影响更为显著;采用与前期研[7]中类似的能量分析方法可以发现,弹性响应和弹塑性响应中,在后续阶段即使准静态压力作用时间很长、输入冲量很大,但后续振动阶段的最大变形幅度不受准静态压力影响。

  • 5 结 论

    本研究获得了考虑准静态压力的内爆炸载荷作用下等向强化双线性弹塑性球形容器动态响应过程的分析模型和解析解,并得到了数值模拟结果的验证。通过对结构响应过程进行分析,获得了准静态压力对球形容器弹塑性动态响应的影响。研究结果表明:

    (1)若屈服发生于准静态压力阶段,屈服时刻会受准静态压力幅值影响,随准静态压力的增大而减小。无论屈服发生于哪个阶段,在不同准静态压力幅值下,最大位移出现时刻均有明显差异,最大位移值随着准静态压力幅值的增大而显著增大。

    (2)弹性响[7]和弹塑性响应中,后续阶段即使准静态压力作用时间很长、输入冲量很大,但后续振动阶段的最大变形幅度并不受影响,即准静态压力幅值大小对响应过程起主要作用,而非准静态压力的总冲量或作用时长。弹塑性响应过程中准静态压力幅值对最大位移的影响更为显著。在炸药的威力评估工作中,针对准静态压力效应采取结构弹塑性响应分析更有实用价值和指导意义。

    (责编: 高 毅)

  • 参考文献

    • 1

      胡宏伟, 宋浦, 赵省向, 等. 有限空间内部爆炸研究进展[J]. 含能材料, 2013, 21(4): 539-546.

      HU Hong‑wei, SONG Pu, ZHAO Sheng‑xiang, et al. Progress in explosion in confined space[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2013,21(4): 539-546.

    • 2

      胡宏伟, 肖川, 李丽, 等. 有限空间炸药装药内爆炸威力的评估方法综述[J]. 火炸药学报, 2013, 36(4): 1-6.

      HU Hong‑wei, XIAO Chuan, LI Li, et al. Review on evaluation methods of blast power in confined space[J]. Chinese Journal of Explosives & Propellants, 2013, 36(4): 1-6.

    • 3

      段晓瑜, 郭学永, 焦清介, 等. 铝粉粒度和铝氧比对含铝炸药在密闭空间内爆炸特性的影响[J]. 含能材料, 2017, 25(6):472-478.

      DUAN Xiao‑yu, GUO Xue‑yong, JIAO Qing‑jie, et al. Effect of aluminum size and content on explosion performance of aluminized explosives in confined space[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(6):472-478.

    • 4

      张玉磊, 苏建军, 李芝绒, 等. TNT内爆炸准静态压力特性[J]. 爆炸与冲击, 2018, 38(6): 1429-1434.

      ZHANG Yu‑lei, SU Jian‑jun, LI Zhi‑rong, et al. Quasi‑static pressure characteristic of TNT′s internal explosion[J]. Explosion and Shock Waves, 2018,38 (6): 1429-1434.

    • 5

      金朋刚, 郭炜, 王建灵, 等. 密闭条件下TNT的爆炸压力特性[J]. 火炸药学报, 2013, 36(3): 39-41.

      JIN Peng‑gang, GUO Wei, WANG Jian‑ling, et al. Explosion pressure characteristics of TNT under closed condition[J]. Chinese Journal of Explosives and Propellants, 2013,36(3):39-41.

    • 6

      刘文祥, 张德志, 钟方平, 等. 球形爆炸容器内炸药爆炸形成的准静态气体压力[J]. 爆炸与冲击, 2018, 38(5): 1045-1050.

      LIU Wen‑xiang, ZHANG De‑zhi, ZHONG Fang‑ping, et al. Quasi‑static gas pressure generated by explosive charge blasting in a spherical explosion containment vessel[J]. Explosion and Shock Waves, 2018, 38(5): 1045-1050.

    • 7

      孙琦, 董奇, 杨沙, 等. 内爆炸准静态压力对球形容器弹性动态响应的影响研究[J]. 含能材料, DOI:10.11943/CJEM2019026.

      SUN Qi, DONG Qi, YANG Sha, et al. Effects of quasi‑static pressure on the dynamic elastic response of spherical shell under internal Blast[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), DOI:10.11943/CJEM2019026.

    • 8

      Baker W E. The elastic‑plastic response of thin spherical shells to internal blasting loading[J]. Journal of Applied Mechanics, 1960, 24(1): 139-144.

    • 9

      诺曼·琼斯. 结构冲击(第二版)[M]. 北京: 国防工业出版社,2018: 145-159.

      Jones N. Structural Impact (Second Edition)[M]. Beijing: National Defense Industry Press, 2018: 145-159.

    • 10

      Livermore Software Technology Corporation[CP]. LS‑DYNA Keyword User′s Manual (Version 971, 2007.

    • 11

      Dong Q, Li Q M, Zheng J Y. Interactive mechanisms between the internal blast loading and the dynamic elastic response of spherical containment vessels[J]. International Journal of Impact Engineering, 2010, 31(4): 349-358.

孙琦

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999 , China

邮 箱:sunqi950320@foxmail.com

作者简介:孙琦(1995-),男,硕士研究生,主要从事材料结构的爆炸冲击响应研究。e‑mail:sunqi950320@foxmail.com

董奇

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999 , China

角 色:通讯作者

Role:Corresponding author

邮 箱:dongqi@caep.cn

作者简介:董奇(1982-),男,研究员,主要从事爆炸力学研究。e‑mail:dongqi@caep.cn

杨沙

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999 , China

张刘成

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999 , China

html/hncl/CJEM2019078/media/75cecc38-3d03-48f3-80c6-0ecf16154501-image001.png
impulsive loadingpm1 / MPat1 / μspm2 / MPa
Load 18002.530
Load 22001030
Load 3200100
html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F002.png
Impulsive loadingtmax / μsεr / %urmax / mmεr / %amplitude / mmεr / %
Load 1LS‑DYNA35.2-0.851.530-0.130.083-2.41
Analytical solution35.51.5320.085
Load 2LS‑DYNA38.51.301.252-1.520.0651.54
Analytical solution38.01.2710.064
Load 3LS‑DYNA25.5-3.920.8231.340.0842.38
Analytical solution26.50.8120.082
html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F004.png
html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F005.png
html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F016.png
html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F017.png

pm1

/ MPa

t1

/ μs

pm2

/ MPa

ts

/ μs

tmax

/ μs

ur max

/ mm

amplitude

/ mm

1002004.029.50.7380.078
304.040.00.9260.044
604.064.01.7610.047
2001003.026.50.8120.082
303.038.01.2710.064
603.053.02.2410.078
400502.025.00.8670.087
302.036.51.4180.072
602.048.52.4970.094

pm1

/ MPa

t1

/ μs

pm2

/ MPa

ts

/ μs

tmax

/ μs

ur max

/ mm

amplitude

/ mm

8002.503.524.00.9090.090
303.035.51.5320.085
603.046.52.6380.104
4002.504.019.50.3390.050
303.539.50.9180.043
603.054.02.2100.076
html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F010.png
html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F011.png
html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F007.png
html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F008.png
html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F013.png
html/hncl/CJEM2019078/alternativeImage/75cecc38-3d03-48f3-80c6-0ecf16154501-F014.png

图1 等向强化的双线性弹塑性模型

Fig.1 Biolinear elastic‑plastic model with isotropic hardening

表1 冲击载荷算例

Table 1 Examples of impulsive loading

图2 位移响应解析解与LS‑DYNA数值模拟结果对比

Fig.2 Comparison between analytical solution and LS‑DYNA simulation

表2 解析解结果与LS‑DYNA数值模拟结果对比

Table 2 Comparison between analytical solution and LS‑DYNA simulation

图3 位移响应曲线及不同准静压的关键计算参数(pm1=400 MPa,t1=5 μs) -- a. dynamic response

Fig.3 Dynamic response and key calculated parameters at different quasi‑static pressure (pm1=400 MPa,t1=5 μs) -- a. dynamic response

图3 位移响应曲线及不同准静压的关键计算参数(pm1=400 MPa,t1=5 μs) -- b. parameters related to pm2

Fig.3 Dynamic response and key calculated parameters at different quasi‑static pressure (pm1=400 MPa,t1=5 μs) -- b. parameters related to pm2

图7 位移响应曲线及不同准静压的关键计算参数(pm1=400 MPa,t1=2.5 μs) -- a. dynamic response

Fig.7 Dynamic response and key calculated parameters at different quasi‑static pressure (pm1=400 MPa,t1=2.5 μs) -- a. dynamic response

图7 位移响应曲线及不同准静压的关键计算参数(pm1=400 MPa,t1=2.5 μs) -- b. parameters related to pm2

Fig.7 Dynamic response and key calculated parameters at different quasi‑static pressure (pm1=400 MPa,t1=2.5 μs) -- b. parameters related to pm2

表3 屈服发生于三角脉冲阶段动态响应的参数计算值

Table 3 Dynamic response parameters of yielding occurring in triangle impulse

表4 屈服发生于准静态压力阶段动态响应的参数计算值

Table 4 Dynamic response parameters of yielding occurring in quasi‑static pressure phase

图5 位移响应曲线及不同准静压的关键计算参数(pm1=100 MPa,t1=20 μs) -- a. dynamic response

Fig.5 Dynamic response and key calculated parameters at different quasi‑static pressure (pm1=100 MPa,t1=20 μs) -- a. dynamic response

图5 位移响应曲线及不同准静压的关键计算参数(pm1=100 MPa,t1=20 μs) -- b. parameters related to pm2

Fig.5 Dynamic response and key calculated parameters at different quasi‑static pressure (pm1=100 MPa,t1=20 μs) -- b. parameters related to pm2

图4 位移响应曲线及不同准静压的关键计算参数(pm1=200 MPa,t1=10 μs) -- a. dynamic response

Fig.4 Dynamic response and key calculated parameters at different quasi‑static pressure (pm1=200 MPa,t1=10 μs) -- a. dynamic response

图4 位移响应曲线及不同准静压的关键计算参数(pm1=200 MPa,t1=10 μs) -- b. parameters related to pm2

Fig.4 Dynamic response and key calculated parameters at different quasi‑static pressure (pm1=200 MPa,t1=10 μs) -- b. parameters related to pm2

图6 位移响应曲线及不同准静压的关键计算参数(pm1=800 MPa,t1=2.5 μs) -- a. dynamic response

Fig.6 Dynamic response and key calculated parameters at different quasi‑static pressure (pm1=800 MPa,t1=2.5 μs) -- a. dynamic response

图6 位移响应曲线及不同准静压的关键计算参数(pm1=800 MPa,t1=2.5 μs) -- b. parameters related to pm2

Fig.6 Dynamic response and key calculated parameters at different quasi‑static pressure (pm1=800 MPa,t1=2.5 μs) -- b. parameters related to pm2

image /

无注解

pm1 is peak pressure of the first triangle impulse. t1 is the time duration of the first triangle impulse. pm2 is the value of quasi‑static pressure.

无注解

tmax is the time reaching maximum displacement. ur max is the value of maximum displacement. εr is the difference between LS‑DYNA simulation and analytical solution results.

无注解

无注解

无注解

无注解

pm1 is peak pressure of the first triangle impulse. t1 is the time duration of the first triangle impulse. pm2 is the value of quasi‑static pressure. ts is the time when yield occurs. tmax is the time reaching maximum displacement. urmax is the value of maximum displacement.

pm1 is peak pressure of the first triangle impulse. t1 is the time duration of the first triangle impulse. pm2 is the value of quasi‑static pressure. ts is the time when yield occurs. tmax is the time reaching maximum displacement. ur max is the value of maximum displacement.

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      胡宏伟, 宋浦, 赵省向, 等. 有限空间内部爆炸研究进展[J]. 含能材料, 2013, 21(4): 539-546.

      HU Hong‑wei, SONG Pu, ZHAO Sheng‑xiang, et al. Progress in explosion in confined space[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2013,21(4): 539-546.

    • 2

      胡宏伟, 肖川, 李丽, 等. 有限空间炸药装药内爆炸威力的评估方法综述[J]. 火炸药学报, 2013, 36(4): 1-6.

      HU Hong‑wei, XIAO Chuan, LI Li, et al. Review on evaluation methods of blast power in confined space[J]. Chinese Journal of Explosives & Propellants, 2013, 36(4): 1-6.

    • 3

      段晓瑜, 郭学永, 焦清介, 等. 铝粉粒度和铝氧比对含铝炸药在密闭空间内爆炸特性的影响[J]. 含能材料, 2017, 25(6):472-478.

      DUAN Xiao‑yu, GUO Xue‑yong, JIAO Qing‑jie, et al. Effect of aluminum size and content on explosion performance of aluminized explosives in confined space[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(6):472-478.

    • 4

      张玉磊, 苏建军, 李芝绒, 等. TNT内爆炸准静态压力特性[J]. 爆炸与冲击, 2018, 38(6): 1429-1434.

      ZHANG Yu‑lei, SU Jian‑jun, LI Zhi‑rong, et al. Quasi‑static pressure characteristic of TNT′s internal explosion[J]. Explosion and Shock Waves, 2018,38 (6): 1429-1434.

    • 5

      金朋刚, 郭炜, 王建灵, 等. 密闭条件下TNT的爆炸压力特性[J]. 火炸药学报, 2013, 36(3): 39-41.

      JIN Peng‑gang, GUO Wei, WANG Jian‑ling, et al. Explosion pressure characteristics of TNT under closed condition[J]. Chinese Journal of Explosives and Propellants, 2013,36(3):39-41.

    • 6

      刘文祥, 张德志, 钟方平, 等. 球形爆炸容器内炸药爆炸形成的准静态气体压力[J]. 爆炸与冲击, 2018, 38(5): 1045-1050.

      LIU Wen‑xiang, ZHANG De‑zhi, ZHONG Fang‑ping, et al. Quasi‑static gas pressure generated by explosive charge blasting in a spherical explosion containment vessel[J]. Explosion and Shock Waves, 2018, 38(5): 1045-1050.

    • 7

      孙琦, 董奇, 杨沙, 等. 内爆炸准静态压力对球形容器弹性动态响应的影响研究[J]. 含能材料, DOI:10.11943/CJEM2019026.

      SUN Qi, DONG Qi, YANG Sha, et al. Effects of quasi‑static pressure on the dynamic elastic response of spherical shell under internal Blast[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), DOI:10.11943/CJEM2019026.

    • 8

      Baker W E. The elastic‑plastic response of thin spherical shells to internal blasting loading[J]. Journal of Applied Mechanics, 1960, 24(1): 139-144.

    • 9

      诺曼·琼斯. 结构冲击(第二版)[M]. 北京: 国防工业出版社,2018: 145-159.

      Jones N. Structural Impact (Second Edition)[M]. Beijing: National Defense Industry Press, 2018: 145-159.

    • 10

      Livermore Software Technology Corporation[CP]. LS‑DYNA Keyword User′s Manual (Version 971, 2007.

    • 11

      Dong Q, Li Q M, Zheng J Y. Interactive mechanisms between the internal blast loading and the dynamic elastic response of spherical containment vessels[J]. International Journal of Impact Engineering, 2010, 31(4): 349-358.