1 引 言
梯恩梯(TNT)是一种典型的单质炸药,原料易得,爆炸性能良好,成本低廉,经常被用于爆炸恐怖事
件[1] 。面对日益严峻的公共安全威胁,爆炸物检测技术的需求日益迫切,发展痕量炸药的检测和识别手段变得尤为重要。由于传统的离子迁移质谱、气相色谱质谱联用等大型仪器存在前处理复杂,设备昂贵,操作流程繁琐,无法满足现场快速检测的要求。因此,发展一种灵敏度高,检测速度快,成本低廉,可现场实时分析的检测方法尤为迫切[1,2,3,4] 。表面增强拉曼散射(SERS)技术是一种新型的痕量分析技术,它可以将待测物信号放大1
04 ~1014 倍,可实现超痕量的单分子探测。且该技术具有样品无需预处理,检测速度快,可透过玻璃等透明器皿检测的特点,被圣地亚国家实验室定位为未来重点突破和持续推进的先进技术[5,6,7,8] 。SERS的增强效应主要有物理增强和化学增强[9,10] 。传统的SERS基底主要有金、银、铜等贵金属材料,然而,单一的贵金属材料已经不能满足SERS基底的设计要求[11] 。复合材料由于其性能突出,近年来受到热捧。将复合材料用作SERS基底也是研究热点之一,如银纳米和聚(苯乙烯‑丙乙烯)复合材料[12] ,银纳米和氧化石墨烯复合材料[13] ,银纳米和氧化锌复合材料[14] 等。虽然这些复合材料可以使SERS性能更加稳定,但在有机小分子的检测,如炸药的痕量检测方面仍面临巨大挑战。金属有机框架(MOFs)是一类由金属离子与有机配体链接形成的纳米功能材料,具有可调节的孔洞结构和良好的光学性质,在化学传感领域具有非常广阔的应用前
景[15,16,17,18,19] ,可作为SERS基底,已报道MIL‑101作为SERS基底用于检测对苯二胺和甲胎蛋白[20] ,UiO‑66和MOF‑199作为SERS基底其增强效应能稳定存在40天以上[21] 。但是,目前利用MOFs作为基底检测炸药的文献还未见报道。由于小分子自身微弱的散射信号无法通过贵金属材料的局域等离子体共振效应得到增强,导致无法采集到拉曼光谱的指纹谱图,从而使小分子在直接探测中表现出很低的响应灵敏性,因此,传统的SERS传感技术对于分子量小于200 D(相当于分子量1.25×1
026 g∙mol-1 )的小分子无法识别探测。TNT是一种典型的小分子炸药,很难直接吸附到基底表面,获得增强信号。ZIF‑8由锌离子和二甲基咪唑组成,具有高的比表面积(大于1600m2 ∙g-1 ),多孔(3.4 Å)和稳定的空腔(11.6 Å),已经被用于气体吸附和分离[22] 。为此,本研究以ZIF‑8作为SERS基底的基础材料,用光还原技术在ZIF‑8上原位生长银纳米颗粒(AgNPs),获得ZIF‑8@Ag复合材料作为SERS基底,并采用自组装法将探针4‑巯基苯酚(4‑ATP)修饰在复合材料表面用于TNT检测。2 实验部分
2.1 试剂与仪器
试剂:ZIF‑8,化学纯,先丰纳米科技有限公司;AgN
O3 ,99.99%,阿法埃莎(中国)化学有限公司;4‑ATP,98%,东京化成工业株式会社;奈尔兰(NBA),78%,阿拉丁生化科技股份有限公司;TNT,三硝基苯酚(PA),三硝基苯(TNB),二硝基苯(DNB),化学纯,中国工程物理研究院化工材料研究所;去离子水,实验室自制。仪器:WFH‑2038三用紫外分析仪,上海驰唐电子有限公司;UV3150紫外可见分光光度计,日本岛津公司;In Via显微共聚焦拉曼光谱仪,英国雷尼绍公司;Ultra 55场发射扫描电子显微镜和Libra 200FE场发射透射电子显微镜,德国蔡司仪器公司;D8 X射线粉末衍射,德国Bruker公司。
2.2 实验过程
2.2.1 ZIF‑8@Ag复合材料的制备
称取20 mg的ZIF‑8(白色粉末)于10 mL的AgN
O3 溶液中,避光浸渍10h;用紫外光照射10 h后,制得黑灰色的ZIF‑8@Ag复合材料;离心(时间:10 min,速度:6000 r·min-1 )去掉上层清夜,保留底部黑灰色的ZIF‑8@Ag复合材料,重复离心操作两次;最后将ZIF‑8@Ag复合材料分散在2 mL的去离子水中备用。2.2.2 ZIF‑8@Ag复合材料的SERS性能评估
将ZIF‑8@Ag复合材料制备为薄膜后作为SERS基底;将NBA溶液滴在ZIF‑8@Ag复合材料薄膜上,利用共聚焦显微拉曼进行SERS性能评估。测试条件:激光波长532 nm,功率0.1%,积分时间15 s,光斑大小直径约为2 mm。每个样品至少测试5次。
2.2.3 TNT检测
将ZIF‑8@Ag复合材料基底浸泡在4‑ATP溶液中4 h,用乙醇冲洗去除未吸附在ZIF‑8@Ag复合材料表面的4‑ATP,得到4‑ATP自组装修饰的ZIF‑8@Ag复合材料。分别取3 μL不同浓度的TNT滴在4‑ATP修饰的ZIF‑8@Ag复合材料上,利用共聚焦显微拉曼进行检测。测试条件:激光波长532 nm,功率0.1%,积分时间15 s。每个样品至少测试5次。
3 结果与讨论
3.1 ZIF‑8@Ag复合材料形貌表征
通过场发射扫描电子显微镜(FE‑SEM)、透射电子显微镜(TEM)对ZIF‑8@Ag复合材料的形貌与结构进行表征,结果见图1。从图1a可知,ZIF‑8颗粒附着着很多小颗粒。TEM图清晰的显示ZIF‑8表面均匀的包裹着AgNPs,AgNPs的大小约为7 nm(图1b)。如图1b~图1d所示,随着AgN
O3 浓度的增加,AgNPs分布密集程度也随之增加。为了证明TEM图谱上的颗粒为高纯银颗粒,本研究进一步开展了高分辨TEM和选区电子衍射表征,图1e得到纳米颗粒晶格间距为0.24 nm,为Ag的(1 1 1)晶面[23] 。选区电子衍射图能清晰显示复合材料上AgNPs的(1 1 1),(2 2 0),(3 1 1)三个晶面衍射圆环(图1f),这表明AgNPs具有很好的纯度和结晶性。ZIF‑8和ZIF‑8@Ag复合材料XRD表征结果如图2所示。由图2可知,38°和44°两个衍射峰归属于Ag的(1 1 1)晶面和(2 0 0)晶面(PDF卡片号:87‑0597),表明成功制备ZIF‑8@Ag复合材料,且材料纯净,结晶性好。
3.2 ZIF‑8@Ag复合材料的SERS性能评估
用1
0-4 ~5×10-6 mol·L-1 的NBA溶液吸附在ZIF‑8@Ag复合材料上,其SERS性能如图3a所示。由图3a可知,即使浓度低至5×10-6 mol·L-1 ,也能明显观察到NBA的三个特征峰(591,1377,1643 cm-1 )。此外,在相同测试条件下随机测试吸附有NBA(10-4 mol·L-1 )的ZIF‑8@Ag复合材料的10个SERS谱图,用于检验复合材料作为SERS基底时的信号均匀性,结果如图3b所示。由图3b可知,591 cm-1 处特征峰的强度相对标准偏差(RSD)为6.24%,这可能是因为:(1)ZIF‑8@Ag复合材料上的AgNPs提供的电磁增强;(2)ZIF‑8具有裸露的锌离子,具有一定的电子补偿作用,ZIF‑8的半导体效应为基底提供化学增强,并保证了银纳米颗粒的稳定[24] 。为了计算ZIF‑8@Ag复合材料的增强因子(EF),分别滴加1 μL的NBA在ZIF‑8@Ag复合材料和硅片表面,其SERS谱图和拉曼谱图如图4所示。根据SERS的增强因子(EF)计算公
式[25] :式中,ISERS是591 c
m-1 处105 mol·L-1 的NBA在ZIF‑8@Ag复合材料的强度,IRef是591 cm-1 处10-2 mol·L-1 的NBA在硅片上的强度,NSERS是激光光斑照射在ZIF‑8@Ag复合材料上所含NBA的分子数,NRef是激光光斑照射在硅片所含NBA的分子数。1 μL的NBA溶液在ZIF‑8@Ag复合材料上扩散区域约为10 mm2 ,1 μL的NBA溶液滴在硅片上形成直径大约为2 mm的圆。计算得到NBA对ZIF‑8@Ag复合材料的EF值为8.84×103 。3.3 ZIF‑8@Ag复合材料对痕量爆炸物的检测应用
ZIF‑8@Ag复合材料的具有SERS增强效果,可以作为SERS基底应用。由于TNT等系列同系物炸药的分子量小,无法直接吸附到基底表面。根据本课题组对痕量TNT的前期研
究[25] ,选取4‑ATP作为探针分子。一方面,该分子可以通过S‑Ag键,在银颗粒表面形成稳定的单分子层;另一方面,待测物TNT及其同系物(如DNB, PA),由于硝基的强吸电子作用,硝基芳香环呈现缺电子性,是良好的电子受体。4‑ATP分子中的氨基是良好的电子给体,两者产生的分子间作用不仅可以将TNT“拉”到基底表面,产生拉曼信号。也能使TNT的SERS信号增强,从而实现灵敏检测的效果。ZIF‑8和4‑ATP的拉曼谱图与ZIF‑8@Ag和ZIF‑8@Ag@4‑ATP的SERS谱图如图5所示,用4‑ATP标记ZIF‑8@Ag复合材料后,可以观察到4‑ATP的1070 cm-1 和1577 cm-1 处的峰。在激光的作用下,4‑ATP发生偶氮反应变为p,p′‑二甲基偶氮苯(DMAB)在1392 cm-1 和1439 cm-1 处出现新的拉曼峰,这说明4‑ATP吸附在基底表面。图5 ZIF‑8和4‑ATP的拉曼谱图与ZIF‑8@Ag和ZIF‑8@Ag@4‑ATP的SERS谱图
Fig.5 Raman spectra of ZIF‑8 and 4‑ATP, SERS spectra of ZIF‑8@Ag and ZIF‑8@Ag@4‑ATP
如图6所示,将复合材料浸泡在1
0-7 ~10-3 mol·L-1 的4‑ATP溶液,4‑ATP的峰强度随着浓度增加而增加,10-7 mol∙L-1 浓度下也能明显观察到4‑ATP的特征峰,选择浓度为10-5 mol∙L-1 的4‑ATP溶液作为ZIF‑8@Ag复合材料功能化浓度。图7a是4‑ATP功能化的ZIF‑8@Ag复合材料检测不同浓度TNT(10-9 ~10-4 mol∙L-1 )的SERS谱图,随着TNT浓度的增加,4‑ATP的拉曼信号也随之增加。在4‑ATP的1392 cm-1 处拉曼峰的左肩出现一个小的弱峰(1378 cm-1 ),是TNT的—NO2 的峰,检测TNT的浓度可以低至10-9 M。图7b是1439 cm-1 处强度和TNT浓度的线性拟合曲线,由图7b可知,4‑ATP的拉曼信号与TNT浓度有好的线性关系,R2值为0.9843,其线性公式Y=3.9064+0.2895lgX。 4‑ATP功能化ZIF‑8@Ag复合材料对TNT具有良好的检测灵敏性。图7 4‑ATP功能化ZIF‑8@Ag复合材料检测TNT的SERS谱图
Fig.7 SERS spectra of detection TNT by 4‑ATP functionalized ZIF‑8@Ag composites
进一步探究4‑ATP功能化的ZIF‑8@Ag复合材料对TNT是否具有选择性,测试与TNT有相似结构的爆炸物(1
0-4 mol·L-1 ,TNB,DNB和PA)如图8a所示。虽然TNB,DNB和PA也与探针4‑ATP有作用,使4‑ATP的信号增强,但增强的幅度低于TNT。如图8b所示是在1439 cm-1 处加爆炸物信号强度比空白信号强度图,TNT增强了2.65倍,但TNB,DNB和PA增强最高的也就增强了1.71倍。结果表明4‑ATP功能化的ZIF‑8@Ag复合材料对TNT具有一定的选择性。3.4 ZIF‑8@Ag复合材料为SERS基底对TNT的检测机理
TNT属于缺电子结构体系,4‑ATP探针上具有丰富的电子结构,两者能产生π‑π共轭相互作用。图9为TNT,4‑ATP和TNT与4‑ATP混合溶液的紫外图,由图9可知,加入TNT后,TNT加入4‑ATP后溶液颜色从无色变为暗红色(见图9插图),并且在529 nm处出现了一个明显的吸收信号,说明TNT与4‑ATP形成Meisenheimer复合物。表明两者的分子间相互作用可以提供化学增强,当加入TNT后,4‑ATP拉曼信号增强,从而达到间接检测TNT的目的。
4 结 论
(1) 通过FE‑SEM和TEM表征表明光还原制备的复合材料,通过光照条件的控制和硝酸银浓度的调控,AgNPs均匀分布在ZIF‑8表面,形成均匀的ZIF‑8@Ag复合材料;
(2) ZIF‑8@Ag复合材料对NBA的SERS增强因子为8.84×1
03 ,表明其具有一定的SERS活性,可以作为SERS基底进行传感应用。(3) 4‑ATP通过S‑Ag键自组装均匀吸附在AgNPs表面,TNT与4‑ATP作用后能形成Meisenheimer复合物,产生的分子间相互作用使4‑ATP的拉曼信号增强,达到间接检测TNT的目的。4‑ATP功能化ZIF‑8@Ag复合材料能对TNT产生一定的选择性响应,检测TNT的浓度可以低至1
0-9 mol·L-1 ,在10-9 ~10-4 mol·L-1 的线性曲线公式是Y=3.9064+0.2895lgX。(责编: 张 琪)
参考文献
- 1
杜仕国, 闫军, 汪明球, 等. 纳米TiO2/碳纳米管复合颗粒的制备及光催化降解TNT废水[J]. 含能材料, 2014, 22(6): 862-866.
DU Shi‑guo, YAN Jun, WANG Ming‑qiu, et al. Preparation of TiO2/CNT composite particles and application in the photocatalytic degradation of TNT wastewater[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2014,22(6): 826-866.
- 2
方玉凤, 程新路, 张朝阳, 等. 石墨烯基炸药传感器的研究进展 [J]. 含能材料, 2014, 22(1): 116-123.
FANG Yu‑feng, CHENG Xin‑lu, ZHANG Chao‑yang, et al. Review on graphene based explosive sensor[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(1): 116-123.
- 3
Tian Xi‑ke, Peng Hui, Li Yong, et al. Highly sensitive and selective paper sensor based on carbon quantum dots for visual detection of TNT residues in groundwater[J]. Sensors and Actuators B: Chemical, 2017, 243: 1002-1009.
- 4
Aparna R S, Anjali Devi J S, Sachidanandan P, et al. Polyethylene imine capped copper nanoclusters‑ fluorescent and colorimetric onsite sensor for the trace level detection of TNT[J]. Sensors and Actuators B: Chemical, 2018, 254: 811-819.
- 5
Cardinal M F, Ende E V, Hackler R A, et al. Expanding applications of SERS through versatile nanomaterials engineering [J]. Chemical Society Reviews, 2017, 46(13): 3886-3903.
- 6
LIU Guang‑qiang, CAI Wei‑ping, KONG Ling‑ce, et al. Standing Ag nanoplate‑built hollow microsphere arrays: controllable structural parameters and strong SERS performances[J]. Journal of Materials Chemistry, 2012, 22(7): 3177-3184.
- 7
JIA Li‑chao, CAI Wei‑ping. Micro/Nanostructured ordered porous films and their structurally induced control of the gas sensing performances[J]. Advanced Functional Materials, 2010, 20(21): 3765-3773.
- 8
PAN Ru⁃hao, YANG Yang, WANG Yu‑jin, et al. Nanocracking and metallization doubly defined large‑scale 3D plasmonic sub‑10 nm‑gap arrays as extremely sensitive SERS substrates[J]. Nanoscale, 2018, 10(7): 3171-3180.
- 9
HE Xuan, LIU Yu, XUE Xiang‑gui, et al. Ultrasensitive detection of explosives via hydrophobic condensation effect on biomimetic SERS platforms[J]. Journal of Materials Chemistry C, 2017, 5(47): 12384-12392.
- 10
Reguera J, Langer J, Jiménez de Aberasturi D, et al. Anisotropic metal nanoparticles for surface enhanced raman scattering [J]. Chemical Society Reviews, 2017, 46(13): 3866-3885.
- 11
JIANG Zhong‑wei, GAO Peng‑fei, YANG Lin, et al. Facile in situ synthesis of silver nanoparticles on the surface of metal‑organic framework for ultrasensitive surface‑enhanced raman scattering detection of dopamine[J]. Analytical chemistry, 2015, 87(24): 12177-12182.
- 12
LI Ju‑mei, MA Wan‑fu, WEI Chuan, et al. Detecting trace melamine in solution by SERS using Ag nanoparticle coated poly(styrene‑co‑acrylic acid) nanospheres as novel active substrates[J]. Langmuir, 2011, 27(23): 14539-14544.
- 13
LIU Xiao‑juan, CAO Lin‑yuan, SONG Wei, et al. Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface‑enhanced raman spectroscopy[J]. ACS Applied Materials & Interfaces, 2011, 3(8): 2944-2952.
- 14
HE Xuan, WANG Hui, ZHANG Qi, et al. Exotic 3D hierarchical ZnO‑Ag hybrids as recyclable surface‑enhanced raman scattering substrates for multifold organic pollutant detection[J]. European Journal of Inorganic Chemistry, 2014, 2014(14): 2432-2439.
- 15
Panella B, Hirscher M, Pütter H, et al. Hydrogen adsorption in metal‑organic frameworks: Cu‑MOFs and Zn‑MOFs compared[J]. Advanced Functional Materials,2006,16(4):520-524.
- 16
ZHANG Zhi‑juan, ZHAO Yong‑guang, GONG Qi‑han, et al. MOFs for CO2 capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity[J]. Chemical Communications, 2013, 49(7): 653-661.
- 17
ZHOU Jing‑min, LI Huan‑huan, ZHANG Huan, et al. A bimetallic lanthanide metal‑organic material as a self‑calibrating color‑gradient luminescent sensor[J]. Advance Materials, 2015, 27(44): 7072-7077.
- 18
Hwang Y K, Hong D, Chang J, et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation[J]. Angewandte Chemie, 2008, 120(22): 4212-4216.
- 19
Horcajada P, Chalati T, Serre C, et al. Porous metal‑organic‑framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature Materials, 2009, 9: 172.
- 20
HU Yu‑ling, LIAO Jia, WANG Dong‑mei, et al. Fabrication of gold nanoparticle‑embedded metal‑organic framework for highly sensitive surface‑enhanced Raman scattering detection [J]. Analytical chemistry, 2014, 86(8): 3955-3963.
- 21
LEI Jian‑ping, QIAN Ruo‑can, LING Ping‑hua, et al. Design and sensing applications of metal‑organic framework composites[J]. TrAC Trends in Analytical Chemistr, 2014, 58: 71-78.
- 22
ZHENG Guang‑chao, Sarah de Marchi, Vanesa López‑Puente, et al. Encapsulation of single plasmonic nanoparticles within ZIF‑8 and SERS analysis of the MOF flexibility[J]. Small, 2016, 12(29): 3935-3943.
- 23
HE Xuan, WANG Hui, LI Zhong‑bo, et al. Ultrasensitive SERS detection of trinitrotoluene through capillarity‑constructed reversible hot spots based on ZnO‑Ag nanorod hybrids[J]. Nanoscale, 2015, 7(18): 8619-8626.
- 24
ZHAO Xiao‑yu, WEN Jia‑hong, ZHANG Meng‑ning, et al. Design of hybrid nanostructural arrays to manipulate SERS‑active substrates by nanosphere lithography[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7710-7716.
- 25
HE Xuan, WANG Hui, LI Zhong‑bo, et al. ZnO‑Ag hybrids for ultrasensitive detection of trinitrotoluene by surface‑enhanced Raman spectroscopy[J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14706-14712.
- 1
摘要
采用表面增强拉曼散射(SERS)技术检测痕量梯恩梯(TNT),采用光还原法合成的ZIF‑8@Ag复合材料作为SERS基底,利用场发射扫描电子显微镜(FE‑SEM)、透射电子显微镜(TEM)、X射线粉末衍射(XRD)对复合材料的结构和性能进行表征。结果表明,银纳米颗粒(AgNPs)均匀分布在ZIF‑8表面;复合材料具有良好的SERS增强活性,对奈尔兰(NBA)的增强因子为8.84×1
Abstract
The detection of trace trinitrotoluene (TNT) explosives by Surface Enhanced Raman Scattering (SERS) was studied. A novel organic metal framework ZIF‑8@Ag composites material prepared by in situ growth was used as SERS substrates. Meanwhile, the structure and properties of the composites were characterized by field emission scanning electron microscopy (FE‑SEM), transmission electron microscopy(TEM) and X‑ray powder diffraction(XRD). Results show that the ZIF‑8@Ag composites material has good SERS activity, and the enhancement factor is calculated as 8.84×1
Graphic Abstract
图文摘要
ZIF‑8@Ag composites were prepared by in situ growth and modified with 4‑ATP as efficient probe. The Raman inactive TNT initiated the high Raman scattering of non‑resonated 4‑ATP through the π‑π conjugate between 4‑ATP and TNT.