1 引 言
黑索今(RDX)作为混合炸药中的常用炸药,是枪炮发射药和固体推进剂的重要组成部分,自问世以来被广泛应用,国内外学者对RDX及其混合炸药做了大量研究。刘子
如[1,2,3] 等对RDX的热分解及反应机理进行了研究,但RDX在受热分解过程中吸放热发生耦合,导致热分解曲线不完整,如果不对其耦合曲线进行解耦分峰,就计算热分析动力学,实验参数的正确性将无法得到认可。Lee等[4,5] 在非等温条件下证明了RDX在热分解过程中出现放热分解与熔融吸热相重合的现象;张彩星[6] 运用AKTS软件对RDX热分解曲线进行解耦,获得了纯分解放热曲线;文献[7,8,9,10,11,12,13]研究了铝、镍、铜、铁、氧化铅、氧化铬等对RDX热分解过程的影响,分析了金属粉末对RDX的热分解、机械感度、火焰感度、爆炸性能的影响;张明等[14] 分析了纳米铝、纳米镍对RDX的热分解特性及动力学参数的影响,以及促进这些组分热分解的可能机理;王亚微等[15] 对RDX基发射药进行热分解动力学的研究,得出了RDX的反应机理函数;文献[16,17,18,19,20,21]研究了1,3,5⁃三氨基⁃2,4,6⁃三硝基苯(TATB)、三硝基甲苯(TNT)、2,6⁃二氨基⁃3,5⁃二硝基吡嗪⁃1⁃氧化物(LLM⁃105)、六硝基六氮杂异伍兹烷(CL⁃20)对RDX的热分解过程的影响;此外,王晨晨等[22] 研究了混合炸药中RDX对其热安全性的影响,结果发现RDX的加入降低了混合炸药的热安全性。现有的研究使人们对RDX有了深刻的认识,但在RDX热分解机理及解耦后的热分解动力学的研究方面,以及奥克托今(HMX)对RDX热稳定性影响还缺乏系统性研究。本研究拟通过AKTS分析软件对RDX热分解曲线进行解耦分峰,获得准确的热分解动力学参数,以及在不同升温速率下不同比例(9/1,8/2,7/3,6/4,5/5)的HMX对RDX热稳定性进行研究,以期对现有关于RDX热分解动力学及HMX对其热稳定性进行一定的补充。
2 实验部分
2.1 样品
RDX、HMX,甘肃银光化学工业公司。由激光粒度分布仪测得,RDX的粒度分布百分数达到50%时所对应的粒径为(D50)20.12 μm,HMX的D50为124.3 μm,将RDX/HMX分别按比例10/0,9/1,8/2,7/3,6/4,5/5制成待测样品。
2.2 仪器及实验
微热量热仪(C600),法国Setaram公司生产,程控温度速率(加热或冷却)0.001~2 ℃·mi
n-1 ,量热精度误差2%,灵敏度6 μV/mW,分辨率0.5 μW,实验气氛为空气,可测实验温度范围0~600 ℃,C600基于三维卡尔维传感器技术,由热电偶构成空间阵列传感器,样品可被热电偶阵列完全包围,三维卡尔维传感器不仅在灵敏度方面具有数量级的优势,更可以在保证量热效率的前提下增大样品量,可精准测量到样品放出的热量。采用C600分别对RDX、RDX/HMX混合样品进行测试,从室温开始对样品进行升温,直至样品完全分解,升温速率为0.2,0.5,1,2 ℃·min-1 ,样品质量为10 mg,三氧化二铝为参比物。3 结果与讨论
3.1 C600实验
图1为RDX的C600实验曲线,升温速率分别为0.2,0.5,1,2 ℃·mi
n-1 。由图可知,RDX的分解峰温及分解结束温度随着升温速率的增大向高温方向移动。RDX存在相变过程,先熔融吸热,再分解放热,其熔融吸热与分解放热发生耦合,并随着升温速率的增大,耦合程度愈来愈小,说明RDX是熔融分解型物质。3.2 解耦结果与分析
由图1可知RDX在受热分解过程当中,吸放热发生耦合,分解放热过程与熔融吸热过程发生重叠,导致其分解放热曲线不完整,而热分解动力学是基于完整的热分解曲线,为此,基于Gaussian and/or Fraser⁃Suzuki不对称函数的应
用[6] ,利用分析软件AKTS[23] 对RDX进行解耦分峰,获取不受熔融吸热影响的完整分解放热曲线。图2为解耦后的RDX熔融及分解曲线,可知RDX的熔融峰温(Tmin)、分解峰温(Tpeak)、分解热(ΔH)均随着升温速率的升高而增加,这是因为升温速率的升高,反应物质与环境的热交换过程缩短,致使分解温度升
高[24] ,其熔融峰温为201.07~208.05 ℃,分解峰温207.99~232.76 ℃,分解热平均为5398.63 J·g-1 。在升温速率0.2,0.5 ℃·min-1 时,熔融峰温与分解峰温的两温差较小,表明RDX一旦开始分解则迅速达到最大反应速率(分解峰温即最大热流点处视为最大反应速率),其分解放热强烈程度超过熔融吸热,导致熔融吸热部分被分解放热所掩盖,耦合程度较大。升温速率1,2 ℃·min-1 时,熔融峰温与分解峰温两温差较大,熔融吸热峰愈发明显,分解峰温向高温移动,吸放热耦合程度减小。3.3 热分解动力学分析
根据分峰后的RDX热分解曲线进行热分解动力学分析,采用Friedman
法[25] (式(1))、Ozawa法[26] (式(2))和Kissinger法[27] (式(3))求解RDX的活化能等参数。Friedman法是通过最小二乘法对数据进行拟合,由曲线的斜率得出活化能E,通过此方法得不出f(α)的值,只能得出A与f(α)的乘积,这种方法虽然无法求出f(α)的值,但避免了反应进程中的诸多假设,使计算结果更具有普适性。式中,β为不同的升温速率,℃·mi
n-1 ;α为转化率;T为反应温度,K;A为指前因子,s-1 ;E为活化能,kJ·mol-1 ;R是普适气体常数,J·mol-1 ·K-1 ;f(α)为反应机理函数。Tp为峰温,K。图3~图5分别是通过上述三种方法对RDX进行动力学分析的关系曲线。由于在反应初期仪器信号不稳定等因素,计算转化率时从0.1开始,步长取0.1。图3为通过Friedman法得出的计算结果,此法同Ozawa法类似,是在不对动力学函数进行假设的前提下得到的活化能随转化率变化的曲线。由图3、图4可知,RDX的活化能随转化率的增加而逐渐减小。图5是通过Kissinger法得出的活化能为167.70 kJ·mo
l-1 。为了对比Friedman法、Ozawa法、Kissinger法计算出来的活化能,把三种方法计算出来的结果放在一张图中,如图6所示,在转化率较低时,Ozawa法得出活化能较大,当反应进入稳定阶段后,Friedman法和Ozawa法计算的活化能逐渐减小,直至重合,而Kissinger法计算出来的活化能为固定值,说明在进行动力学计算时是否对反应机理进行假设对活化能有一定的影响。图3 活化能、ln[Af(α)]与转化率之间的关系曲线(Friedman)
Fig. 3 The relation⁃ship curves of activation energy,ln[Af(α)] and conversion rate(Friedman),respectively
图4 活化能与转化率之间的关系曲线(Ozawa)
Fig. 4 The relation⁃ship curve of activation energy and conversion rate (Ozawa)
图6 不同方法计算的RDX活化能
Fig. 6 thermo⁃decomposition activation energies of RDX calculated by different methods
AKTS是模拟计算反应性化学物质动力学参数的高等动力学软件,并能预测物质的热危害程度,将图2b中RDX的四条不同升温速率条件下的热分解曲线导入AKTS软件中,得出RDX的反应进程、反应速率的实验和模拟曲线,如图7、图8所示,从AKTS分析结果可知相关系数为0.9904>0.99,说明模拟曲线和实验曲线有较高的吻合度。模拟曲线上RDX的分解峰温与实验得出的分解峰温基本相同,实验参数经过AKTS分析软件的验证,正确性得到了认可。RDX的每条曲线变化趋势一致,说明RDX的热分解机理一致,不受升温速率的影响。
3.4 不同比例的RDX与HMX的热分解分析
图9为不同升温速率条件下不同比例的RDX与HMX的热分解曲线,表1为其热分解相关特征参量。由图9及表1分析可知,在升温速率相同时,混合样品中RDX的熔融峰温低于单质RDX的熔融峰温。升温速率0.2 ℃·mi
n-1 时,混合样品中RDX的分解峰温与单质RDX相比平均下降了2.02 ℃;在升温速率分别为0.5,1,2 ℃·min-1 时,混合样品中RDX的分解峰温比单质RDX相比平均上升了1.79,2.46,3.92 ℃,这是由于在较低升温速率时,样品内部温度受热均匀,所测样品温度的准确性更高且有利于熔融与分解峰的分离。不同RDX/HMX比例(9/1,8/2,7/3,6/4,5/5)的混合样品在四组升温速率下与单质RDX相比,混合样品中RDX的熔融峰温平均降低了8.63,8.32,9.70,8.57,6.50 ℃,其分解峰温平均改变了1.14,2.01,2.58,3.53,3.47 ℃。忽略实验误差的影响因素,随着混合比例的变化,RDX的分解峰温变化较小,因此,RDX和HMX混合后热稳定性良好。表1 不同比例的RDX、HMX的热分解特征参量
Table 1 Characteristic parameters of thermo⁃decomposition of HMX⁃doping samples.
β / ℃·mi n-1 mass ratio Tmin2 / ℃ Tpeak2 / ℃ Tpeak1 / ℃ Tmin1/ ℃ ΔT1 / ℃ ΔT2 / ℃ 0.2 9:1 189.70 206.71 207.99 201.07 1.28 11.37 8:2 190.25 206.16 207.99 201.07 1.83 10.82 7:3 188.66 206.83 207.99 201.07 1.16 12.41 6:4 195.31 204.05 207.99 201.07 3.94 5.76 5:5 184.87 206.08 207.99 201.07 1.91 16.20 0.5 9:1 191.03 215.13 214.49 205.39 -0.64 14.36 8:2 195.74 216.06 214.49 205.39 -1.57 9.65 7:3 194.18 216.58 214.49 205.39 -2.09 11.21 6:4 196.33 216.90 214.49 205.39 -2.41 9.06 5:5 191.20 216.74 214.49 205.39 -2.25 14.19 1 9:1 199.86 223.87 222.89 206.39 -0.98 6.53 8:2 199.69 225.18 222.89 206.39 -2.29 6.70 7:3 199.61 225.95 222.89 206.39 -3.06 6.78 6:4 194.99 226.36 222.89 206.39 -3.47 11.40 5:5 197.95 225.40 222.89 206.39 -2.51 8.44 2 9:1 205.79 234.40 232.76 208.05 -1.64 2.26 8:2 201.96 235.46 232.76 208.05 -2.70 6.09 7:3 199.66 236.77 232.76 208.05 -4.01 8.39 6:4 200.00 237.06 232.76 208.05 -4.30 8.05 5:5 200.34 239.97 232.76 208.05 -7.21 7.71 NOTE: β is the heating rate. Tmin2 is the melting peak temperature of RDX in mixed samples. Tpeak2 is the decomposition peak temperature of RDX in mixed samples. Tmin1 is the melting peak temperature of RDX. Tpeak1 is the decomposition peak temperature of RDX. ΔT1 is the decomposition peak temperature difference. ΔT2 is the melting peak temperature difference.
由于HMX掺杂对RDX在整个热分解过程的影响,若对混合样品中RDX进行热分解动力学分析,必先对其热分解曲线进行解耦,再采用Kissinger法对RDX进行计算求得活化能,不同比例(9/1、8/2、7/3、6/4、5/5)混合样品中RDX的活化能分别为162.32,151.40,149.78,141.14,132.93 kJ·mo
l-1 ,可知随着HMX比例的增加,RDX活化能逐渐降低。4 结论
(1)解耦后的RDX熔融峰温为201.70~208.05 ℃,分解峰温207.99~232.76 ℃,分解热平均为5394.10 J·
g-1 ,随着升温速率的增加,熔融峰温和分解峰温向高温方向移动步幅逐渐增大,导致耦合程度愈来愈小。(2)采用Kissinger法计算RDX的活化能为167.70 kJ·mo
l-1 ,Friedman法和Ozawa法计算的活化能变化趋势相同,均逐渐减少;RDX的反应进程、反应速率的实验与模拟曲线吻合度较高,实验参数经过了AKTS软件的验证。(3)每组混合样品中RDX的熔融峰温、分解峰温、峰高均随着升温速率的增加而增加,其熔融峰温增加较小。与单质RDX相比,混合样品中RDX的熔融峰温平均降低了8.63,8.32,9.70,8.57,6.50 ℃,分解峰温平均改变了1.14,2.01,2.58,3.53,3.47 ℃,混合样品中RDX的活化能分别为162.32,151.40,149.78,141.14,132.93 kJ·mo
l-1 ,RDX和HMX混合后的热稳定性良好。(责编: 高 毅)
参考文献
- 1
刘子如. 含能材料热分析[M]. 北京: 国防工业出版社, 2008:73-96.
LIU Zi⁃ru, Thermal analysis of energy⁃containing materials [M]. Beijing: national defense industry press, 2008:73-96.
- 2
刘子如, 阴翠梅, 刘艳, 等. RDX和HMX的热分解动力学参数和动力学补偿效应[J]. 火炸药学报, 2004, 27(4): 72-75,79.
LIU Zi⁃ru, YIN Chui⁃mei, LIU Yan, et al. Thermal decomposition II of RDX and HMX. kinetic parameters and dynamic
compensation effect [J]. Chinese Journal of Explosives, 2004, 27(4): 72-75, 79.
- 3
Mayank K, Lalit P, Stefan T. Thynell. Improvement and validation of a detailed reaction mechanism for thermal decomposition of RDX in liquid phase[J]. Combustion and Flame, 2018, 198.
- 4
Lee J S, Hsu C K, Chang C L. A study of thermal decomposition behaviors of PETN, RDX, HNS and HMX [J]. Thermochimica Acta, 2002, 392-393.
- 5
常昆, 左玉芬, 周建华. 含能材料HMX⁃RDX的热行为研究[J]. 合成化学, 2006, 14(1): 94-96.
CHANG Kun, ZUO Yu⁃fen, ZHOU Jian⁃hua. Study on thermal behavior of hmx⁃rdx containing energy [J]. Synthetic Chemistry, 2006, 14(1): 94-96.
- 6
张彩星. 吸放热耦合情况下分解反应热效应的解耦方法研究[D]. 南京理工大学, 2016.
ZHANG Chai⁃xin. Research on decoupling method of decomposition reaction thermal effect under the coupling of heat absorption and heat release [D]. Nanjing university of science and technology, 2016.
- 7
姚冰洁, 郑晓东, 吕英迪, 等. Cu/Al复合材料的制备及其对RDX热分解性能的影响[J]. 含能材料, 2019, 27(07): 616-621.
YAO Bing⁃jie, ZHENG Xiao⁃dong, LÜ Ying⁃di, et al. Preparation of Cu/Al composite and its effect on thermal decomposition of RDX [J]. Energy⁃Containing Materials, 2019, 27(07): 616-621.
- 8
常海, 郑亚峰, 刘子如, 等. RDX基含铝炸药的热爆发活化能及其动力学补偿效应[J]. 火炸药学报, 2011, 34(6): 38-40,47.
CHANG Hai, ZHENG Ya⁃feng, Liu Zi⁃ru, et al. Activation energy of thermal explosion and its kinetic compensation effect of rdx⁃based aluminium⁃containing explosives [J]. Journal of Pyrotechnic Explosives, 2011, 34(6): 38-40, 47.
- 9
郑亚峰, 常海, 张修博, 等. RDX基含铝炸药的特性落高能与热爆发参数的关系[J]. 含能材料, 2012, 20(6). 754-757.
ZHENG Ya⁃feng, CHANG Hai, ZHANG Xiu⁃bo, et al. Relationship between the characteristic falling energy and thermal explosion parameters of RDX base aluminium⁃containing explosives [J]. Energy⁃Containing Materials, 2012, 20(6): 754-757.
- 10
ZHAO Qian, NIE Jian⁃xin, ZHANG Wei. Effect of the Al/O ratio on the Al reaction of aluminized RDX⁃based explosives[J]. Chinese Physics B, 2017, 26(05): 263-268.
- 11
刘建辉, 冯朝阳, 刘吉儒, 等. 金属氧化物对RDX热分解影响的研究[J]. 火工品, 2003(2): 34-36.
LIU Jian⁃hui, FEN Chao⁃yang, LIU Ji⁃ru, et al. Effect of metal oxides on thermal decomposition of RDX [J]. Pyrotechnic Products, 2003(2): 34-36.
- 12
王彩玲, 陈松, 赵省向, 等. AL粉对RDX机械感度的影响[J]. 火工品, 2010(1): 32-34.
WANG Chai⁃lin, CHEN Song, ZHAO Shen⁃xiang, et al. Influence of AL powder on mechanical sensitivity of RDX [J]. Pyrotechnics, 2010(1): 32-34.
- 13
姚李娜, 封雪松, 赵省向, 等. 纳米AL对RDX基炸药机械感度和火焰感度的影响[J]. 火炸药学报, 2012, 35(4): 15-18.
YAO Li⁃na, FENG Xue⁃song, ZHAO Shen⁃xiang, et al. Effects of nano⁃al on mechanical and flame sensitivity of rdx⁃based explosives [J]. Journal of Explosives, 2012, 35(4): 15-18.
- 14
张明, 赵凤起, 杨燕京, 等. 纳米金属粉对推进剂组分热分解特性影响研究进展[J]. 化学推进剂与高分子材料, 2018(6): 6-10+22.
ZHANG Ming, ZHAO Feng⁃qi, YANG Yan⁃jing, et al. Research progress of influence of nano metal powder on thermal decomposition characteristics of propellant components [J]. Chemical Propellants and Polymer Materials, 2018(06):6-10+22.
- 15
王亚微, 杨慧群, 韩进朝, 等. 黑索今基发射药热分解动力学研究[J]. 精细化工中间体, 2017, 47(6): 43-45.
WANG Ya⁃wei, YANG Hui⁃qun, HAN Jin⁃chao, et al. Thermal decomposition kinetics of herzogen⁃based propellant [J]. Fine Chemical Intermediates, 2017, 47(06): 43-45.
- 16
邵琴. TATB基PBX传爆药配方优化设计及性能研究[D]. 太原:中北大学, 2016.
SHAO Qin. Optimization design and performance research of TATB base PBX explosive transfer formula [D]. Taiyuan:North China university, 2016.
- 17
丁玉奎, 吴翼, 王海丹, 等. TNT对RDX热分解行为影响的研究[J]. 爆破器材, 2014, 43(5): 21-25.
DING Yu⁃kui, WU Yi, WANG Hai⁃dan, et al. Effect of TNT on thermal decomposition behavior of RDX [J]. BlastingEquipment, 2014, 43(05): 21-25.
- 18
丁涛, 杨慧群, 张永丽. CL⁃20/RDX混合体系的热分解[J]. 化学推进剂与高分子材料, 2013, 11(6): 84-86.
DING Tao, YANG Hui⁃qun, ZHANG Yong⁃li. Thermal decomposition of CL⁃20/RDX hybrid system [J]. Chemical Propellant and Polymer Materials, 2013, 11(06): 84-86.
- 19
沈瑞强, 袁俊明, 罗凯, 等. 升温加载下含LLM⁃105的RDX基浇注炸药热点火细观模拟[J]. 火炸药学报, 2018, 41(2): 137-142.
SHEN Rui⁃qiang, YUAN Jun⁃ming, LUO Kai, et al. Thermal micrometry simulation of rdx⁃based pouring explosives containing LLM⁃105 under heating loading [J]. Journal of Pyrotechnic Explosives, 2008, 41(02): 137-142.
- 20
张宏亮. 不同配比RDX/TNT炸药的DSD参数研究[A]. 中国力学学会, 2011:1.
ZHANG Hong⁃liang. Study on DSD parameters of explosives with different ratios of RDX/TNT [A]. Chinese society of mechanics, 2011:1.
- 21
屈蓓, 唐秋凡, 李吉祯, 等. 分子动力学及热分析方法研究CL⁃20与推进剂主要组分的相互作用[J]. 固体火箭技术,
2017, 40(04): 476⁃483. QU Bei, TANG Qiu-fan, LI Ji⁃zhen,et al. Study on the interaction between cl⁃20 and the main components of propellant by molecular dynamics and thermal analysis [J]. Solid Rocket Technology, 2017, 40(4): 476-483.
- 22
王晨晨, 王伯良, 黄菊, 等. 混合炸药中RDX对其热安全性的影响研究[J]. 爆破器材, 2012, 41(2): 8-10+15.
WANG Chen⁃chen, WANG Bo⁃liang, HUANG Ju, et al. Study on the influence of RDX in mixed explosive on its thermal safety [J]. Blasting Equipment, 2012, 41(2): 8-10+15.
- 23
万伟, 陈网桦, 卫水爱, 等. 偶氮二异丁腈热安全性分析与评估[J]. 中国安全科学学报, 2012, 22(8): 131-137.
WAN Wei, CHEN Wang⁃hua, WEI Shui⁃ai, et al. Thermal safety analysis and evaluation of azodiisobutyronitrile [J]. Chinese Journal of Safety Sciences, 2012, 22(8): 131-137.
- 24
Xu S, Liu J, Cao W, et al. Experimental study on the minimum ignition temperature and combustion kinetics of coal dust/air mixtures[J]. Powder Technology, 2017, 317: 154-161.
- 25
Friedman H L. Kinetics of thermal degradation of char⁃forming plastics from thermogravimetry. application to a phenolic plastic [J]. Journal of Polymer Science Part C:Polymic Symposia, 1964, 6(1): 183-195.
- 26
Ozawa T. A new method of analyzing thermogravimetric data [J]. Bulletin of the Chemical Society of Japan, 1965,38(11): 1881-1886.
- 27
Kissinger H E. Variation of peak temperature with heating rate in differential thermal analysis [J] Journal of Research of the National Bureau of Standards, 1956, 57: 217-221.
- 1
摘要
利用微热量热实验研究了黑索今(RDX)的热分解特性及奥克托今(HMX)对其热稳定性的影响,运用AKTS分析软件对热分解曲线进行解耦分峰,得到了不受熔融相变影响的热分解曲线和参数,采用Kissinger、Friedman和Ozawa法计算了其热分解活化能。结果表明:RDX是熔融分解型物质,解耦后的RDX熔融峰温为201.07~208.05 ℃,分解峰温为207.99~232.76 ℃,活化能为167.70 kJ·mo
Abstract
Thermo⁃decomposition performances of RDX and corresponding HMX⁃doping samples were studied comprehensively through microcalorimetric experiments. Thermo⁃decomposition curves and parameters without the influence of melting phase transition were simulated via decoupling peak separation method through AKTS software. The thermo⁃decomposition activation energies (Ea) of all the samples were calculated via Kissinger, Friedman and Ozawa methods, respectively. The results showed that RDX was belonging to melt decomposition materials. Its melting peak temperature was in the region of 201.07~208.05 ℃, while its decomposition peak temperature was in the range of 207.99~232.76 ℃. Its thermo⁃decomposition Ea value was 167.7 kJ·mo
Graphic Abstract
图文摘要
The thermo⁃decomposition performance of RDX and corresponding HMX⁃doping samples were studied. RDX was belonging to melt decomposition materials, the thermo⁃decomposition temperature and Ea of HMX⁃doping samples were decreased with the doping of HMX.